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Abstract: Quantitative characterisation through mineral liberation analysis is required for effective
minerals processing in areas such as mineral deposits, tailings and reservoirs in industries for re-
sources, environment and materials science. Current practices in mineral liberation analysis are based
on 2D representations, leading to systematic errors in the extrapolation to 3D volumetric properties.
The rapid development of X-ray microcomputed tomography (µCT) opens new opportunities for
3D analysis of features such as particle- and grain-size characterisation, determination of particle
densities and shape factors, estimation of mineral associations, and liberation and locking. To date,
no simple non-destructive method exists for 3D mineral liberation analysis. We present a new de-
velopment based on combining µCT with micro-X-ray fluorescence (µXRF) using deep learning.
We demonstrate successful semi-automated multimodal analysis of a crystalline magmatic rock by
obtaining 2D µXRF mineral maps from the top and bottom of the cylindrical core and propagating
that information through the 3D µCT volume with deep learning segmentation. The deep learning
model was able to segment the core to obtain reasonable mineral attributes. Additionally, the model
overcame the challenge of differentiating minerals with similar densities in µCT, which would not be
possible with conventional segmentation methods. The approach is universal and can be extended
to any multimodal and multi-instrument analysis for further refinement. We conclude that the
combination of µCT and µXRF can provide a new opportunity for robust 3D mineral liberation
analysis in both field and laboratory applications.

Keywords: deep learning segmentation; mineral liberation analysis; computed tomography; X-ray
fluorescence; correlative microscopy

1. Introduction

To determine the volume fractions of valuable commodities, mineral liberation has
become a key step in the mineral processing industry, whereby through the process of
breaking up the ore, valuable minerals are released for separation [1]. Mineral liberation
analysis is therefore frequently used in metallurgical and mineralogical application for
mineral abundance estimation in modal mineralogy and assay techniques for sample
elemental distributions [2]. Mineral liberation analysis has also been used in research
and industry for particle- and grain-size characterisation [3], determination of particle
densities and shape factors [4], estimation of mineral associations, liberation and locking [5]
and theoretical grade–recovery curves [6]. The technique has now been extended for
characterisation of ore deposits to secondary resource characterisation of tailings [7], and
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applications in the petroleum industry for the characterisation of sediments [8], rock typing,
stratigraphic refinement and reservoir characterisation [9].

Several semi-automated techniques have been developed for identifying and quantify-
ing mineralogy. Of widest use are currently electron-beam-based systems using backscat-
tered electron (BSE) images with energy-dispersive spectroscopy (EDS) marketed as com-
mercial systems such as QEMSCAN [10,11]. However, the extrapolation of the collected
2D mineralogy maps to 3D remains problematic. The current methods of stereological
reconstruction, at present, cannot solve the difficult mathematical problem of the diversity
and complexity of mineral grains in rocks and ores due to the difficult-to-define form
factor. This leads to systematic errors in quantitative estimates of volume fractions from 2D
data as input into mass–energy balance calculations in mineral processing flow sheets [12].
To rigorously address this problem, 3D tomographic imaging techniques are necessary.

Destructive tomographic methods, such as focused ion beam milling coupled with
high-resolution scanning electron microscope (FIB-SEM) imaging, offer exact 3D reconstruc-
tions down to the nanometre level and can be complemented by SEM/EDX automated
mineralogy [13] on 2D cross-sections. Recent developments in X-ray microcomputed
tomography (µCT) have made rapid non-destructive characterisation possible, and the
technique has now been successfully integrated into the SEM/EDX-based mineral libera-
tion analysis [14]. Furthermore, studies have combined micro-X-ray fluorescence (µXRF)
with µCT [15] in addition to implementations of artificial intelligence being explored for
straightforward segmentations of 2D µXRF maps of rocks [16].

The question arises regarding whether a technique can be successfully developed where
the exterior surface mineralogy can be combined with the interior bulk of a 3D X-ray µCT
dataset for direct, fast and reliable 3D mineral liberation analysis. The problem is the densities
of some geomaterials are so similar that without additional information, it is difficult and,
often, impossible to reliably differentiate between distinct phases in X-ray µCT. This problem
is encountered when trying to identify feldspar crystals from crystallised natural magmas
where specialised image analysis techniques have been proposed to augment the analysis of
tomographic slices through morphological information of feldspar crystals [17]. However,
artificial intelligence, through deep learning protocols, have been found to be useful in over-
coming many of the hurdles mentioned in the segmentation of materials [18–20]. Additionally,
the advent of machine learning has enhanced numerous aspects of mineral processing [21].
Applications include the prediction of coal flotation performance [22–24], power consump-
tion optimisations [25,26] and grinding burn detection [27], all of which warrant further
development of machine learning in mineral characterisation.

Our hypothesis is an envisioned workflow that can be generalised by artificial intel-
ligence techniques and is able to incorporate additional information, such as statistical
analysis, into a robust 3D mineral liberation analysis technique using laboratory equipment.
In this contribution, we propose a generic multi-instrument, multimodal analysis technique
by combining a deep learning approach and statistical methods for interpretating X-ray
µCT and µXRF images, called deep X-ray florescence computed tomography (Deep-XFCT).
Our aim was to reliably identify and resolve the shapes and distribution of the mineral
phases with minor density differences, which will have an effect on mineral flotation as well
as the energy needed for rock breakage (comminution); one of the most energy-intensive
processes in mining [28].

2. Methods
2.1. Core Plug Rock Sample
Multimineral Rock Sample

The basaltic andesite core plug sample used in this study was obtained from the NSW
Government Londonderry core library. The rock was subdrilled from a 45 mm round
rock collection of the Pacific Power Hot Rock 1 bore (PPHR1). The rock was originally
from the Muswellbrook geothermal anomaly, located approximately 10 km southwest of
Muswellbrook in Hunter Valley Dome Belt, the north-eastern part of the Sydney basin, New
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South Wales. The PPHR1 borehole was drilled to a depth of 1946 m near the central region
of the anomaly, and more than 1 km of continuous core samples was taken to identify the
rocks present and their physical properties [29].

