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Abstract: Carbon trading is a market-based mechanism towards low-carbon electric power systems.
A hy-brid game optimization model is established for deriving the optimal trading price between
mi-crogrids (MGs) as well as providing the optimal pricing scheme for trading between the microgrid
cluster(MC) and the upper-layer service provider (SP). At first, we propose a robust optimization
model of microgrid clusters from the perspective of risk aversion, in which the uncertainty of wind
and photovoltaic (PV) output is modeled with resort to the information gap decision theo-ry(IGDT).
Finally, based on the Nash bargaining theory, the electric power transaction payment model between
MGs is established, and the alternating direction multiplier method (ADMM) is used to solve it,
thus effectively protecting the privacy of each subject. It shows that the proposed strategy is able to
quantify the uncertainty of wind and PV factors on dispatching operations. At the same time, carbon
emission could be effectively reduced by following the tiered carbon price scheme.

Keywords: information gap decision theory (IGDT); Nash bargaining; microgrid cluster (MC); hybrid
game; distributed optimization; tiered carbon price

1. Introduction

Many carbon emission trading schemes have been proposed and implemented world-
wide in recent decades to slow or stop human-caused global warming [1]. The European
union emissions trading system was initiated in 2005 by the EU and is still considered
to be the largest single market for emission allowance trading [2]. In pursuance of the
commitment to realize a carbon emissions peak in 2030 and achieve carbon neutrality in
2060, China launched the world’s largest carbon trading market in Shanghai on 16 July
2021 [3,4].

The operation of the power system naturally brings about, for example, combustion
of fossil fuel [5,6]. To reduce the volume of carbon emissions in the operation of the
power system, smart grid technologies had been significantly introduced in the last two
decades, as they possess the capability of integrating multiple low-carbon renewable
energy sources, such as photovoltaic (PV) and wind [7]. In recent years, the concepts
of microgrid (MG) and microgrid cluster (MC) have become more and more popular in
the smart grid community [8]. MG is a small-scale electrical power grid that consists of
microgeneration units, storage units, and controllable loads. Microgrid clusters refer to
multiple interconnected microgrids that facilitate energy exchange among the participating
prosumers, producers, and customers. For the sake of carbon reduction in a smart grid, a
promising way is to formulate a carbon emission trading incorporated energy management
system within the architecture of MCs [9,10].
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The trading price plays a decisive role in the designing of trading systems. Regarding
the energy transaction of MCs, it is a challenging task to generate a fair price that balances
the demands of prosumers, producers, and customers, as the demands are often competitive
and conflictive [11]. In the related literature, game theory was extensively employed to
seek the promising transaction modes in a smart grid society. In [12,13], the Stackelberg
game model is utilized to generate the transaction price between MC and MG, in which
the relationship of MC and MG is viewed as leader and follower. In [14,15], cooperative
game models are created to reveal the cooperative and competitive behaviors of MCs.
Furthermore, with the aid of Nash bargaining theory, cooperative game models can also
be used simultaneously for multi-objective optimization, such as maximizing both the
annual profit and the energy index of reliability [16,17]. It is pointed out that the Nash
bargaining technique leads to a faster convergence than the heuristic algorithms that are
equipped with remedies such as greedy or linear relaxation [18]. To realize the goal of
carbon emission reduction, not only interplay of MCs, but also the transaction between
MCs and the other market players of the main grid should be take into consideration. This
makes it a complex optimization problem with many more decision variables; at the same
time, it is difficult to produce a promising carbon trading price mechanism by applying
existing game theory-based methods directly.

The high-penetration rate of renewable energy such as wind and PV in MCs provide a
great potential for carbon emission reduction. However, modeling of MCs becomes techni-
cally challenging due to the inherent climate-dependent uncertainty of wind and PV [19,20].
Generally speaking, commonly used mathematical tools to cope with uncertainties in-
clude but are not limited to stochastic optimization [21,22], robust optimization [23,24],
interval optimization [25,26], and distributionally robust optimization [27,28], to name a
few. A scenario generation scheme is used to capture the strong randomness and interde-
pendence between wind speeds by utilizing historical wind data, which leads to reliable
Microgrid scheduling results by resorting to stochastic programming [29]. In [30], the
wind speed uncertainty is modeled as a colored noise via a second-order autoregressive
model; on that basis, a stochastic program is solved to increase the expected value of the
profit distribution and keep the risk of profit variability controllable. In [31,32], an interval
optimization method was facilitated to generate robust system dispatchers for combating
fluctuation of wind power and photovoltaic over pre-specified intervals. In addition to a
priori knowledge of the uncertainties, the tractability and computational efficiency of the
recast optimization problems also play an important role in the development of techniques
and tools for dealing with the uncertainties. Information gap decision theory (IGDT) is
a powerful tool converting stochastic uncertainty into a deterministic setting. In [33,34],
IGDT was introduced to describe the uncertainty of wind and PV, and a bi-layer stochastic
optimization model was established to solve the day-ahead dispatching of MGs.

This paper aims to solve the carbon allowance allocation and the uncertainty problem
based on renewable energy (RE), which develops a hybrid game optimization of carbon
emissions considering a tiered price for SP with MC. In this paper, the MC dispatch model
of carbon capture system (CCS) is given, and the risk aversion strategy is used to deal with
the uncertainty of wind and PV. Furthermore, it shows that the carbon emission of MC is
influenced by guiding the carbon price. Finally, the effectiveness of the proposed method
in the collaborative optimization of MC is verified, and the uncertainty of wind and PV
and tiered price are analyzed to verify the feasibility of using the hybrid game optimization
in the case study.

Briefly, the contributions of the paper can be summarized as follows:

• The MC system considering the tiered carbon price is proposed in this paper, which
combines with the service provider (SP) to provide the electricity purchase/sale price
for the MC to access the utility grid.

• The risk-avoidance strategy is adopted to consider the uncertainty of wind and PV,
and the information gap decision theory (IGDT) is used to solve the robust dispatch
model of its uncertainty.
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• A new hybrid game model is adopted, which uses the stackelberg game to deal with
the relationship between SP and MC and uses Nash equilibrium theory to solve the
payment interests among MGs.

2. System Modelling

In this study, in order to evaluate the proposed method, service providers are used
to dispatch the MC composed of three MGs, as shown in Figure 1. In addition, MG1
contains different units from MG2 and MG3. MG1 contains RE, combined heat and power
generation (CHP), ground source heat pump (GSHP), and CCS, etc., whereas MG2 and
MG3 contain GT, GB, and CCS, etc.

Energies 2022, 15, x FOR PEER REVIEW 3 of 23 
 

 

• The risk-avoidance strategy is adopted to consider the uncertainty of wind and PV, 

and the information gap decision theory (IGDT) is used to solve the robust dispatch 

model of its uncertainty. 

