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Abstract: The changeable nature of renewable sources creates difficulties in system security and
stability. Therefore, it is necessary to study system risk in several power system scenarios. In a
wind-integrated deregulated power network, the wind farm needs to submit the bid for its power-
generating quantities a minimum of one day ahead of the operation. The wind farm submits the
data based on the expected wind speed (EWS). If any mismatch occurs between real wind speed
(RWS) and expected wind speed, ISO enforces the penalty/rewards to the wind farm. In a single
word, this is called the power market imbalance cost, which directly distresses the system profit.
Here, solar PV and battery energy storage systems are used along by the wind farm to exploit system
profit by grasping the negative outcome of imbalance cost. Along with system profit, the focus has
also been on system risk. The system risk has been calculated using the risk assessment factors, i.e.,
Value-at-Risk (VaR) and Cumulative Value-at-risk (CVaR). The work is performed on a modified IEEE
14 and modified IEEE 30 bus test system. The solar PV-battery storage system can supply the demand
locally first, and then the remaining power is given to the electrical grid. By using this concept, the
system risk can be minimized by the incorporation of solar PV and battery storage systems, which
have been studied in this work. A comparative study has been performed using three dissimilar
optimization methods, i.e., Artificial Gorilla Troops Optimizer Algorithm (AGTO), Artificial Bee
Colony Algorithm (ABC), and Sequential Quadratic Programming (SQP) to examine the consequence
of the presented technique. The AGTO has been used for the first time in the risk assessment and
alleviation problem, which is the distinctiveness of this work.

Keywords: deregulated market; nodal pricing; system risk; imbalance cost; AGTO; ABC

1. Introduction

According to the norm, electricity was a monopoly owned by regional powers that
had both production and distribution [1]. Countries allow the status quo to exist in the
equivalent exchange for being provided a cut in the cost of service. This system was adopted
even though it had a huge flaw, which was the potential to influence state policymakers. To
break down this monopoly environment, deregulation was introduced over a centralized
action taken over many years. Deregulation refers to the breakdown of monopolies at the
state level, and these monopolies are sold or transferred to third parties [2]. The regulation
resulted in the monopoly of the production and distribution of electricity by electric utility
companies, which, in extension, led to a monopoly over the wholesale market. Additionally,
by introducing deregulation, the monopoly was reduced.

The introduction of deregulation was an unintended move on the part of the govern-
ment. It started in the 1970s in the form of an unintentional act called the Public Utility
Regulatory Policy Act (PURPA). PURPA started as an act to encourage alternative sources
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of energy [3]. After these initiatives, most countries are moving toward the implementation
of deregulation in their electrical networks to provide more economical facilities to their
citizens [4,5].

With the continuous deprivation in the quantity of coal and fossil fuels throughout
the world, power-generating stations are thinking about unconventional sources [6]. The
uncertain nature of renewable energy creates issues such as energy management [7] and
protection [8] in renewable combined power systems. The renewable addition of the
present thermal power plant in the day-ahead market is very complicated, but the consumer
experiences the benefit [9]. Some work has been accomplished by researchers in this field
in recent years.

Paper [10] portrays the significance of renewable additions in the electricity market
by the lower structure disruptions. Xing et al. [11] demonstrated that variable renewable
electricity (VRE) performs a vital role in global decarbonization. The incorporation expenses
of solar and wind on the demand and source sides by the economic dispatch model are
discussed by the author. Life cycle assessment based on the performance degradation
of solar panels has been discussed in [12]. The authors discussed how installed capacity
decreases after deployment in the field and how this affects overall finances. Shujin
et al. [13] discussed the decrement of renewable resources due to the overconsumption of
renewable electricity in day-to-day life. In [14], the author states that the available transfer
capability (ATC) performs a significant part in the deregulated market, and knowing it
in advance can help to use the transmission network more efficiently. The authors of [15]
displayed an arrangement of conventional and non-conventional systems with energy
storage equipment to learn the impression of renewable uncertainties. The work in [16]
showed how virtual power plants can be utilized to collectively manage renewable energy-
based resources for efficient use. Reddy et al. [17] presented a methodology of renewable
combined systems to exploit system safety and economic profit. In [18,19], the advantages
of CAES in the system economy have been presented for the electricity market. In [20], the
work aimed to decouple the focused solar energy output by CAESs and to model the MCP
with the proposed offering strategies.