The basaltic andesite sample was a fine-grained igneous rock with a silica content
from 52% to 57% [30]. The sample was chosen for its clear and distinct mineral inclusions,
which are preferable for application in a proof-of-concept workflow. The initial drill core
analysed had a diameter of 24.30 mm and height of 25 mm. Sample preparation for the
analysis was minimal with the drill core sample. The sample was simply cut orthogonal to
the length of the cylindrical core with a Struers® Minitom to obtain a relatively flat surface,
with no polishing performed for the surface.

2.2. Experimental Methods

To obtain 3D mineral liberation of the basaltic andesite sample, a combination of con-
ventional analytical techniques was employed for analysis and validation. These included
(1) XRD on powder samples of the rock to gain an understanding of the minerals present and
their relative abundances; (2) µCT for a 3D representation of the densities of the mineral, as
shown in Figure 1; (3) µXRF for point analysis of elemental atomic mass, shown in Figure 2,
and to obtain the elemental concentration maps from the top and bottom surfaces of the
sample, as shown in Figure 3; (4) Raman scattering to validate several mineral phases from
the current workflow. The XRD and Raman scattering data, along with detailed specifications
of the experimental methods can be found in the Supplementary Materials.

Figure 1. A µCT dataset of the basaltic andesite sample with the locations of the top and bottom
surfaces scanned with µXRF in the yellow (top) and blue (bottom) planes.

Figure 2. Positions of point analysis (A–F) for µXRF and Raman measurements on the bottom surface
of the core plug sample. These data were used in extension to the K-means clustering of the µXRF
maps and XRD mineral analysis to elucidate mineral segmentation of the surface.
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Figure 3. µXRF elemental maps from the bottom surface of the training data shown with greyscale
intensities indicating elemental concentrations. The raw elemental maps show noisy artefacts on
the lower right portion of the image from the long edge of the cylindrical drill core, as the flat faces
of the sample were not parallel. This results in detection of X-ray signals from the long edge of the
cylindrical sample. This artefact was removed by masking with the corresponding µCT image. The
µXRF elemental maps from all surfaces collected can be found in the Supplementary Materials.

2.2.1. Powder X-ray Diffraction (XRD)

The XRD was performed to identify the general mineralogy of the rock. A powder
specimen was prepared by the backloading method, where random fractions of the rock
sample were crushed into powder and sieved to reach a particle size of less than 300 mesh
B.S. The powder was dried inside an oven at 50 ◦C for 24 h. The data were collected
using an Empyrean XRD (PANalytical, Almelo, The Netherlands) fitted with Co as an
anode at 45 kV and 40 mA at the Mark Wainwright Analytical Centre, University of New
South Wales (UNSW), Sydney. The collected data were processed by the High Score
Plus software (PANalytical, Almelo, The Netherlands). A search for a match with the
candidate’s crystalline phase was performed using the PDF 4+ database, followed by
Rietveld refinement to quantify the crystalline mineral phases. The resulting mineral
phases extracted are shown in Table 1. The data and the Rietveld refinement can be found
in the Supplementary Materials.

Table 1. XRD results of the mineral phases identified and their respective abundance percentages
from a random selection of the sample.

Mineral Identified Chemical Formula Abundance (%)

Albite Al1.488Ca0.491Na0.499O8Si2.506 50.4 (±5.6)

Ankerite C2Ca0.997Fe0.676Mg0.273Mn0.054O6 1.4 (±0.1)

Clinochlore H16Al2.884Fe0.874Mg11.126O36Si5.116 9.7 (±0.8)

Illite 2M C2Al4K1O12Si12 12.0 (±1.5)

Laumontite H4Al2Ca1O14Si4 14.0 (±1.9)

Quartz SiO2 12.6 (±0.9)

2.2.2. Microcomputed Tomography (µCT)

The µCT imaging was performed using the Heliscan µCT system at the Tyree X-ray
µCT Facility at the University of New South Wales. The Tyree Heliscan µCT has a General
Electric Phoenix Nanofocus tube with a diamond window, a high-quality flatbed detector
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(3072 × 3072 pixels, 3.75 fps readout rate). The facility was built in a lead-lined room with
temperature and humidity control (∆T < 0.5 ◦C). The samples were scanned in a helical
trajectory with the following setting: 100 kV, 130 µA (tube current), exposure time 0.71 s,
5 accumulations, 0.5 mm stainless steel, 0.75 mm aluminium filter and 2880 projections over
a 360◦ revolution. The voxel size obtained from this sample was 10.79 µm. The tomographic
reconstruction was performed using the QMango software. The resulting tomogram of the
sample is shown in Figure 1.

2.2.3. Micro-X-ray Fluorescence (µXRF)

The purpose of µXRF was to provide mineral labels for the µCT data and the atomic
mass percentages of discrete points for mineral verification. The plug was cut into a
cylindrical shape to ensure that there were two flat surfaces on the top and bottom of the
cylinder to obtain µXRF maps, as shown in Figure 1. The µXRF mapping was carried out
on a benchtop M4 Tornado µXRF (Bruker, Germany) under vacuum condition (20 mbar).
The instrument consisted of a Rh anode metal–ceramic X-ray tube. A voltage of 45 kV and
a current of 600 µA were used. X-ray spot calibration was carried out by digital tuning
of the X-ray position indicated on the screen to align with the physical position on the
sample. One silicon drift detector was used to count the fluorescent X-rays with an energy
resolution ≤ 145 eV at full width half maximum for Mn-Kα.

For elemental mapping analysis, a spot size of 20 µm was used and the resulting spec-
tra were acquired every 40 µm with an acquisition time of 200 ms/pixel. Data processing
was performed using the M4 Tornado built-in software, FP MQuant (Bruker, Germany)
for peak identification and quantification. The data collected from the µXRF maps were
XRF intensities, which were normalised 8 bit values for all of the elements analysed. This
gave relative elemental concentrations across the whole surface, which provided a semi-
quantitative measure (Figure 3). In addition to the µXRF maps obtained for the complete
surfaces of the sample, points of interest of size 20 µm were collected (Figure 2) to obtain
mass percentages as a further form of quantitative validation.