• A new hybrid game model is adopted, which uses the stackelberg game to deal with 

the relationship between SP and MC and uses Nash equilibrium theory to solve the 

payment interests among MGs. 

2. System Modelling 

In this study, in order to evaluate the proposed method, service providers are used 

to dispatch the MC composed of three MGs, as shown in Figure 1. In addition, MG1 con-

tains different units from MG2 and MG3. MG1 contains RE, combined heat and power 

generation (CHP), ground source heat pump (GSHP), and CCS, etc., whereas MG2 and 

MG3 contain GT, GB, and CCS, etc. 

 

Figure 1. Sample MC system structure. 

The following sections contain the detailed modelling of the entities. 

2.1. System Structure 

Each MG has an operator that manages its own unit and trading power simultane-

ously with other MGs and the SP. A discrete time model with a 24 h horizon is considered. 

We assume that the time interval is 1 h, so there are 24 decisions in the dispatching cycle. 

2.2. MG Modelling 

In this study, a carbon trading MG is proposed, and the objective function and related 

constraint operating in the inter trading mode are as follows: 

• Objective function of each MG: 

( )

( ) ( )( )

24
, , , , ,

MG, grid fuel ES

1

, , , , ,

grid buy buy sell sell

, ,

fuel gas gas

, , P, , dis, , , ch, , , H, , dis, , , ch, , ,

ES ES ES ES HS HS HS

0 0 0

min
=

= + + +

= −

=

= + + +

= + +





i t i k t i m t i
i V

t

i t i t i t i t i t

i t i i t

i j t i j i j t i j t i j i j t i j t

j

i i i i
V

Z C C C C

C p P p P

C p G

C p P P p H H

C p E p v( )( ) ( )
1

0

1

1  
−

= =













− + +


 
V N

i i i i i
v v v v

v v V

E p V E

 (1) 

where pbuy/psell are the prices of buying/selling electric power between each MG and the 

SP, respectively; pgas is the price of nature gas; p
P 

ES  is maintenance price of the dis-

charge/charge electric power in ES; p
H 

HS is the maintenance price of the discharge/charge 

Figure 1. Sample MC system structure.

The following sections contain the detailed modelling of the entities.

2.1. System Structure

Each MG has an operator that manages its own unit and trading power simultaneously
with other MGs and the SP. A discrete time model with a 24 h horizon is considered. We
assume that the time interval is 1 h, so there are 24 decisions in the dispatching cycle.

2.2. MG Modelling

In this study, a carbon trading MG is proposed, and the objective function and related
constraint operating in the inter trading mode are as follows:

• Objective function of each MG:



min ZMG,i =
24
∑
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∑
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v

(1)

where pbuy/psell are the prices of buying/selling electric power between each MG and the SP,
respectively; pgas is the price of nature gas; pP

ES is maintenance price of the discharge/charge
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electric power in ES; pH
HS is the maintenance price of the discharge/charge heat power

in HS; Ev is the price of carbon emission in CCS. i, j, and t are the index of MG, ES, and
time, respectively.

Objective function of the ith MG includes four terms referred to as the cost of trad-
ing power from the utility grid, cost of natural gas combustion, maintenance cost of
discharge/charge power with ES and HS, and cost of carbon trading. The tiered carbon
emission price in the interval is shown in Figure 2. Note that the carbon price in the 0th
and 1st interval is p0, whereas the actual carbon emission is less than the quota quality. The
carbon price is related to both the vth interval and the increment σ in the interval 1 ≤ v ≤ V,
and the carbon quota is less than the actual emission. When the carbon emission exceeds
the Vth interval, the carbon price is only related to the increment σ. There is the index for
time, which is used for hourly dispatch. The constraints, which are related to each unit of
the MG, are as follows:
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Figure 2. Interval tiered carbon price.

• CHP operating constraints:

Pi,t
CHP = ηCHPHi,t

CHP (2)

− Rmax.i
CHP ≤ Pi,t

CHP − Pi,t−1
CHP ≤ Rmax,i

CHP (3)

Pmin,i
CHP ≤ Pi,t

CHP ≤ Pmax,i
CHP (4)

Hmin,i
CHP ≤ Hi,t

CHP ≤ Hmax,i
CHP (5)

Pi,t
CHP = Vi,t

CHPλi
CHPLHVCHP (6)

where PCHP and HCHP are electric/heat powers of CHP, respectively; ηCHP is the heat to
electricity conversion efficiency of CHP; RCHP is the ramp rate of CHP electric power; VCHP
is the natural gas volume of CHP; λCHP is power generation efficiency of CHP; LHVCHP
is the combustion natural gas value of CHP; and min/max is superscript for min/max
amount of the variable.

Equation (2) is the operation mode of ordering electric by heat. Equation (3) refers to
the ramp rate limitation. Constraints (4) and (5) express the allowable electric and heat
power of CHP. Calculation of the natural gas volume required for electric power generated
by CHP uses Equation (6).

• GB and GT constraints:
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Hi,t
GT =

1− ηE,i
GT

ηE,i
GT

ηH,i
GT Pi,t

GT (7)

Pmin,i
GT ≤ Pi,t

GT ≤ Pmax,i
GT (8)

Pmin,i
GB ≤ Pi,t

GB ≤ Pmax,i
GB (9)

Pi,t
GT = Vi,t

GTλi
GTLHVTB (10)

Pi,t
GB = Vi,t

GBλi
GBLHVTB (11)

Vi,t
TB = Vi,t

GB + Vi,t
GT (12)

where PGT and PGB are the electric powers of GT and GB, respectively; VGB and VGT are
the natural gas volume of GB and GT, respectively; VTB is the total natural gas volume;
LHVTB is the lower combustion natural gas value of GB and GT; λGB and λGT are the power
generation efficiency of GB and GT, respectively; and ηE

GT/ηH
GT is electrical/heat efficiency

of GT.
Constraint (7) is the coupling relation between electric and heat. Constraints (8) and

(9) indicate the allowable electric power of GB and GT. Constraints (10) and (11) stand for
electric power generated by GB and GT natural gas. Constraint (12) illustrates the total
volume of natural gas between GB and GT.