Chang et al. [21] discussed the influence of wind turbine generators (WTG) on system
operation using Evolutionary Particle Swarm optimization (EPSO). A risk-mitigation bid-
ding plan considering CVaR has been elucidated in [22]. Matevosyan et al. [23] projected
a bidding strategy to lessen the imbalance of pricing in the wind-integrated short-term
deregulated power market. In [24], a technique is proposed by the author for evaluating the
effect of the unpredictable nature of wind flow in a wind combined competitive electrical
system.

The authors of [25] introduced a novel optimization system to regulate the optimum
generator schedule and involve load response to reduce the risk of transmission overload-
ing burden in the forecasting power market. Rubin et al. [26] illustrated an equilibrium
modeling technique to examine the impression of integrating wind power in a deregulated
market. Das et al. [27] proposed risk mitigation methods in a wind-incorporated competi-
tive power system using flexible AC Transmission Systems (FACTS) devices. The authors
of [28] showed the importance of wind power incorporation in the system economy in
deregulated markets. Khamees et al. [29] presented a key method of optimum power flow
in a wind-incorporated electrical system to optimize the system fuel cost. Paper [30] depicts
a scheduling technique for the best capacity sharing of a solar PV, wind farm, and pumped
hydro storage system. The works in [31,32] presented a method for risk curtailment using
FACTS devices and pumped hydro storage plants simultaneously in a wind-incorporated
system.

From the detailed studies, it can be seen that several risks and financial mitigation
work have been completed earlier, but there are still some scopes that have been done in
this paper.

In the electricity market, wind farms need to submit the power generation scenario
for the next day to ISO, a minimum day ahead of operation. Based on the acquiesced bid
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for the wind power plant, ISO arranged the power generation scheduling for all present
generating stations. Due to the vagueness of the wind, there is a chance of not satisfying
the arrangement of power from the wind plant. The ISO imposes an imbalance cost on the
wind farm when a violation occurs in the electricity market. When real wind power (RWP)
is more than expected wind power (EWP), then ISO grants rewards to the wind plant for
the extra power sourced to the grid. ISO enforces a penalty on the wind plant if the EWP is
more than the RWP. The negative imbalance cost (i.e., penalty) minimizes the system profit.
Therefore, it is necessary to reduce the damaging effect of imbalance costs by reducing the
mismatching amount between real and expected power generation from the wind farm to
maintain system profit. Solar PV and battery energy storage can play an important role in
this situation by providing additional power. The key highlights of this work are:

• Twenty scenarios with different system abnormalities (i.e., bus failure, transmission
line failure, generator failure, sudden load increment, etc.) have been created to verify
the success of the presented work. The VaR and CVaR have been calculated for all
scenarios based on two system parameters: nodal pricing (NP) and transmission line
flow (LF).

• The wind farm placement has been performed to reduce the system risk and exploit
the system economics.

• Solar PV and battery storage are used to maximize the system profit while minimizing
the harmful consequences of imbalance costs in the system. A comparative study
has been performed using AGTO, ABC, and SQP to check the success of renewable
integration in the electricity market in terms of operating cost and system risk.

• The AGTO has been used for the first time in the risk assessment and alleviation
problem, which is the distinctiveness of this work.

2. Mathematical Formulations

This unit contains detailed studies on the mathematical formulation of wind power
and risk assessment tools.