2.2.4. Raman Spectroscopy

Specific points were selected based on the mineral phases that were identified from
the µXRF maps to confirm the minerals determined through µXRF. Raman spectroscopy
was performed using an inVia Raman microspectrometer (Renishaw, UK) with a 532 nm
excitation source. Raman spectra were recorded in the static mode centred at 1015 cm−1

(measurement range: 61–1839 cm−1) with a 20× objective, 100% laser power (approximately
33 mW at the sample), 1 s exposure and 100 accumulations. Spectra were processed using
WiRE software (Version 5.3, Renishaw, UK) and baseline-corrected to remove the fluorescent
background. Spectra were compared to known standards from the online RRUFF database
using the phases determined by XRD [31].

2.3. Data Analytical Methods

The general workflow of the analytical process can be summed in two overarching
steps: (1) establish ground truth labelling of the mineral phases on the top and bottom of the
cylindrical sample through µXRF elemental mapping using K-means clustering; (2) use the
ground truth labelling of the two surfaces to train a deep learning model that will segment
the mineral phases in 3D µCT data. The K-means clustering was performed through the
Scikit-learn library [32], and the remaining data analytical procedures and visualisations
were performed with Dragonfly ORS, including the deep learning segmentation with the
Segmentation Wizard [33].

2.3.1. Establishing the Training Data

To train the deep segmentation learning model to recognise mineral phases based on
the µCT attenuation data, a training dataset needs to be established. Here, the training
data were 2D images of the mineral phases obtained from µXRF elemental mapping. Not
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all element maps were used, but the ones used were chosen based on the major elements
identified through XRD. For this basaltic andesite sample, the major elements present were
Al, Ca, Fe, K, Mg, Mn, Na and Si. The µXRF element maps for the bottom surface are
shown in Figure 3, and all remaining maps from all surfaces collected can be found in the
Supplementary Materials.

K-Means Clustering

K-means clustering was used to automate the identification of mineral phases through
the unique information from each elemental map to form the training data for the segmen-
tation model. By grouping the XRF concentration intensities from different elements into a
predefined number of clusters, their clustering centroids serve as a representation of the
cluster. This is a fast and simple method that has been shown to extract mineral phases
from µXRF maps [16]. Prior to performing the K-means clustering with all µXRF elements,
some µXRF maps required preprocessing. This was performed for the µXRF maps with
low atomic numbers, such as Na and Mg, where the XRF signals were relatively low and
resulted in elemental maps with significant noise as shown in Figure 4. To address the issue
of noise, various denoising filters can be used. For the specific aim of separating different
areas to define minerals, a bilateral filter was used [34]. Bilateral filtering is particularly
effective for the application of mineral identification in rocks, as it results in homogenous
regions of elemental intensity while maintaining the edges between such regions. The
identification of such edges is important for a well-defined dataset to train an effective deep
learning segmentation model.

Figure 4. (Left) Raw µXRF map of Na, where the higher intensities indicate higher concentrations
of Na. (Right) µXRF map of Na with bilateral filtering applied. The bilateral filtering reduces noise
while preserving the edges, which is important in identifying homogenous grains and defining the
interface between grains.

Seven clusters were used based on the six minerals, recognised from XRD, and the
background void. The input data were from µXRF 8 bit images from Al, Ca, Fe, K, Mg,
Mn, Na and Si. Along with these eight µXRF images, the appropriate orthoslice in the
µCT data was also used in the K-means clustering as shown in Figure 2. This was done
to provide added statistical weighting to the greyscale intensities of the µCT images
that would be labelled as a result of the clustering. The µCT images were prepared by
normalising the original µCT orthoslice to 8-bit values and resampling the µCT image with
approximately 10 µm pixels into the geometry of the µXRF images with 40 µm pixels using
cubic interpolation

Following the preprocessing of the Na and Mg µXRF maps, K-means clustering was
applied to segment minerals by combining all eight relevant elemental maps and the
corresponding µCT orthoslice, with each image serving as a dimension in the clustering
space. The clustering was performed through the Scikit-learn Python library [32], where
the best output in terms of inertia from 10 random initial clustering centroids was taken.
The final centroids output represented the minerals and were used as labels for training the
deep learning segmentation model (Table 2).
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Table 2. µXRF K-means clustering results. The clustering centroids for the µXRF maps of the bottom
surface are shown as normalised 8 bit fluorescence intensities with a minimum of 0 and maximum of
255. Additionally, the abundance percentage of the labels are shown along with the assigned mineral.

Assigned
Mineral

Centroid
Number

Colour on
Images Al (Ct.) Ca (Ct.) Fe (Ct.) K (Ct.) Mg (Ct.) Mn (Ct.) Na (Ct.) Si (Ct.) µCT (Ct.) Abundance

(%)

Albite 1 Red 149 18 91 105 89 86 134 148 156 48

Ankerite 2 Grey 45 134 126 31 65 92 66 53 203 1.98

Clinochlore 3 Yellow 72 13 191 20 203 220 67 73 187 4.06

Illite 4 Light blue 163 16 74 167 81 75 136 159 150 24.8

Laumontite 5 White 121 16 118 44 131 139 113 132 155 7.06

Quartz 6 Dark blue 182 12 36 27 72 52 182 179 120 14

Image Registration

To perform the registration of the 2D mineral image from the K-means clustering
analysis to the X-ray µCT volume, a µXRF image with high contrast and similar structures
evident was used. In this case, the Fe elemental µXRF maps were used. A coarse registration
was first performed with manual manipulation of the µXRF within the µCT volume, where
the mobile data was the µCT volume, as it was higher in resolution and in three dimensions.
Then, an automatic image registration was performed for finer alignment. The automatic
image registration algorithm used was the mutual information registration method with
linear interpolation [35] as shown in Figure 5.

Figure 5. An opaque overlay of a Fe µXRF map (yellow) over the matching µCT orthoslice showing
minor inaccuracies in the registration between the two datasets.

Once the µXRF image was registered within the µCT volume, the voxel orientations
of the µCT volume were aligned with the µXRF map. This allowed for the representative
orthoslice from the µCT volume to be extracted and the µXRF map to be resampled with
cubic interpolation into the voxel geometry of the appropriate µCT orthoslice. Finally, the
relevant pixels of the µCT sample were used to crop the µXRF map so that XRF signals
from the edge of the sample that did not represent the sample would be removed. This
resulted in a mineral label for each µCT pixel in the orthoslice.