• ES and HS constraints:

0 ≤ Pch,i,t
ES ≤ µch,i

ES Pch,MAX,i
ES (13)

0 ≤ Pdis,i,t
ES ≤ µdis,i

ES Pdis,MAX,i
ES (14)

0 ≤ µch,i
ES + µdis,i

ES ≤ 1 (15)

SEMIN,i ≤ SEi,t ≤ SEMAX,i (16)

SEi,t+1 = SEi,t +

(
ηch,i

ES Pch,i,t
ES −

Pdis,i,t
ES

ηdis,i
ES

)
∆t (17)

0 ≤ Hch,i,t
HS ≤ µch,i

HS Hch,MAX,i
HS (18)

0 ≤ Hdis,i,t
HS ≤ µdis,i

HS Hdis,MAX,i
HS (19)

0 ≤ µch,i
HS + µdis,i

HS ≤ 1 (20)

STMIN,i ≤ STi,t ≤ STMAX,i (21)

STi,t+1 = STi,t +

(
ηch,i

HS Hdis,i,t
HS −

Hdis,i,t
HS

ηdis,i
HS

)
∆t (22)

where Pdis
ES , Pch

ES, Hdis
HS , and Hch

HS are the discharge/charge electric and heat power of ES and
HS, respectively; ηdis

ES , ηch
ES, ηdis

HS, and ηch
HS are charging/discharging efficiency rate of ES and

HS, respectively; SE and ST are the capacity of ES and HS; and µdis
ES , µch

ES, µdis
HS, and µch

HS are
binary variables.

Constraints (13) and (14), (18) and (19) indicate the charging and discharging power
limits for the ES and HS. Equations (15) and (20) are the constraints for avoiding simulta-
neous charging and discharging. The constraints expressing the state of charge of the ES
and HS are shown in Equations (17) and (22), and constraints (16) and (21) indicate the
permissible limits for the capacity of ES and HS.

• Cooperative operation of P2G-CCS constraints:



Energies 2022, 15, 5291 6 of 22

CCS and P2G are coupled to form a joint operation system, as shown in Figure 3.
Carbon captured in CCS is used as raw material to supply P2G and synthesize CH4, which
can effectively reduce the operation cost. The cooperative operation constraints can be
written as follows:

Vi,t
P2G =

3.6ηi
P2G

Li
P2G

Pi,t
P2G (23)

Qi,t
CC = αi

CCηi
P2GPi,t

P2G (24)

Qi,t
CC = Pi,t

CCSKi
CC (25)

0 ≤ Pi,t
P2G ≤ Pmax,i

P2G (26)

0 ≤ Pi,t
CCS ≤ Pmax,i

CCS (27)

Qi,t
N = Ki

GCPi,t
GT + Ki

buyPi,t
buy −Qi,t

CC (28)

Qi,t
N ≥ 0 (29)

Ei
0 ≤ 0, v = 0

0 ≤ Ev,i ≤ Emax,i, 1 ≤ v ≤ V
EV,i ≥ 0, v > V

(30)

T

∑
t=1

Qi,t
N −

T

∑
t=1

(
δi,t

CHPPi,t
CHP + δi,t

buyPi,t
buy

)
= Ei

0 +
V

∑
v=1

Ev,i (31)

where PP2G and PCCS are electric power consumed of P2G and CCS, respectively; QCC is
the CO2 quality required for P2G operation; ηP2G and LP2G are electric to gas efficiency of
P2G and calorific value of natural gas, respectively; αCC is the CO2 quality consumed per
unit of P2G; and KCC, KGC, and Kbuy are carbon emission intensity of CCS, GT/CHP, and
electric power purchased, respectively.
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Constraints (23)–(25) indicate the calculable relation of carbon emission and capture.
Constraints (26) and (27) designate the limitations for consumption of electrical power of
P2G and CCS. Equations (28) and (29) are used to calculate the total carbon emission of
CHP after carbon capture.

Compared with the unified carbon price, the tiered carbon price is more suitable for
the small carbon emission region and can reduce the carbon emission operating cost, for
which the tiered carbon emission model is adopted [35]. The limits of carbon emission
in each interval are shown in Equation (30). In particular, carbon emission trading in the
0th interval is 0. Constraint (31) refers to the balance of quota carbon trading within the
whole interval.
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• GSHP constraints:

Hi,t
HP = Ki

HPPi,t
HP (32)

Pmin,i
HP ≤ Pi,t

HP ≤ Pmax,i
HP (33)

where PHP and HHP are electric and heat power of GSHP, respectively; and KHP is the
coefficient of thermoelectric power of GSHP.

The GSHP modelling for steady state in heat exchange can be derived from Equations
(32) and (33) as follows.

• RE constraints:  Pi,t
PV + Pcut,i,t

PV ≤ PPRE,i,t
PV

Pi,t
W + Pcut,i,t

W ≤ PPRE,i,t
W

(34)

where PPV and PW are the actual power of PV and wind, respectively; Pcut
PV and Pcut

W are the
curtailment powers, respectively; PPRE

PV and PPRE
W are the predicted powers, respectively.

• Exchange power among MGs and with SP constraints:

Pi,t
i,j + Pj,t

j,i = 0, i 6= j (35)

Pmin,i,t
i,j ≤ Pi,t

i,j ≤ Pmax,i,t
i,j (36)

0 ≤ Pi,t
buy ≤ ωPmax,i,t

buy (37)

0 ≤ Pi,t
sell ≤ (1−ω)Pmax,i,t

sell (38)

where Pi,j is the electric power from MGi to MGj; and Psell and Pbuy are the selling and
buying electric power from the SP, respectively.

Equations (35) and (36) are the constraints for exchange power among MGs. Constraint
(35) ensures that the exchange power is equal between MGi and MGj, and constraint (36)
shows the limitations for the exchange power among MGs. Constraints (37) and (38) stand
for the constraints for exchange power between MGi and SP; α is a Boolean variable.

2.3. Service Provider of MG

As the intermediary between MGs and the upper grid, the service provider needs to
set the electrical trading price with MGs. The trading of electrical power at any time is to be
done in an optimal way from economical and technical perspectives and shall be realized
according to the object function of the service provider.

• Objective function of service provider:

maxZSP =
T

∑
t=1

∑
i

(
pi,t

buyPi,t
buy

)
−

T

∑
t=1

∑
i

(
pi,t

sellP
i,t
sell

)
+ ∑

i

T

∑
t=1

(
pi,t

S Pi,t
S − pi,t

B Pi,t
B

)
(39)

where pS and pB respective the selling/buying price between the SP and the utility grid. PS
and PB are the SP sell/buy the electric power from the utility grid.

Equation (39) represents the benefit maximization of the SP, which takes the benefits
of all electrical power benefit minus purchase cost in a period T.

• Transaction price between MGs and SP constraints:

0 ≤ pi,t
sell ≤ pmax,i

sell (40)

0 ≤ pi,t
buy ≤ pmax,i

buy (41)
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1
T

T

∑
t=1

pi,t
sell ≤ pave,i

sell (42)

1
T

T

∑
t=1

pi,t
buy ≤ pave,i

buy (43)

where pave,i
sell and pave,i

buy are the maximum average selling/buying prices for pi,t
sell and pi,t

buy,

respectively. pi,t
sell and pi,t

buy are the selling and buying price from MGi to SP.
Equations (40) and (41) show the limitations for selling/buying prices. Constraints (42)

and (43) are given by the SP to limit the average price of buying/selling electrical power in
a period T.