2.1. Wind Power Quantity and Investment Cost

The wind flows are very uncertain. This is changing every moment. The quality of
wind power generation depends on the air density (ρ), efficiency of wind turbine (η), swept
area of the wind turbine (A), and wind speed (WS). The generated wind power (GWP) is
formulated as follows [33]:

GWP =
1
2
ρ·A·η·(WS)3 (1)

All the parameters are fixed for a particular place; only wind speed varies at every
moment. In this case, the considered wind farm parameters are as follows: ρ = 1.225 kg/m3,
η = 0.49, wind turbine rotor radius (r) = 40 m. Real-time wind speed data are not obtainable
at the height of the wind turbine. In India, real-time wind speed data are available at a
height of 10 m from the ground level. Under maximum conditions, the wind turbine height
is 120 m. Therefore, the calculation is required to determine the wind speed at the desired
height [33]:

WVh

WV10
=

(
h
10

)N
(2)

Here, WVh and WV10 are the wind speed at heights ‘h’ and 10 m. N is the Hellman
co-efficient (1/7).

2.2. Risk Assessment Parameters (VaR and CVaR)

VaR and CVaR have been chosen as the risk assessment parameters in this work.
Other risk assessment tools can also be used, but based on the efficiencies and feasibilities
in the field of power systems, these tools have been considered here. CVaR has greater
numerical properties than other risk valuation tools. CVaR is also known as a coherent
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risk measurement tool. The CVaR of a set is a continuous function, whereas the other
tools may be discontinuous. The CVaR deviation is a robust contestant to the standard
deviation. Under maximum conditions, the standard deviation can be substituted by
a CVaR deviation to obtain better results. In risk management, CVaR functions can be
performed more efficiently than the other risk assessment tools. CVaR can be optimized
with linear programming methods, whereas VaR and other risk-assessing tools are relatively
difficult to enhance. CVaR delivers a suitable picture of risks replicated in extreme tails.
This is a very significant property if extreme tail losses are properly projected. For these
reasons, CVaR is chosen as the risk assessment tool in this work.

Both the considered assessment tools work based on probabilistic studies and the
confidence level of assurance (
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percentile but CVaR illustrates the average loss mechanisms. m(x,y) is the loss mechanism
related to the decision vector P, which is taken from a definite subset x of

.
Q and the random

vector y in
.

Q. The probability of loss components m(x,y) is indicated by n(y), which must
be ranged with a threshold limit (ξ) [34]:

β(x, ξ) =
∫

m(x,y)≤ξ
n(y)dξ (3)

The assurance level-based VaR and CVaR are as follows [34]:

ξp(x) = min
{

ξε
.

Q : β(x, ξ)
}

(4)

θp(x) =
1

1−
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3. Optimization Techniques

Some nature-inspired optimization techniques are popular in today’s world due to
their efficacy in solving stability issues for renewable incorporated systems [35]. These in-
clude frequency stability [36,37], cost minimization [38], and energy and storage otmimiza-
tion [39–41]. This unit shows the particulars of the considered optimization techniques, i.e.,
AGTO, ABC, and SQP. Here, SQP is the linear optimization technique, whereas ABC and
AGTO are advanced optimization tools. Other optimization techniques can also be used,
but these algorithms are chosen randomly for comparative studies. The AGTO algorithm
has been proposed in 2021. Therefore, its application has been displayed here to check the
efficiencies of the proposed approach along with the relatively old optimization technique
ABC and the linear optimization technique SQP.

The following features of metaheuristic algorithms have created interest among the
researchers over the analytic methods: (i) the accuracy is advanced than that of the analytical
approaches, (ii) the iteration number is less for metaheuristic methods, (iii) the processes
can be simply adapted for the two diode models of solar PV systems with metaheuristic
algorithms, and (iv) the recital of the parameters abstraction can be enhanced using meta
heuristic algorithms.

The concept of AGTO has been taken from [42], whereas [43] provides a detailed
concept of ABC optimization algorithms. Here, MATPOWER software has used to solve
the OPF problem using SQP. The SQP is also the same as a simplification of the Newton
Raphson Technique, in which non-linear controlled optimization difficulties are answered
in steps wise to determine the OPF.