2.3.2. Deep Learning Segmentation

The training data for the deep learning model was created from µXRF images that
were registered and resampled into the µCT geometry so that each pixel in the µCT image
had a defined label from the µXRF images. The images were normalised to values between
zero and one. A total of 80% of the labelled data were randomly selected for training the
model, and the remaining 20% was used for validating the model. The training data were
divided into patches of 128 × 128 pixels. Data augmentation was then applied to add
an extra 10 sets of data. This included flipping the patches vertically and horizontally,
rotations of 90◦ or 180◦, zooming of 0.9 to 1.1 and a shearing factor of 2.

The model architecture used was U-net with a depth level of 5 layers [36]. A validation
loss function of ORS Dice loss was used to assess the performance of the segmentation
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model [33], as the Dice coefficient has been shown to perform well in segmentation tasks
with unbalanced data [37–39]. The model was trained with 200 epochs with a batch size of
16, a stride ratio of 1.0 and an initial learning rate of 1.0 with the Adadelta optimisation
algorithm [40], which was reduced by 50% when the loss function did not decrease for
10 consecutive epochs.

Due to the concern of limited training data from the top and bottom of the sam-
ples, the criterion for choosing the best segmentation was not only filtered by the mini-
mum validation loss, but also through visual analysis. This was conducted by saving the
5 best models based on the lowest validation loss and selecting the best model based on
user-visual inspection. The final segmentation model selected had a loss value of 0.6749.

The deep learning segmentation was performed in Dragonfly ORS software version
2021.2 [33]. The total training time was 191 min using an Intel Core i9 10900K central
processing unit and a NVIDIA RTX 3090 graphics processing unit.

2.3.3. Establishing Ground Truth for Confirmation

While the aim of the workflow was to use the top and bottom surface of the cylindrical
plug to extract the mineral phases throughout the volume, a true test of the generalisability
of the model can only be done by comparing with other surfaces not exposed to the
deep learning model. Hence, to obtain such a ground truth dataset, µXRF maps were
also obtained from surfaces from within the bulk by cutting and removing a section of
5 mm from the top and bottom of the sample. This allowed for the performance of the
segmentation model to be compared to the µXRF data it was not exposed to.

The same K-means clustering and image registration procedures used to make the
training data were also used to produce the ground truth data.

3. Results
3.1. Multimodal Mineral Assignment with XRD and XRF
3.1.1. Multimodal Data

For the deep learning training data, each pixel of the image must be labelled with
an identified mineral. To achieve this, XRD, and XRF data were combined to identify
the minerals at each pixel with Raman data to reinforce mineral assignments. For ease
of reference, the tables below show the information used from XRD and µXRF mapping
K-means clustering and point analysis from XRF and Raman, respectively.

3.1.2. Mineral Assignment

For this basaltic andesite sample, the phase identification can be performed entirely
through the use of the XRD and µXRF data. The µXRF data included the normalised
concentration maps for each element and the mass percentages of spots from the point
analysis. Further validation of minerals was obtained through Raman spectroscopy.

Initially, the information from XRD, shown in Table 1, was used to identify the mineral
phases that occurred throughout the bulk of the sample. The XRD analysis provided three
prerequisite details of information: first, the mineral phases that exist within the sample that
holds critical elemental information to correlate with the µXRF data; second, the number of
mineral phases that was obtained, which guided the number of clusters for the K-means
clustering; third, the abundance percentages of mineral phases throughout the sample,
which served as a form of validation for cross-referencing with the K-means clustering
abundances and the accuracy of the segmentation from deep learning. The XRD pattern
and the Rietveld fitting [41] for mineral identification and quantification can be found in
the Supplementary Materials.

The centroids for the K-means clustering that represent each mineral present on the
bottom surface of the sample are listed in Table 2. The assigned minerals from the K-means
clustering are also listed in Table 2; however, it was not possible to determine the minerals
based solely from the K-means centroids. This is because the XRF intensities represent
the concentration of elements at the analysis point and do not correlate directly with the
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chemical formulas of discrete minerals. Therefore, the centroids give an indication of
elementally rich or poor areas, which can only guide mineral identification. Instead, this
information is merged and extended with elemental mass percentages from XRF point
analysis to obtain mineral assignments. Points were selected on areas that had large
homogenous regions to ensure the correct representation of the mineral.

By applying geochemical principles to the K-means clustering centroids of the µXRF
maps, as shown in Table 2, there are three mineral assignments that can be made: (1) First,
illite can be unambiguously identified based on the minerals identified by XRD, as illite
is the only mineral that contains potassium. Hence, the 4th K-means centroid with the
highest intensity of potassium can be associated with illite. Further, the centroid also has
relatively high concentrations of Fe and Si. (2) Second, ankerite can be identified with the
2nd centroid with the highest Ca concentration, which also contains high concentrations of
Fe. Additionally, the abundance also correlated with the K-means clustering and XRD at
approximately 2% each. (3) Third, the 5th centroid with the highest concentration of Mg can
be used to identify clinochlore, as that is the remaining mineral with Mg, as ankerite has
already been identified. Moreover, clinochlore is the only mineral with high concentrations
of Mg and Fe. This identification of the cluster with clinochlore was also confirmed through
Raman scattering.

From the remaining K-means centroid concentrations, there were no unique differen-
tiators to identify the remaining minerals of albite, laumontite and quartz. The remaining
mineral identifications can be performed with the addition of mass percentages from XRF
point analysis, as shown in Table 3. (4) Fourth, quartz can be identified by the point with
the highest Si mass percentage. This is further evidenced by the majority of other points
having low Si mass percentages. Moreover, this mineral was confirmed through Raman.
(5) Fifth, albite can be identified with the use of the highest Na mass percentage, as it is the
only mineral with Na. Additionally, both the K-means clustering and XRD indicate this
mineral phase to be the most abundant. Furthermore, this mineral is confirmed through
Raman. (6) Finally, laumontite did not have strong indications from the µXRF data, as
there was no unique elemental identifier or characteristic combination of elements. Though,
through deduction as the final mineral, laumontite can be identified.