3. Solution Procedure
3.1. The Uncertainty of Wind and PV

Due to the stochastic output power of PV and wind, their power generation depends
on the environmental conditions with uncertainty. IGDT is used to establish the uncertainty
dispatching model for environmental uncertainty (44):

U
(

αW, PPRE,i,t
W

)
=
{

Pt
w :
∣∣∣Pt

w − PPRE,i,t
W

∣∣∣ ≤ αWPPRE,i,t
W

}
U
(

αPV, PPRE,i,t
PV

)
=
{

Pt
w :
∣∣∣Pt

PV − PPRE,i,t
PV

∣∣∣ ≤ αPVPPRE,i,t
PV

}
αW ≥ 0, αPV ≥ 0

(44)

where αW/αPV is the uncertain radius of wind/PV output; and PPRE
W /PPRE

PV is the predicted
power out of wind/PV.

Ψ = βPVαPV + βWαW (45)

Equation (45) shows the comprehensive uncertainty radius of PV and wind. βPV and
βW can be determined by using the judgment matrix method according to the demand of
PV and wind uncertainty.

The risk avoidance strategy is to seek the maximum uncertainty radius of the uncertain
quantity under the condition that the optimization target is within an acceptable range.
The larger the uncertainty radius is, the less sensitive the scheme is to the fluctuation of the
uncertain quantity, the better the robustness of the model, and the stronger the ability of
the system to avoid risks.
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the robustness of the dispatching scheme. It can be seen that the above IGDT robust dis-
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when the PV and wind output fluctuates in the uncertain set, the operating cost of the 
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(46)

Equation (46) refers to the maximum radius of uncertainty; κ is the robustness level
factor, and the greater its value, the greater the degree of risk avoidance and the stronger the
robustness of the dispatching scheme. It can be seen that the above IGDT robust dispatch
model belongs to a two-layer optimization model. The lower layer represents that when
the PV and wind output fluctuates in the uncertain set, the operating cost of the system
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cannot exceed the expected cost value. In order to improve the solving efficiency, Equation
(46) is simplified into a single-layer optimization model, as shown in Equation (47).

min −Ψ

s.t.



∑i ZMG,i ≤ (1 + κ)∑i ZB
MG,i

(7)− (31), (33)− (38)and(44)
Pt

w = (1− αW)PPRE,i,t
W

Pt
PV = (1− αPV)PPRE,i,t

PV

∑i ZB
MG,i = ∑i ZMG,i

∣∣∣Pt
w=PPRE,i,t

W ,Pt
PV=PPRE,i,t

PV

(47)

The joint IGDT dispatching strategy of MC considering the uncertainty of PV and
wind is shown in Figure 4. First, the MC dispatch model with PV and wind certainty was
constructed, and the base operating cost was solved. Next, IGDT is applied to model the
uncertainty of PV and wind, and the MC joint robust dispatch model is established and
solved according to the risk avoidance strategy.
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3.2. The Bisection Method for MC with Service Provider

Because the stackelberg game means that the participants are in different positions,
the leader can occupy the first opportunity or favorable position in the game, so that the
follower can make decisions. SP (leaders) and MC (followers) are considered as two types
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of interested subjects in this paper. SP order buy/sell electricity prices with the goal of
maximizing their profits. Each MG receives the decision from service providers and adjusts
its own operation strategies.

For the MC considering the service provider, the higher the selling price, the less
electricity the MG purchased. The relationship between the two is monotonically de-
creasing, so the bisection method is adopted to solve it. Considering the restriction of
purchase/sale price, the SP sets the central point (48) in an interval and substitutes it into
the IGDT problem.

Xk =
Xk−1 + Xk−2

2
(48)

where X is a set of buying and selling prices between SP and MGs; and k is the iteration.
Similarly, the upper bound or the lower bound is updated by [min (Xk, Xk−1), max

(Xk, Xk−1)]. When the algorithm satisfies Equation (49), it converges.

∑
(∣∣∣Xk+1 −Xk

∣∣∣)
∑
(

Xk
) ≤ ζ (49)

Finally, the dispatching result of IGDT is compared with the objective function, so as
to take the buying/selling price interval in half. The specific solution algorithm is shown in
Appendix A.

3.3. Nash Solves for Allocating Benefits among MGs

The product of the difference between the maximum benefit obtained by each player
in the game and the benefit when the negotiation breaks down (i.e., the lowest benefit)
is the Nash negotiation. At this time, the stackelberg equilibrium solution is the optimal
solution, and it can also ensure that the interests of all participants are balanced [36]. In
this paper, the cooperative game model of MC is given as

max
N

∏
i=1

(
UMG,i −U∗MG,i

)
(50)

where UMG is the profit from MG.
MGs with different interests need to maintain independence and rationality when

conducting electricity trading. Using a Nash distributed solution can effectively ensure
their own the overall profits; (*) is the breaking point of negotiations.

Taking the logarithm of model (50) and transforming the product problem into a
summation problem, the objective function can be transformed into:

min
N
∑

i=1

[
− ln

(
UMG,i −U∗MG,i

)]
s.t.

{
UMG,i ≥ U∗MG,i
pt

i,j ≥ pmin,t
i,j

(51)

UMG,i = −ZMG,i +
N

∑
j=1,i 6=j

T

∑
t=1

(
pt

i,j
Pt

i,j

)
(52)

For the convenience of solving, the optimal solutions (Z0
MG,i, P0,t

i,j ) in model (47) is
substituted into Equation (51):
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min
N
∑

i=1

[
− ln

(
−Z0

MG,i +
N
∑

j=1,i 6=j

T
∑

t=1

(
pt

i,j
P0,t

i,j

)
−U∗MG,i

)]

s.t.

 −Z0
MG,i +

N
∑

j=1,i 6=j

T
∑

t=1

(
pt

i,j
P0,t

i,j

)
≥ U∗MG,i

pt
i,j ≥ pmin,t

i,j

(53)

The objective function of model (53) is the natural logarithm, which is a monotonically
increasing convex optimization problem. ADMM is used to solve the electricity trading
price of MC, so as to ensure the maximum benefit. Therefore, the auxiliary variables pt

i,j
and pt

j,i are introduced to decouple the electricity price of MC.

pt
i,j = pt

j,i,i 6= j (54)

Considering the consistency constraint (54), the augmented Lagrange function (55) is
established.

minLMG,i = − ln

(
−Z0

MG,i +
N
∑

j=1,i 6=j

T
∑

t=1

(
pt

i,j
P0,t

i,j

)
+ Z∗MG,i

)
+

T
∑

t=1
λi

(
pt

i,j − pt
j,i

)
+ ρi

2

T
∑

t=1
‖pt

i,j − pt
j,i‖

2
2

s.t.