4. Problem Formulation

The aim of this work is to exploit the system profit and diminish the system risk by best
location of wind farms, solar PV, and battery storage. Solar PV and batteries are considered
backup power sources that are used to lessen the negative influence of imbalance costs
in the electricity market environment. The second objective is to impact the valuation of
imbalance costs on system profit in a wind-incorporated deregulated power network and
to exploit the system profit using the best action of a solar PV-battery storage system.

Objective Function 1:

Maximize, P(t) = R(t)− GC(t) (6)

Here, P(t), R(t) and GC(t) are system profit, revenue earned and generation cost at time
‘t’ 1 in $/h.

R(t) = ∑NG
m=1 PGr(m, t) · λloc(m, t) (7)

GC(t) = GCTh(t) + GCW(t) (8)

GCTh(t) = ∑Ng
m=1

(
am + bm·PGr(m, t) + cm·PG2

r (m, t)
)

(9)

Here, ‘PGr(m,t)’ is the power generated capacity with RWS at time ‘t’ for bus-m,
‘λloc(m, t)’ is the retailing price of generator-m. The system generation cost has two parts:
thermal generation cost (GCTh(t)) and wind generation cost (GCW(t)). NG is the generator
number that is linked to the system. ‘am’, ‘bm’ and ‘cm’ are the cost co-efficient of generation
units.

The scientific expression of the risk-associated objective function is as follows [34]:

Max. ξp(x) = min
{

ξε
.

Q : β(x, ξ)
}

(10)

Max. θp(x) =
1

1−
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c=ca

nc pc

]
(11)

Here, the VaR and CVaR have not been included in the optimization techniques
directly. After applying the optimization techniques for profit maximization, the system
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data has been collected. Then, VaR and CVaR are calculated using that data. From Figure 1,
it is observed that the system risk will be diminished when VaR and CVaR rise. Therefore,
this objective function is taken as a maximization problem.

Objective Function 2:
In this objective function, the concept of imbalance has been introduced along with

the first objective function. Now, the scientific expression of this objective is as:

Maximize, P(t) = R(t) + IC(t)− GC(t) (12)

Here, IC(t) is the system imbalance cost at time ‘t’. This is generated due to a mismatch
in bidding quantities and actual generated quantities of wind power. ISO imposes a penalty
on wind farms for their deficit power supply conditions. Furthermore, ISO provides a
reward if surplus power has been supplied to the grid by the wind farm. Imposing a
penalty on the wind farm creates ‘−ve’ imbalance cost, and rewards provided to the wind
firm create ‘+ve’ imbalance cost. The solar PV and battery energy storing systems can play
a dynamic role in this situation. By providing extra power to the wind farm at the required
time, a solar PV-battery hybrid system can alleviate the negative effect of imbalance costs
and can exploit the system profit. The mathematical expression of the system imbalance
cost is as follows:

IC(t) = ∑NG
m=1

(
RS(t) + RD(t)·

(
PGe(m, t)
PGr(m, t)

)2
)
·(PGr(m, t)− PGe(m, t)) (13)

RD(t) = (1 + β)·λloc(m, t), RS(t) = 0 i f PGe(m, t) > PGr(m, t) (14)

RS(t) = (1− β)·λloc(m, t), RD(t) = 0 i f PGe(m, t) < PGr(m, t) (15)

RS(t) = RD(t) = 0 otherwise (16)

Here, ‘RS(t)’ and ‘RD(t)’ are surplus charge rate and deficit charge rate, ‘PGe(m,t)’,
‘PGr(m,t)’ are generated power quantities with expected and real wind speed respectively.
‘β’ is the system imbalance cost co-efficient. In this work, ‘β’ is presumed to be 0.8, as this
value varies from 0 to 1 [33].

• Constraints:

Equality and inequality constraints have been taken to solve the OPF problem.