Table 3. Point analysis results from XRF and Raman: mass percent from the XRF and detection from
Raman of the selected 20 µm spots in Figure 2. Note that for the XRF mass percentages, other trace
elements detected were ignored, as they were not in the minerals detected by XRD. Additionally,
it should be noted the mass percentages across the various minerals showed elements not found in
their respective minerals, as the X-ray spot size also exposed the matrix minerals of albite and illite.

Assigned
Mineral

Label in
Figure 2

Raman
Detection Al Mass % Ca Mass % Fe Mass % K Mass % Mg Mass % Mn Mass % Na Mass % Si Mass %

Albite F Detected 16.60 2.61 11.93 4.88 1.66 0.24 8.82 51.82

Ankerite A Undetected 16.12 3.23 18.39 3.57 4.69 0.56 6.33 45.54

Clinochlore C Detected 15.88 3.13 13.23 4.94 2.59 0.33 7.24 51.10

Illite D Undetected 16.59 3.14 10.30 6.77 1.09 0.23 7.61 52.74

Laumontite E Undetected 16.29 3.28 10.33 6.41 1.42 0.22 7.70 52.73

Quartz B Detected 16.35 2.03 8.72 2.37 1.96 0.24 8.79 58.64

Hence, the phase identification can be performed on this basaltic andesite sample.
This can be performed using a combination of mineral information from XRD, the intensity
centroids from the µXRF maps, their relative abundance, and the mass percentages from
point analysis. However, the demonstration shows that by using the information from XRF
exclusively, one could extract the mineral phases. Further, if select locations can be phase-
identified through Raman analysis, then phase identification would be straightforward.
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3.2. Deep Learning Segmentation of the µCT Data
3.2.1. Training Data

With minerals assigned to each pixel of the µCT orthoslice on the top and the bottom
surface of the sample, this information can be propagated through the 3D tomogram
through a deep learning segmentation model. The grayscale µCT data of the top and
bottom slices used are shown in Figure 6a,g. The labelled mineral phases of the slices were
then used for training the segmentation model as shown in Figure 6b,h. The resulting
segmentation from the trained model are shown in Figure 6c,i. Zoomed in sections for
each respective image are shown in Figure 6d–f,j–l. From a visual analysis, the model
captured the major contours of the mineral phases. This includes separating the abundant
matrix minerals of albite and illite to a good approximation, despite the greyscale intensities
appearing identical to the eye. However, the model failed to recognise the finer details
apparent in the labelled training data. The overall accuracy from all the mineral labels for
the top and bottom surfaces were 70.23% and 69.56% with the voids excluded, respectively.

Further analysis of the pixel accuracy of the segmentation model is represented as
a confusion matrix, as shown in Figure 7. The confusion matrix shows the proportion of
predicted mineral pixel labels from the segmentation model for each mineral class with the
true mineral pixel labels from the µXRF maps. This provides insights into the types of errors
made by the model—in essence what predictions the model is confused by. For a model
with high accuracy, the confusion matrix would possess high accuracies along the diagonal,
from top left to bottom right. The overall profile of the confusion matrix between the two
surfaces measured was similar, with similar pixel accuracies across all mineral phases. This
indicates the consistency of the segmentation performance on different surfaces.

The accuracy of the void phase occurring mainly outside of the sample was correctly
identified and, hence, the model was able to discern sample from empty space. Meanwhile,
the mineral phases within the material varied in accuracy. The two predominant minerals
consisted of albite and illite, as shown in Figure 6. The model was able to discern the
difference between the two primary mineral phases, even though the phases were visually
difficult to distinguish due to the similar greyscale intensities. Additionally, the model
was able to overcome the intensity gradient from beam hardening to match the general
segmentation from the training data. However, as can be seen in the confusion matrices
for both surfaces in Figure 7, the majority of the incorrect labels for each of the two phases
were attributed to the other phase. This suggests the task is inherently challenging and the
model cannot separate the albite and illite confidently.

Among the discrete grains of minerals in the sample, the quartz phase is identified
with the highest accuracy. Many of its false labels were from the surrounding minerals of
albite and illite; the other major contributor was laumontite, which typically occurs in and
around the quartz grains, and this is to be expected. Laumontite was the least accurate
phase with less than half of the pixels labelled correctly for both surfaces, where the low
quality of segmentation was also apparent from visual inspection. This was because the
occurrence of laumontite is often in intricate fine structures, which requires highly accurate
registered µXRF data to provide the model with strongly relevant training data. This has
resulted in mislabelling with mostly albite, quartz and clinochlore. For clinochlore, 63%
of the pixels were labelled correctly and mislabelled pixels were mainly laumontite and
albite. Finally, ankerite had an average of 58% of pixels correctly identified with the largest
proportion of mislabelling occurring with clinochlore. This was because both ankerite and
clinochlore are relatively dense, causing a similar greyscale tomography intensity. The
accuracy was further compounded by the relatively small abundance of ankerite, whereby
any mislabelling would constitute a large percentage of labels.
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Figure 6. Training data from the top surface for (a) µCT data; (b) µXRF from K-means clustering;
(c) deep learning segmentation; (d–f) zoomed areas as defined by the yellow inset box, respectively. The
training data from the bottom surface is shown for (g) µCT data; (h) µXRF from K-means clustering;
(i) deep learning segmentation; (j–l) zoomed areas as defined by the blue inset box, respectively.

3.2.2. Validation Data

While the model performed well on segmenting the training data, the true test for
generalisability is to validate how well the model performs for data it has not been exposed
to at all. In this case, this would be additional labelled slices within the sample. For this
purpose, a thin slice (ca. 2 mm) of the plug was removed from the bottom and top part of
the sample to expose such surfaces to generate validation data.
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Figure 7. Pixel-wise confusion matrices for the segmentation of the top and bottom surfaces, showing
the ratio of correctly and incorrectly predicted labels of the segmentation model in comparison to the
true labels from the µXRF maps.