 −Z0
MG,i +

N
∑

j=1,i 6=j

T
∑

t=1

(
pt

i,j
P0,t

i,j

)
≥ −Z∗MG,i

pt
i,j ≥ pmin,t

i,j

(55)

The distributed solution steps of the Nash bargaining game are as follows:
Step1: Initialization parameters: λk

i = 0, pt,k
i,j = pk+1

j = 0, ρi = 10, ε = 0.001, k = 0;
Step2: Each MG calculates its own trading price strategy locally, and only the updated

price pk
i,j is exchanged among MGs. In each iteration, the following steps need to be

performed:
MGi updates its decision pk+1

i,j

pt,k+1
i,j = argminLMG,i

(
λk

i , pt,k
i,j , pt,k

j,i

)
(56)

MGj receives the updated decision pk+1
i,j , to update its decisions pk+1

j,i

pt,k+1
j,i = argminLMG,i

(
λk

i , pt,k+1
i,j , pt,k

j,i

)
(57)

Step3: Update Lagrange multiplier λk+1
i ;

λk+1
i = λk

i + ρi

(
pt,k+1

i,j − pt,k+1
j,i

)
(58)

Step4: k = k + 1;
Step5: Judge convergence;

T
∑

t=1
∑i ‖pt,k+1

i,j − pt,k+1
j,i ‖

2

2
≤ ε, the kth convergence

k ≥ kmax, otherwise

(59)

The iteration terminates if Equation (59) is satisfied. Otherwise, it will go back to Step2
to recalculate until convergence or the set maximum number of iterations is reached.
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4. Case Study

In this section, simulations in a test system are done to demonstrate the changes of the
MC optimum energy management using the proposed hybrid game model. The system
architecture of the calculation example is shown in Figure 1, and the specific dispatching
model of each MG is shown in Appendix B. For the specific parameters of each unit of
MGs1–3, refer to Appendices Tables A1 and A2. The power of RE in MC is shown in
Figure 5. The Solver CPLEX in the MATLA2020a environment is employed to perform the
energy management.
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4.1. Day-Ahead Dispatching Analysis

Figures 6–8 illustrate the dispatching results of the MC, and the electrical power trading
among MGs is depicted in Figure 9, considering two dispatch methods of MC: (1) MG1
adopts deterministic dispatch; (2) the uncertain dispatch is used in MGs2–3. Figure 10
shows electrical power trading among MGs and between the MC and SP, respectively.
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As seen from Figure 6a, the electrical load level is relatively low at 1:00–5:00 and
17:00–24:00, and the wind power of MG1 is sufficient to sell electrical power to other MGs.
The electrical load reaches the peak from 6:00–16:00; the CHP works at full power. MG1
is buying electrical power from SP and other MGs at the same time. As for the heat load
in Figure 6b, the electrical power generated by CHP is relatively low during 1:00–4:00, so
the heat power is also too low to meet the heat load demand. At the same time, the heat
generated by the HP is sufficient to meet its own heat load demand. Due to working at full
power for CHP at 8:00–22:00, the heat power production is sufficient for the heat load.

The low power output of RE in MG2 needs to rely on GT and other MGs to provide
electrical power. It can be seen from Figure 7a that the electrical load is relatively low;
however, the heat load demand is large, resulting in a relatively high power production of
GT, and the surplus electrical power is sold to other MGs. The GT provides a considerable
amount of thermal power to meet the load in a day cycle in Figure 7b, and the HS mainly
meets the thermal power balance characteristics in the whole system.

In Figure 8a, from 11:00–18:00, the GT of MG3 has insufficient power generation and
needs to purchase electric power from MG1. However, at 16:00–20:00, MG3 sells electric
power from MG1 and MG2, as seen in Figure 9. In Figure 8b, at 10:00, 14:00–15:00, and
18:00–20:00, the heat power generated by the GT not only meets the human load demand
but also charges heat power to the HS.

Under the bisection algorithm, the SP also give the selling/buying price of the electrical
power transaction to each MG in Figure 10. Taking MG3 as an example, MG3 purchases
less electrical power from the utility grid from 1:00–16:00, and the purchase electrical price
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is also relatively low at this time, as shown in Figure 10c. However, the electrical load of
MG3 is in a peak state from 17:00–22:00, and its own unit cannot meet the electrical load
demand and needs to purchase power from the utility grid, and the purchase price also
rises. The electrical price reaches the limits at 20:00 especially. This means that the purchase
electrical price varies with purchased electrical power.

In order to verify the accuracy and speed of the bisection algorithm, compared with
the golden cut algorithm, the operating cost of the bisection algorithm is (4.8%, 3.6%, 2.7%)
lower than that of the golden cut algorithm in Table 1. As described below, the bisection
algorithm converges after eight iterations, whereas the golden cut algorithm requires eleven
convergences, showing its capability in terms of computational speed and scalability.

Table 1. Operating cost (USD) for two algorithms.

Parameter MG1 MG2 MG3 SP Iteration

Bisection Algorithm 24,231 43,348 33,894 13,718 8
Golden cut Algorithm 25,382 44,927 34,833 14,180 11

4.2. Analysis of IGDT Dispatching Strategy Considering the Uncertainty of Wind and PV

In order to quantify the influence of each uncertainty factor on the strategy, it is
assumed that the robust level factor κ = 0.1 selects different weight coefficients to perform
the calculation results of the IGDT robust dispatch model, respectively, as shown in Table 2.

Table 2. IGDT robust dispatch results with different weight coefficient combinations.

Parameter IGDT Robust Dispatching Result

(βPV, βW) αPV αW ψ

(1, 1) 0.7868 0.6869 1.3025
(1, 2) 0.7868 0.3279 1.4425
(1, 4) 0.7868 0.1968 1.5739
(1, 8) 0.7868 0.1182 1.7374

As can be seen from the table, due to the different sensitivities of the system to the
fluctuations of various uncertain factors, different weight coefficients will affect the solution
results of single uncertain factors. However, it has little influence on the solution result of
the whole system. The dispatch decision maker can set each weight coefficient according to
the actual situation and historical experience of the system.

In the risk avoidance model, the robust level factor κ is set to vary from 0 to 0.1,
alongside the considered uncertain parameters in two cases studies: (1) PV and wind, and
(2) PV.

With the increased operation cost for the MC, α is also increasing from the perspective
of overall dispatch in Figure 11. Note that α and operation cost are normalized. Considering
more uncertain factors, the effect of risk avoidance is more obvious at this time.

4.3. Environmental Analysis of Tiered Carbon Price

The unified carbon price in all intervals is considered to be 2.9 USD/t in this paper, the
tiered price given is 2.5 USD/t in sector 0, and the other intervals are calculated according
to model (1). The tiered price results are shown in Table A3.