∑NG
m=1 PGr + GWP− Ploss − PL = 0 (17)

Ploss = ∑NTL
n=1 Gn

[∣∣Vp
∣∣2 + ∣∣Vq

∣∣2 − 2
∣∣Vp
∣∣|q|cos

(
δp − δq

)]
(18)

Pm −∑NB
k=1|VmVkYmk|cos(θmk − δm + δk) = 0 (19)

Qm + ∑NB
k=1|VmVkYmk|sin(θmk − δm + δk) = 0 (20)

Vmin
m ≤ Vm ≤ Vmax

m m = 1, 2, 3 . . . NB (21)

∅min
m ≤ ∅m ≤ ∅max

m m = 1, 2, 3 . . . NB (22)

TLl ≤ TLmax
l l = 1, 2, 3 . . . NTL (23)

Pmin
Gm ≤ PGm ≤ Pmax

Gm m = 1, 2, 3 . . . NB (24)

Qmin
Gm ≤ QGm ≤ Qmax

Gm m = 1, 2, 3 . . . NB (25)

‘Ploss’ and ‘PL’ are transmission line loss and system loads. NTL is the number of
transmission lines. Ymk and θmk are the magnitude and angle of the m x n-th element of bus
admittance matrix. The voltage magnitude are |Vp|, |Vq|, and Vk for bus p, q, and k. Pm
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and Qm are active and reactive power at bus-m. Gn is transmission line conductance. The
voltage angles are δm and δk for bus ‘m’ and ‘k,’ respectively. φm

min and φm
max are the least

and most extreme angle limits at bus ‘m’. Vm
min and Vm

max are lesser and greater voltage
bounds. TLl and TLl

max are actual and extreme line flows. PGm
min, PGm

max, QGm
min, and

QGm
max are lesser and higher real and reactive power limits. NB is the bus number.
The step-by-step process of the presented work is as follows:

Step 1: Read all system information for the considered test system.
Step 2: Generate 20 different scenarios for creating system congestion by bus outage, line

outage, generator outage, and load increment.
Step 3: Calculate the system generation cost, revenue, profit, and system risk (based on

NP and LF) without wind placement in the system.
Step 4: Choose the 2 most severe scenarios with the base case from the 20 scenarios based

on the values of risk assessment tools.
Step 5: Collect hourly real and expected wind speed data from Kolhapur and Mumbai.
Step 6: Calculate wind power generation and wind power costs.
Step 7: Calculate the system generation cost, revenue, profit, and system risk (based on

NP and LF) with wind placement in the system.
Step 8: Calculate the imbalance cost considering wind speed data and compare the system

profit with and without the imbalance cost.
Step 9: Place solar PV and battery energy storage systems and check system risk and

system profit.
Step 10: Compare system risk and system economy with different optimization techniques.

5. Implementation of the Proposed Approach

A modified IEEE 14-bus and modified IEEE 30-bus system is deliberated to explore
the effect in this work. The base MVA is 100 for the system, and bus no. 1 is the reference
bus for the IEEE 14-bus system [28,34]. SQP, AGTO, and ABC algorithms have been used
to solve the optimal power flow problem. Different scenarios have been taken to examine
system performance.

Case 1: Scenario Generation and Finding the Worst Case Based on System Risk (Modified
IEEE 14-bus System)

Twenty different scenarios have been generated considering the different types of
system instabilities, such as bus failure, generator failure, transmission line failure, and
sudden increment of system load. System risk and system generation costs have been
calculated on behalf of every chosen case using SQP. Table 1 shows the system economic
parameters and system risk for the considered scenarios, along with the base case. The risk
assessment tools (i.e., VaR and CVaR) are operated based on system nodal prices (NP) and
power flow in the transmission lines (LF).

Table 1 shows that scenarios 9 and 10 are the most severe risky scenario due to
their negative highest values of VaR and CVaR, which indicate the minimum profit and
maximum losses of the system. The system generation cost depends on several system
parameters, including transmission line congestion. When the system is riskier, then the
generation cost is also high due to the high congestion cost.

Figure 2 depicts the relation between system generation cost with risk assessment tools
for all considered cases. For further study of this work, the most 2 risky scenarios along
with the base conditions have been considered. If solar PV and battery storage provide
better results for the worst cases, then this method will also provide better results for other
cases. Therefore, only three cases have been considered for further studies.
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Table 1. Economic parameters and system risk of the system.