Figure 8b,h show the mineral labels for the top and bottom surfaces from within the
bulk of the sample. The same mineral identification approach was performed as with the
training dataset using K-means clustering analysis of the µXRF maps. Figure 8c,i show
the segmentation results from the model that was trained from the outer slices. From
visual inspection, the segmentation model performed well in extracting the defined course-
grained minerals. In comparison to the training data, the model was able to recognise
the approximate distribution of the matrix minerals of albite and illite, though not to the
same accurate degree as the training data in Figure 6. In general, the performance on the
validation data was lower than the training data as shown by accuracies of 63.50% and
62.79% from the top and bottom surfaces with the voids excluded, respectively.

Figure 9 shows the confusion matrix for the validation data. As with the training
surfaces, the profile of the confusion matrix was similar with the validation surfaces,
with a comparable spread of correct and incorrect label accuracies. Based on the two
predominant minerals of albite and illite, there was an overprediction of the albite labels
and underprediction of the illite labels. Quartz, conversely, was predicted well by the model
with over 82–84% of the phase being predicted correctly. Clinochlore had an accuracy of
56–61% for both slices. Similar to the segmentation of the training data, the mislabels
were mainly attributed to laumontite and, to a lesser extent, albite. Meanwhile, laumontite
reached an accuracy of 26–28% for both slices. The mislabels occurred significantly across all
other mineral phase labels. As previously suggested, this may be caused by a combination
of the inappropriately minimal registration of the indistinct structure and the ambiguous
greyscale intensity in the µCT dataset. Finally, ankerite had different performances across
the two slices. For the top slice, the accuracy reached 44%, while for the bottom slice it
was 38%. The majority of the mislabels occur with clinochlore. This was due to the fact of
having similar densities, which resulted in similar greyscale values in the µCT dataset.

Figure 10 shows the 3D volume rendering of the tomography collected from the
basaltic andesite sample in addition to the deep learning segmentation that was trained
on the top and bottom surfaces of the sample. In terms of segmentation quality, the coarse
grains show clear inconsistencies in the segmentation of the 2D orthoslices, although the
model can distinctly identify the position and shape of the grains. Moreover, the model was
also able to generalise details regarding the coarse-grained mineral structures. For example,
the higher density inclusions within and around quartz were specifically recognised as
laumontite, while other similarly dense minerals were correctly identified as clinochlore.



Energies 2022, 15, 5326 13 of 20

For the fine-grained minerals of albite and illite, the model showed the ability to separate
these minerals, which have faint intensity differences that are difficult to separate from
visual observation and conventional thresholding methods. With the perspective of the 3D
volume rendering, it is also possible to see apparent striations of the minerals perpendicular
to the long axis of the cylindrical sample. This is because the segmentation model was two-
dimensional and was applied on each orthoslice. Hence, this shows a lack of connection
in terms of contextual segmentation information between the orthoslices and limits the
continuity along the long axis of the cylindrical sample.

Figure 8. Validation data from the top surface for (a) µCT data; (b) µXRF from K-means clustering;
(c) deep learning segmentation; (d–f) zoomed areas as defined by the yellow inset box, respectively.
The validation data from bottom surface is shown for (g) µCT data; (h) µXRF from K-means clustering;
(i) deep learning segmentation; (j–l) zoomed areas as defined by the blue inset box, respectively.
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Figure 9. Confusion matrices showing the predicted deep learning and true µXRF mineral pixel
classifications for the validation data collected from the surfaces within the bulk of the basaltic
andesite rock sample.

Figure 10. 3D tomography cutaway of the cylindrical basaltic andesite core plug (left) and the 3D
segmentation performed by the deep learning model (right).

The relative abundances of the minerals throughout the sample from the Deep-XFCT
segmentation is shown in Table 4. The abundances are in good agreement with the results
obtained from µXRF mineral analysis of the top and bottom surface of the sample, shown
in Tables 2 and 3 respectively. Evidently, albite comprises the majority of the sample at
approximately half of the sample, followed by illite, quartz, laumontite, clincochlore and
ankerite. However, these mineral abundances in comparison with XRD (Table 1) show some
discrepancies, specifically showing an 8.71% lower illite and a 6.94% higher laumontite
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and clinochlore abundance. These discrepancies are within the margin of error when
considering that the smaller volume sampled by XRD may not be representative of the
whole core plug as can be seen by the mineral distribution heterogeneity. Given that XRD
is an important tool for validating mineral phases, it is important to try and ensure the
sampling is representative of the entire core by ensuring that the largest possible volume of
powder is used.

Table 4. Abundance percentage of each mineral obtained from segmentation with the deep
learning model.

Mineral Deep-XFCT Segmentation Abundance (%)

Albite 50.48

Ankerite 1.85

Clinochlore 5.18

Illite 20.71

Laumontite 7.06

Quartz 14.71

4. Discussion

In comparison to existing techniques that probe similar mineral domains, Deep-XFCT
introduces a novel approach that exploits the benefits of artificial intelligence. Specifically,
Deep-XFCT is able to extract a fully segmented 3D grain structure non-destructively and
at large enough scales to accommodate a cylindrical core plug with measurements of
approximately 24.3 mm in diameter and 25.9 mm in length. The results show Deep-XFCT
works well in practice and should compare favourably to the conventional approaches of
segmenting minerals, such as intensity thresholding, top-hat or watershed segmentation
that can be affected by intensity inhomogeneity from beam hardening and experimental
artefacts. In the context of its intended purpose for 3D mineral liberation analysis, Deep-
XFCT can isolate grain locations and provide clear indications and realistic perspectives of
the 3D morphology, distribution and abundance of minerals throughout the bulk volume
of the core plug.

Furthermore, the use of deep learning extends the possible capabilities of segmentation
through computer vision and removes the significant contribution of user bias to provide
an objective approach with mineral segmentation. This is exemplified with the model to
not only identify the coarse grains, but to also to discern minerals of similar greyscale
intensities between the fine-grained minerals of albite and illite. Such a result would be
valuable for mineral liberation analysis and unattainable through conventional methods.
It could be argued that the distribution of albite and illite are similar throughout the length
of the core plug sample, and therefore the model generalised the distribution. However,
the model works in smaller isolated patches of each orthoslice, which would mean the
model can recognise the imperceptible differences in intensity to assign either albite or
illite. Furthermore, Deep-XFCT possesses advantages of minimal sample preparation and
uses relatively accessible instrumentation and software to provide an approachable and
practical method of 3D mineral liberation analysis.