The interval price will increase with the increase of carbon emissions, but the uniform
price will not. As can be seen from Figure 12, the carbon emission of the interval price is
higher than with the uniform price method in intervals 0–5, but the interval price is twice as
high as the uniform price in interval 6. At the same time, the carbon emission of the interval
price decreases rapidly, and the carbon emission of the unified price is far more. Therefore,
the use of tiered prices can effectively regulate carbon emissions in high-emission areas,
which achieves a true “low carbon”.
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The total operating costs of the two prices are USD 101,473 and USD 105,810, respec-
tively, in Table 3, and the operating cost of the uniform price is 4.28% higher than that of
the tiered price. The carbon operating costs of participating are USD 9756 and USD 10,005
in the two price mechanisms, respectively, but the carbon emission of participating in the
electricity market with the tiered price is 2.55% lower than that of the uniform price. It can
be seen that, to a certain extent, the emission reduction task can be completed by using
tiered prices.

Table 3. Operating costs in two prices.

Operating Cost (USD)
Interval Price Uniform Price

MG1 MG2 MG3 MG1 MG2 MG3

Cgrid 12,138 17,858 10,911 14,361 19,424 10,959
Cfuel 10,354 20,978 19,377 11,383 20,167 19,389
CES 22 45 34 23 52 47
CV 1717 4467 3572 2416 4386 3203

The total operating cost 24,231 43,348 33,894 28,183 44,029 33,598
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4.4. Analysis of Payment Benefit among MGs

Figure 13 shows the transaction benefits among MGs and the results of the residual
error iterative convergence. The ADMM algorithm requires 33 iterations to achieve con-
vergence, the time is 53 s, and the convergence residual error is 10−3. Therefore, it shows
that the ADMM algorithm proposed in this paper has good convergence performance and
computational efficiency.
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MG2 sells electricity to MG3 in Figure 9 from 9:00–15:00, for which the transaction
price between MG2 and MG3 is relatively high at this time, as shown in Figure 14; MG2
purchases electric power from MG3 at 4:00–8:00, and the price between the two is at a low
level. It can be seen that the transaction price among the MGs changes with the change in
the electric power transaction.
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Table 4 presents the running cost comparison of MC and multi-microgrids (MMG).
MC is the model proposed in this paper; MMG is not considering constraints (35)–(36). It
can be seen from the table that the operating cost of each MG in the MC are (USD 9660,
USD 9628, USD 9628) less than that in MMG, which are (39.86%, 22.21%, 28.41%) lower.
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This shows that MC is beneficial to reducing the operating cost of each MG. Considering
the influence of errors, the cost reduction of each MG is basically equal, which is 1/3 of
the overall cost. It can be seen that the fairness of benefit distribution is facilitated by the
Nash equilibrium.

Table 4. Comparisons of operation costs for MC and MMG.

Operation Cost (USD)

MG1 MG2 MG3

MC 24,231 43,348 33,894
MMG 33,891 52,976 43,522

5. Conclusions

The trading of carbon emissions and the high penetration of RE lead to the complexity
of multi-energy MG systems. In addition, the utilization rate of RE is increasing, and
this means that the MC must also be considered. In order to solve the problem of carbon
emissions in MG, a joint IGDT dispatch strategy for MC considering the uncertainty of wind
and PV is proposed in this paper. The P2G-CCS joint operation mechanism is considered
in a single MG, and the bisection method is used to solve the purchase/sale electrical
power price between the MC and SP. In addition, the risk avoidance strategy is adopted
to consider the uncertainty of RE, and a non-probabilistic method, i.e., IDGT theory, is
used to solve the robustness problem for MC. Finally, Nash negotiation is used to solve the
transaction price among MGs. A simulation study is carried out on the MC considering SP,
for which two cases are considered, including energy management with tiered carbon price
and unified carbon price, and the comparison of carbon emissions and operating costs are
given in two cases. The experimental results show that: (1) a reasonable carbon price can
not only effectively and reasonably regulate the carbon trading market, but can also guide
carbon emissions. (2) The uncertainty of RE is considered through weight coefficients and
weighted summation, by which the robustness of the system is improved. (3) Considering
the transaction among MGs by means of Nash bargaining, both the profits of the respective
subjects and the interests of the whole system can be considered. Compared with MMG,
it can also reduce the operating cost of each. Hydrogen energy is a direction of future
comprehensive energy research, and this is also an indispensable discussion for hydrogen
storage and hydrogen transaction prices.

In MC, the transaction prices of other energies, i.e., heat, gas, hydrogen, etc., can
be considered in the future, as can the difference of carbon emission rights due to the
differences of MG generator and load.
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Appendix B

This test system consists of the independent SP and three MGs.
MG1 consists of wind, PV, CHP, P2G-CCPP, GSHP, and ES alongside with residential

loads, for which the specific dispatch model is
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min ZMG,i =
24
∑

t=1

(
Ci,t

grid + Ci,k,t
gas + Ci,m,t

ES

)
+ Ci

V

s.t.


(2)− (6), (3)− (17)and(23)− (38)

Pi,t
buy − Pi,t

sell − Pi,t
HP + Pi,t

CHP + Pdis,i,t
ES = Pi,t

L + Pch,i,t
ES − Pi,t

PV − Pi,t
W + Pi,t

CCS + Pi,t
P2G +

N
∑

j=1,i 6=j
Pi,t

i,j

Hi,t
HP + Hi,t

CHP = Hi,t
L

(A1)

Equation (A1) includes the electric power, heat power balance constraints, and i = 1.

Gi,t
gas = Vi,t

CHP −Vi,t
P2G, i = 1 (A2)

Equation (A2) shows that the fuel volume required by the MG1 is the difference
between that consumed by CHP and generated by P2G.

The structure of MG2 is the same as MG3 alongside with wind, PV, GT, GB, P2G-CCS,
ES, HS, and park loads. The specific dispatch models are

min ZMG,i =
24
∑

t=1

(
Ci,t

grid + Ci,k,t
fuel + Ci,m,t

ES

)
+ Ci

V

s.t.



(7)− (31)and(35)− (32)

0 ≤ Pi,t
PV ≤ PPRE,i,t

PV

0 ≤ Pi,t
W ≤ PPRE,i,t

W

Pi,t
buy − Pi,t

sell + Pi,t
GT + Pdis,i,t

ES = Pi,t
L + Pch,i,t

ES − Pi,t
PV − Pi,t

W + Pi,t
P2G + Pi,t

CCS +
N
∑

j=1,i 6=j
Pi,t

i,j

Hi,t
GT + Hi,t

GB + Hdis,i,t
HS = Hi,t

L + Hch,i,t
HS

(A3)

Equation (A3) illustrates the RE limit and the electric and heat power balance con-
straints; i = 1, 2.