Scenario
No. Details System Generation

Cost ($/h)
Revenue

($/h)
Profit
($/h)

VaR on
NP

CVaR on
NP

VaR on
LF

CVaR on
LF

1 Base Case 899.09 1226.19648 327.1065 −0.3897 −0.5996 −0.7529 −0.7926

2 Line outage (2–3) 952.57 1368.904 416.334 −0.4719 −0.726 −0.9598 −1.0664

3 Line outage (4–5) 967.36 1405.72038 438.3604 −0.5295 −0.8146 −0.752 −0.8356

4 Generator outage (2) 1094.92 1784.70386 689.7839 −0.604 −0.829 −0.8012 −0.8433

5 Bus_4 (15%) 935.66 1286.4382 350.7782 −0.4009 −0.6168 −0.7536 −0.7932

6 Bus_6 (15%) 906.36 1235.63664 329.2766 −0.3896 −0.5993 −0.7527 −0.7923

7 Line outage (13–14) 1024.48 1583.71197 559.232 −0.8787 −1.3519 −0.9069 −1.0076

8 Bus_11 (15%) 1094.94 1783.79553 688.8555 −0.9822 −1.5111 −0.7702 −0.8108

9 Bus_14 (15%) 1115.49 1821.69013 706.2001 −10.978 −16.889 −0.9718 −1.0229

10 Bus_10 (15%) 1113.42 1817.68268 704.2627 −10.153 −15.623 −0.9901 −1.0422

11 Bus_9 (11%) 1156.23 1919.31698 763.087 −6.4408 −9.9089 −0.8375 −0.8816

12 Bus_2 (11%) 909.85 1242.168 332.318 −0.3817 −0.5872 −0.7532 −0.7929

13 Line outage (1–5) 918.75 1266.423 347.673 −0.4597 −0.7073 −0.7533 −0.837

14 Line outage (10–11) 986.68 1486.184 499.504 −0.8845 −1.3608 −0.9218 −1.0243

15 Line outage (6–12) 902.7 1237.829 335.129 −0.3932 −0.6049 −0.7476 −0.8307

16 Bus_12 (14%) 900.32 1227.485 327.165 −0.3917 −0.6026 −0.7837 −0.8249

17 Bus_3 (14%) 995.92 1405.286 409.366 −0.5162 −0.7941 −0.7536 −0.7933

18 Line outage (12–13) 897.04 1224.889 327.849 −0.3923 −0.6036 −0.7469 −0.8299

19 Line outage (9–14) 895.84 1218.687 322.847 −0.3919 −0.6029 −0.7595 −0.8439

20 Line outage (12–13) 936.58 1332.214 395.634 −0.5027 −0.7734 −0.9511 −1.0567
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Step 2: System Economy (without imbalance cost) and Risk with Wind Farm Integration
(Modified IEEE 14-bus system)

Wind speed varies in every period throughout the world. Considering the flexible
nature of wind flow, two places have been considered in India (i.e., Kolhapur and Mumbai)
for real-time problem solving. The wind speed data has been taken for 4 different times
(6 AM, 12 noon, 6 PM and 12 midnight) for both considered places. Both real and expected
wind speed data have been considered for all cases.

Table 2 depicts the real-time wind speed data taken for both considered places with
four different periods. The running cost or generation cost of wind power is zero; only
the investment cost is present for the wind farm. The average lifetime of the wind farm is
20 years. The approximate wind power investment cost is 3.75 $/MWh, which was taken
from [33]. Table 3 depicts the generated wind power quantity and the wind power cost for
the considered wind speeds. In this work, it is assumed that the height of the wind turbine
is 120 m. Therefore, at first, the wind speed at the considered height is calculated using
Equation (2). Then, the generated wind power quantity is measured by Equation (1). Here,
50 wind turbines have been chosen for their series-connected operations.

Table 2. Real-time Wind Speed Data [44].