4.1. Contributing Factors to Results

In comparison to existing methods that provide similar mineral information, such as
QEMSCAN and FIB-SEM tomography, Deep-XFCT extends past surface information into
large volumes and in a non-destructive manner. However, the two surface techniques have
several advantages over the Deep-XFCT approach. QEMSCAN and FIB-SEM tomography
can extract mineral information at higher resolutions due to the inherent properties of
electrons in comparison to X-rays, although this can result in sampling bias if only small
areas of the sample are imaged. Further, with Deep-XFCT, there is more manual handling
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of the data at this point of development in contrast to the QEMSCAN and FIB-SEM tomog-
raphy. Moreover, there are several universal factors that can contribute to the inaccurate
mislabelling of minerals for the basaltic andesite sample that limit the performance of the
current implementation of Deep-XFCT. Though at the core of the problem all such issues
stem from the mismatch of the µXRF and µCT data to produce accurate training data with
correct pixel labels for the deep learning model, which will be discussed in the following.

Firstly, the K-means clustering approach has direct effects on the quality of the training
and validation data. While the number of clusters was determined by the number of
minerals obtained from XRD mineral analysis, the K-means approach is also dependent
on the initial values. This effect was dealt with by randomising the initial values across
10 runs and using the best output in terms of inertia. Additionally, outliers can affect the
results, and this was mitigated by masking the µXRF maps with the corresponding µCT
surface to ensure only relevant pixels associated with the surface were included in the
clustering. However, unbalanced data, in addition to outliers, can affect results and need
to be considered. While not required with this current work as the K-means provided a
sufficient result, other clustering algorithms can be used that account for unbalanced data
and outliers, such as DBSCAN or OPTICS [42,43].

Secondly, the registration between the µXRF and µCT data is not perfectly aligned, as
there is not a perfect correspondence between the grain shapes between the two datasets
(Figure 5). Therefore, at a per-pixel scale, the information from µCT likely does not correlate
completely with the mineral phase identification, leading to unambiguously incorrect labels
for the µCT data. Further, defining the interfaces between grains is important for the network
to recognise the features. This issue is exemplified by laumontite, as it commonly appears in
fine intricate structures in and around quartz and has shown to be difficult to register perfectly.
The addition of an added degree of freedom from the 2D orthoslice to the 3D tomogram
also introduces imperfections in the registration. However, at the larger scale of the coarse
mineral grains, the imperfect registration does not affect the overall performance as there is a
representative quantity of correct labels to overcome the incorrect labels.

Thirdly, the resolution of both the µXRF and µCT measurements limits the accuracy
of the resulting segmentation model. This was the case with the µXRF data, where the
pixel resolution was 40 µm as opposed to the approximately 10 µm from the µCT data.
The up-sampling of the µXRF pixels into the higher resolution geometry of the µCT pixels
would lead to incorrect labelling of the µCT pixels, which would cause the model to have
invariably incorrectly labelled training data. Therefore, the limiting resolution of the µXRF
data also prohibits the method from being implemented on fine-grained minerals for
the time being and restricted to coarse-grained minerals. However, based on the µXRF
instrumentation, the resolution can be improved to 10 microns on smaller areas with the
drawback of reducing the quantity of training data.

The issues mentioned relating to mismatching datasets are unavoidable when using
inherently different techniques and must be viewed in their usefulness for the desired
applications. A possible approach to resolve many of the issues would be to introduce an
intermediary step within the segmentation workflow. This would involve first training a
traditional machine learning model with a sparse dataset that does not require all pixels
in the training data to be labelled. The training data could be produced through an
erosion process of the defined grains from the µXRF analysis. This machine learning
model would recognise minerals by their greyscale intensity in the µCT data and provide a
segmentation that would define the interfaces better than the raw µXRF input. As a result,
this segmentation from a traditional machine learning model could be more appropriate as
a dense training set with all pixels labelled for training the deep learning model.

In terms of discussing the aspects of the deep learning process, an obvious concern is
whether the quantity of training data is adequate, as having more training data is usually
desirable. The training data sourced from the top and bottom of the sample appears to be
sufficient for training the model to recognise the features required for mineral liberation
analysis. This is contingent on the training data having satisfactory representation of all
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minerals, interfaces, shapes and features that would be present throughout the sample.
The quality of such mineral maps could be improved through higher-resolution scans with
other electron-based microscopy for both training and validation purposes. The quantity
of training data could be increased by cutting the cylindrical core plug into a prism with
additional flat surfaces suitable for µXRF analysis. Another concern relates to the relatively
large patch size of 128 × 128 pixels that may have affected results; where the larger the
patch size, the greater loss in detecting smaller details [44]. Conversely, a smaller patch size
would not be able to access the larger features of minerals outside of each patch, limiting its
usefulness. Therefore, the patch size selected for the deep learning model, whilst not able
to discern the finer mineralogical details, was the best compromise in balancing segmented
details at different scales.

Considering the possible limitations and shortcomings of the Deep-XFCT technique,
and when comparing to conventional segmentation methods, the overarching goal to
extract mineral attributes in a semi-automated fashion for the purposes of mineral liberation
analysis was successfully performed for this specific collection of minerals.

4.2. Segmentation Enhancement Pathways

While the Deep-XFCT approach performs well, there are multiple pathways of im-
provement that can be implemented. All improvements should focus on the main objective
of obtaining the most accurate segmentation possible. To this end, the improvements can
be separated into those for preparing and obtaining the best training data and those related
to training the model.

The most simple and obvious improvement for the training data is increasing the
quantity of training data. This can be achieved by increasing flat surfaces on the sample by
trimming off sections, for example into a prism shape, to obtain more µXRF data. However,
this may not be practical or preferable as the sample may need to be kept intact and more
time is required to collect additional µXRF data. Similarly, the quality of the training is
also important, and this can be facilitated through higher resolutions datasets from both
µCT and µXRF by reducing the overall sample size to provide more detailed and accurate
training data. Furthermore, to increase the statistical robustness of the clustering method
on the µXRF maps, a high-resolution photo can be taken to be added as part of the K-means
clustering dataset to provide another dimension of information in the form of visible light
information. Finally, while the finer registration is automated, the coarse registration of
finding the corresponding orthoslice within the 3D tomography data is manually intensive
and tedious. The coarse registration can also be optimised through artificial intelligence,
allowing the whole Deep-XFCT procedure to be streamlined through automation [45].