Gi,t
gas = Vi,t

GT + Vi,t
GB, i = 1, 2 (A4)

The sum of the fuel consumed by GT and GB is the total fuel in the MG1,2, represented
by Equation (A4).

Table A1. Parameters of each unit in MG1.

Parameter Value Parameter Value Parameter Value

ηCHP 0.75 Pmin
i,j /kW 3000 Rmax

CHP/kW 300
Pmin

CHP/kW 50 Pmax
CHP/kW 1200 Hmin

CHP/kW 0
Hmax

CHP/kW 1500 λCHP 0.3 LHVCHP 10.8
Pch,max

ES /kW 150 Pdis,max
ES /kW 150 SEmin 100

SEmax 800 ηch
ES 0.95 ηdis

ES 0.95
ηP2G 0.85 LP2G 3.9 αCC 0.78
KCC 0.269 Pmax

P2G 500 Pmax
CCS 400

KGC 0.78 Kbuy 0.56 KHP 3.8



Energies 2022, 15, 5291 21 of 22

Table A2. Parameters of each unit in MG1 and MG2.

Parameter Value Parameter Value Parameter Value

ηE
GT 0.35 ηH

GT 0.83 Pmax
GT /kW 5000

Pmin
GT /kW 800 λGT 0.35 λGB 0.9
LHVTB 9.7 Pch,max

ES /kW 300 Pdis,max
ES /kW 300

ηch
ES/ηdis

ES 0.98/0.98 SEmax 600 STmax 500
Hch,max

HS /kW 200 Hdis,max
HS /kW 200 ηch

HS/ηdis
HS 0.95

ηP2G 0.35 LP2G 3.9 αCC 0.78
KCC 0.269 Pmax

P2G 500 Pmax
CCS 400

KGC 0.78 Kbuy 0.56

Table A3. Tiered carbon pricing.

Interval

0 1 2 3 4 5

Price
(USD/t) 2.5 2.5 3.34 4.01 4.68 5.35

References
1. Sinha, R.K.; Chaturvedi, N.D. A Review on Carbon Emission Reduction in Industries and Planning Emission Limits. Renew.

Sustain. Energy Rev. 2019, 114, 109304. [CrossRef]
2. Parker, L. Climate Change: The European Union’s Emissions Trading System (EU-ETS); Congressional Research Service The Library of

Congress: Washington, DC, USA, 2006.
3. Gong, W.; Wang, C.; Fan, Z.; Xu, Y. Drivers of the peaking and decoupling between CO2 emissions and economic growth around

2030 in China. Environ. Sci. Pollut. Res. 2022, 29, 3864–3878.
4. Niu, X.S.; Wang, J.Z.; Zhang, L.F. Carbon Price Forecasting System Based on Error Correction and Divide-conquer Strategies.

Appl. Soft Comput. 2022, 112, 107935. [CrossRef]
5. Wang, X.; Gong, Y.; Jiang, C. Regional Carbon Emission Management Based on Probabilistic Power Flow With Correlated

Stochastic Variables. IEEE Trans. Power Syst. 2015, 30, 1094–1103. [CrossRef]
6. Chen, Q.; Kang, C.; Xia, Q.; Zhong, J. Power Generation Expansion Planning Model Towards Low-Carbon Economy and Its

Application in China. IEEE Trans. Power Syst. 2010, 25, 1117–1125. [CrossRef]
7. Zhong, X.Q.; Zhong, F.; Liu, Y.; Yang, C.; Xie, S.L. Optimal Energy Management for Multi-energy Multi-microgrid Networks

Considering Carbon Emission Limitations. Energies 2022, 246, 123428. [CrossRef]
8. Chen, J.; Lu, B.; Hao, L. Research on Optimal Collaborative Method for Microgrid Environmental and Economic Dispatch in

Grid-connected Mode. Int. J. Simul. Process Model. 2019, 14, 513. [CrossRef]
9. Kanchev, H.; Colas, F.; Lazarov, V.; Francois, B. Emission Reduction and Economical Optimization of an Urban Microgrid

Operation Including Dispatched PV-Based Active Generators. IEEE Trans. Sustain. Energy 2014, 5, 1397–1405. [CrossRef]
10. Zhou, X.; Zhou, L.; Chen, Y.; Guerrero, J.M.; Luo, A. A microgrid cluster structure and its autonomous coordination control

strategy. Int. J. Electr. Power Energy Syst. 2018, 100, 69–80. [CrossRef]
11. Li, B.; Li, J. Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters.

Appl. Energy 2021, 304, 117760. [CrossRef]
12. Dong, X.; Li, X.S.; Cheng, S. Energy Management Optimization of Microgrid Cluster Based on Multi-Agent-System and

Hierarchical Stackelberg Game Theory. IEEE Access 2020, 8, 206183–206197. [CrossRef]
13. Wu, Q.; Xie, Z.; Li, Q.F.; Ren, H.B.; Yang, Y.W. Economic Optimization Method of Multi-stakeholder in A Multi-microgrid System

Based on Stackelberg Game Theory. Energy Rep. 2022, 8, 345–351. [CrossRef]
14. Lee, J.; Guo, J.; Choi, J.K.; Zukerman, M. Distributed energy trading in microgrids: A game-theoretic model and its equilibrium

anal ysis. IEEE Trans. Ind. Electron. 2015, 62, 3524–3533. [CrossRef]
15. Anoh, K.; Maharjan, S.; Ikpehai, A.; Zhang, Y.; Adebisi, B. Energy peer-to-peer trading in virtual microgrids in smart grids: A

game-theoretic approach. IEEE Trans. Smart Grid 2020, 11, 1264–1275. [CrossRef]
16. Ali, L.; Muyeen, S.M.; Bizhani, H.; Ghosh, A. Optimal Planning of Clustered Microgrid Using a Technique of Cooperative Game

Theory. Int. J. Electr. Power Syst. Res. 2020, 183, 106262. [CrossRef]
17. Guo, J.Q.; Tan, J.J.; Yang, L.; Gu, H.F.; Liu, X.; Cao, Y.; Yan, Q.; Xu, D.K. Decentralized Incentive-based Multi-energy Trading

Mechanism for CCHP-based MG Cluster. Int. J. Electr. Power 2021, 133, 107138. [CrossRef]
18. Khan, S.U.; Ahmad, I. A Cooperative Game Theoretical Technique for Joint Optimization of Energy Consumption and Response

Time in Computational Grids. IEEE Trans. Papall. Distrib. 2009, 20, 346–360. [CrossRef]

http://doi.org/10.1016/j.rser.2019.109304
http://doi.org/10.1016/j.asoc.2021.107935
http://doi.org/10.1109/TPWRS.2014.2344861
http://doi.org/10.1109/TPWRS.2009.2036925
http://doi.org/10.1016/j.energy.2022.123428
http://doi.org/10.1504/IJSPM.2019.106157
http://doi.org/10.1109/TSTE.2014.2331712
http://doi.org/10.1016/j.ijepes.2018.02.031
http://doi.org/10.1016/j.apenergy.2021.117760
http://doi.org/10.1109/ACCESS.2020.3037676
http://doi.org/10.1016/j.egyr.2021.11.148
http://doi.org/10.1109/TIE.2014.2387340
http://doi.org/10.1109/TSG.2019.2934830
http://doi.org/10.1016/j.epsr.2020.106262
http://doi.org/10.1016/j.ijepes.2021.107138
http://doi.org/10.1109/TPDS.2008.83


Energies 2022, 15, 5291 22 of 22

19. Xu, Y.T.; Ai, Q. Coordinated operation of microgrid and conventional generators considering carbon tax strategy. Autom. Electr.
Power Syst. 2016, 40, 25–32.