For the process of training the segmentation model, a possible enhancement to the
original U-net model is to use a multiscale U-net model instead [46]. The architecture of
the multi-scale patch-based model would use multiple patch sizes to capture different
contextual information at various dimension scales. This is conducted by creating a model
input image by separating the initial image into overlapping patches, followed by com-
bining with smaller up-sampled patches and larger down-sampled patches. This would
accommodate different dimension scales that will allow the elucidation of all mineral
mineralogy within the sample. Additionally, the use of a 3D U-net model [47] would be
able to remove the striation artifacts seen in the resulting segmentation when using a 2D
model. However, the need for 3D training data for a 3D segmentation model would be
difficult to manifest from µXRF maps collected from surfaces. Further, there is a significant
increase in the computational cost to using a 3D segmentation model over a 2D model and
must be considered based on the results required.

5. Conclusions

Deep-XFCT uses deep learning as the correlative bridge between the different modali-
ties and dimensions of µXRF and µCT. A deep learning segmentation model was trained
with the minerals identified on the top and bottom surfaces of a cylindrical core plug
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and segmentation results were validated with surfaces from within the original core plug.
While Deep-XFCT did not provide pixel-level accurate segmentations, it demonstrated the
ability to provide an excellent proxy for the purposes of obtaining the presence, location,
distribution and morphology of grains dispersed throughout a core plug. Furthermore, this
artificial intelligence augmented workflow was shown to segment fine-grained minerals
of similar density that would be impossible by manual segmentation. Moreover, it is also
a conceptually simple workflow that uses experimental instrumentation that is readily
accessible at research and commercial institutions. It also possesses all the advantages of
minimal sample preparation, analysis of large samples of full core plugs and uses non-
destructive analysis techniques. Hence, Deep-XFCT is a viable and valuable technique that
has the potential to expedite 3D mineral liberation analysis.

While the technique was demonstrated and optimised on a geological core plug exam-
ple for mineral liberation applications, the fundamental workflow of combining unique
information from the surface and propagating through a volume via deep learning algo-
rithms can be adopted by a plethora of image-based techniques. With such vast directions
in which the technique can grow and be applied, the current approach is foreseen to be a
pivotal steppingstone in incorporating various modalities of analysis into comprehensible
and enriched findings through artificial intelligence.
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5. Tonžetić, Ž. 5—Quantitative analysis of iron ore using SEM-based technologies. In Iron Ore; Lu, L., Ed.; Woodhead Publishing:

Sawston, UK, 2015; pp. 161–189. [CrossRef]
6. Babel, B.; Penz, M.; Schach, E.; Boehme, S.; Rudolph, M. Reprocessing of a Southern Chilean Zn Tailing by Flotation—A Case

Study. Minerals 2018, 8, 295. [CrossRef]
7. Schulz, B. Editorial for Special Issue “Applications of SEM Automated Mineralogy: From Ore Deposits over Processing to

Secondary Resource Characterization”. Minerals 2020, 10, 1103. [CrossRef]

https://www.mdpi.com/article/10.3390/en15155326/s1
https://www.mdpi.com/article/10.3390/en15155326/s1
http://doi.org/10.1016/j.mineng.2016.05.005
http://doi.org/10.4236/jmmce.2013.16043
http://doi.org/10.1016/b978-1-78242-156-6.00005-8
http://doi.org/10.3390/min8070295
http://doi.org/10.3390/min10121103


Energies 2022, 15, 5326 19 of 20

8. Sylvester, P.J. Use of the mineral liberation analyzer (MLA) for mineralogical studies of sediments and sedimentary rocks. Mineral.
Assoc. Can. 2012, 1, 1–16. [CrossRef]

9. Butcher, A.; Botha, P.W.; Dunks, C. An enabling geoscience tool for automated rock typing, stratigraphic refinement, and reservoir
characterisation. APPEA J. 2008, 48, 482. [CrossRef]

10. Goodall, W.R.; Scales, P.J.; Butcher, A.R. The use of QEMSCAN and Diagnostic Leaching in the Characterisation of Visible Gold in
Complex Ores. Miner. Eng. 2005, 18, 877–886. [CrossRef]

11. Gu, Y. Automated Scanning Electron Microscope Based Mineral Liberation Analysis An Introduction to JKMRC/FEI Mineral
Liberation Analyser. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41. [CrossRef]

12. Voytekhovsky, Y. Modal Analysis of Rocks and Ores in Thin Sections. In International Congress on Applied Mineralogy; Springer:
Cham, Switzerland, 2019; pp. 162–166.

13. Lemmens, H.J.; Butcher, A.R.; Botha, P.W.S.K.B. “FIB/SEM and SEM/EDX: A New Dawn for the SEM in the Core Lab?,”
Petrophysics-SPWLA. J. Form. Eval. Reserv. Descr. 2011, 52, 452–456.

14. Guntoro, P.I.; Ghorbani, Y.; Parian, M.; Butcher, A.R.; Kuva, J.; Rosenkranz, J. Development and experimental validation of a
texture-based 3D liberation model. Miner. Eng. 2021, 164, 106828. [CrossRef]

15. Mutina, A.; Bruyndonckx, P. Combined micro-X-ray tomography and micro-X-ray fluorescence study of reservoir rocks: Applica-
bility to core analysis. Microsc. Anal. Anal. Suppl. 2013, 27, S4–S6.

16. Vekemans, B.; Janssens, K.; Vincze, L.; Aerts, A.; Adams, F.; Hertogen, J. Automated segmentation of µ-XRF image sets. X-ray
Spectrom. Int. J. 1997, 26, 333–346. [CrossRef]

17. Arzilli, F.; Polacci, M.; Landi, P.; Giordano, D.; Baker, D.R.; Mancini, L. A novel protocol for resolving feldspar crystals
in synchrotron X-ray microtomographic images of crystallized natural magmas and synthetic analogs. Am. Miner. 2016,
101, 2301–2311. [CrossRef]
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