20. Wang, T.; Wang, X.; Gong, Y.; Jiang, C.W. Initial allocation of carbon emission permits in power systems. J. Mod. Power Syst. Clean
Energy 2017, 5, 239–247. [CrossRef]

21. Nguyen, T.A.; Crow, M.L. Stochastic optimization of renewable-based microgrid operation incorporating battery operating cost.
IEEE Trans. Power Syst. 2015, 31, 2289–2296. [CrossRef]

22. Zakariazadeh, A.; Jadid, S.; Siano, P. Smart microgrid energy and reserve scheduling with demand response using stochastic
optimization. Int. J. Electr. Power Syst. Res. 2014, 63, 523–533. [CrossRef]

23. Kuznetsova, E.; Ruiz, C.; Li, Y.F.; Ruiz, C.L.; Zio, E.R. Analysis of robust optimization for decentralized microgrid energy
management under uncertainty. Int. J. Electr. Power Syst. Res. 2015, 64, 815–832. [CrossRef]

24. Craparo, E.; Karatas, M.; Singham, D.I. A robust optimization approach to hybrid microgrid operation using ensemble weather
forecasts. Appl. Energy 2017, 201, 135–147. [CrossRef]

25. Li, Y.; Wang, P.; Gooi, H.B.; Ye, J.; Wu, L. Multi-objective optimal dispatch of microgrid under uncertainties via interval
optimization. IEEE Trans. Smart Grid 2017, 10, 2046–2058. [CrossRef]

26. Zhang, X.; Son, Y.; Cheong, T.; Choi, S.Y. Affine-arithmetic-based microgrid interval optimization considering uncertainty and
battery energy storage system degradation. Energy 2022, 242, 123015. [CrossRef]

27. Cao, Y.; Li, D.; Zhang, Y.; Tang, Q.H.; Khodaei, A.; Zhang, H.L. Optimal energy management for multi-microgrid under a
transactive energy framework with distributionally robust optimization. IEEE Trans. Smart Grid 2021, 13, 599–612. [CrossRef]

28. Cai, S.; Xie, Y.; Wu, Q.; Zhang, M.L.; Jin, X.L.; Xiang, Z.R. Distributionally robust microgrid formation approach for service
restoration under random contingency. IEEE Trans. Smart Grid 2021, 12, 4926–4937. [CrossRef]

29. Hu, J.X.; Li, H.G. A Transfer Learning-based Scenario Generation Method for Stochastic Optimal Scheduling of Microgrid with
Newly-built Wind Farm. Renew. Energy 2022, 185, 1139–1151. [CrossRef]

30. Morales, J.M.; Conejo, A.J.; Perez-Ruiz, J. Short-term Trading for a Wind Power Producer. IEEE Trans. Power Syst. 2010, 25, 554–564.
[CrossRef]

31. Huang, C.; Yue, D.; Deng, S.; Xie, J. Optimal scheduling of microgrid with multiple distributed resources using interval
optimization. Energies 2017, 10, 339. [CrossRef]

32. Yang, D.; Jiang, C.; Cai, G.W.; Yang, D.Y.; Liu, X.J. Interval method based optimal planning of multi-energy microgrid with
uncertain renewable generation and demand. Appl. Energy 2020, 277, 115491. [CrossRef]

33. Saki, R.; Rokrok, E.; Abedini, M.; Doostizadeh, M. Risk-averse Microgrid Cluster Switching Approach for Improving Distribution
System Characteristics Considering Uncertainties of Renewable Energy Resources. IET Renew. Power Gener. 2020, 14, 1997–2006.
[CrossRef]

34. Ahmadi, S.E.; Rezaei, N. An IGDT-based Robust Optimization Model for Optimal Operational Planning of Cooperative Microgrid
Clusters: A Normal Boundary Intersection Multi-objective Approach. Int. J. Electr. Power 2021, 127, 106634. [CrossRef]

35. Hu, J.Z.; Wang, X.; Jiang, Z.W.; Cong, H. Optimal Tiered Carbon Price of Power System Considering Equilibrium of Regional
Carbon Emission. Autom. Electr. Power Syst. 2020, 44, 98–107. (In Chinese)

36. Fan, S.; Ai, Q.; Piao, L. Bargaining-based cooperative energy trading for distribution company and demand response. Appl.
Energy 2018, 226, 469–482. [CrossRef]

http://doi.org/10.1007/s40565-016-0194-7
http://doi.org/10.1109/TPWRS.2015.2455491
http://doi.org/10.1016/j.ijepes.2014.06.037
http://doi.org/10.1016/j.ijepes.2014.07.064
http://doi.org/10.1016/j.apenergy.2017.05.068
http://doi.org/10.1109/TSG.2017.2787790
http://doi.org/10.1016/j.energy.2021.123015
http://doi.org/10.1109/TSG.2021.3113573
http://doi.org/10.1109/TSG.2021.3095485
http://doi.org/10.1016/j.renene.2021.12.110
http://doi.org/10.1109/TPWRS.2009.2036810
http://doi.org/10.3390/en10030339
http://doi.org/10.1016/j.apenergy.2020.115491
http://doi.org/10.1049/iet-rpg.2019.1155
http://doi.org/10.1016/j.ijepes.2020.106634
http://doi.org/10.1016/j.apenergy.2018.05.095

	Introduction 
	System Modelling 
	System Structure 
	MG Modelling 
	Service Provider of MG 

	Solution Procedure 
	The Uncertainty of Wind and PV 
	The Bisection Method for MC with Service Provider 
	Nash Solves for Allocating Benefits among MGs 

	Case Study 
	Day-Ahead Dispatching Analysis 
	Analysis of IGDT Dispatching Strategy Considering the Uncertainty of Wind and PV 
	Environmental Analysis of Tiered Carbon Price 
	Analysis of Payment Benefit among MGs 

	Conclusions 
	Appendix A
	Appendix B
	References