Sl. No. Details
Kolhapur Mumbai

RWS (km/h) EWS (km/h) RWS (km/h) EWS (km/h)

1 Base Case_(00.00 h) 8 9 7 8

2 Base Case_(06.00 h) 9 11 8 9

3 Base Case_(12.00 h) 13 13 11 13

4 Base Case_(18.00 h) 8 7 9 9

5 Bus_14 (15%)_(00.00 h) 8 9 7 7

6 Bus_14 (15%)_(06.00 h) 9 11 8 9

7 Bus_14 (15%)_(12.00 h) 13 7 11 8

8 Bus_14 (15%)_(18.00 h) 8 8 9 13

9 Bus_10 (15%)_(00.00 h) 8 9 7 11

10 Bus_10 (15%)_(06.00 h) 9 9 8 7

11 Bus_10 (15%)_(12.00 h) 13 11 11 13

12 Bus_10 (15%)_(18.00 h) 8 11 9 9

Table 3. Wind Power Quantity and Wind Power Generation Cost.

WS at 10 m
Height (km/h)

WS at 10 m Height
(m/s)

WS at 120 m
Height (m/s)

GWP for 1 Turbine
(MW)

GWP for 50
Turbines (MW)

Wind Power Cost
for 50 Turbines ($/h)

7 1.939 2.7661774 0.031914783 1.595739129 5.984021733

8 2.216 3.1613456 0.047639559 2.381977942 8.932417281

9 2.493 3.5565138 0.067830544 3.391527186 12.71822695

10 2.77 3.951682 0.093046013 4.652300667 17.4461275

11 3.047 4.3468502 0.123844244 6.192212188 23.2207957

12 3.324 4.7420184 0.160783511 8.039175553 30.14690832

13 3.601 5.1371866 0.204422091 10.22110457 38.32914212

Wind power has also been considered in this work as the secondary source of gener-
ation beside the thermal power, which is working as the primary energy source. Table 4
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displays the system risk, along with the risk assessment parameters, after the placement
of the wind farm at bus no. 4 for Kolhapur. Figure 3 shows risk assessment parameter
values, which have been calculated based on system NP and transmission line power flow
(LF) for base cases of Kolhapur. The system generation costs with wind farms for different
considered cases in Kolhapur is shown in Figure 4. From these results, it can be concluded
that the highest values of wind farm placement reduce system risk and system generation
costs in higher quantities. This happens due to the additional power supply to the grid by
the wind farm.

Similar to the previous case (i.e., Kolhapur), in this case (i.e., Mumbai), the impact
of wind placement on the system risk has been obtained. The optimal location of a wind
farm delivers extra protection to the electrical system by providing the additional power
generated. The negative maximum values of VaR and CVaR deliver the minimum profit
and maximum risk for the power system shown in Figure 1. It is necessary to shift the
values of VaR and CVaR toward the right-hand side to deliver maximum profit. Figures 5–7
show the VaR and CVaR values after placement of the wind farm in modified IEEE 14-bus
systems for Mumbai. Four different amounts of wind power are merged into the system
to show the variable nature of wind power. From the results, it is understood that after
the placement of maximum quantities of wind farms in the system, the system risk is
minimized. The same scenario is also observed for system generation costs. The maximum
quantities of wind power provide a minimum generation cost-based system. These results
directly support the incorporation of wind farms with high capacity in a deregulated power
system to mitigate system risks and maximize system profit.
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Figure 4. System Generation Costs ($/h) with Wind Power Integration (Kolhapur). Base case (a),
Bus-14 15% (b), Bus_10 15% (c).

Table 4. System Risk and Profit with Wind Power Integration (Kolhapur).

Sl. No. Details
Wind Power

(km/h)
Revenue

($/h)
Generation
Cost ($/h)

Profit
($/h)

NP LF

VaR CVaR VaR CVaR

1 Base Case_(0.0 h) 8 1212.317 892.902 319.415 −0.387 −0.5954 −0.752 −0.7915

2 Base Case_(6.0 h) 9 1208.188 891.468 316.72 −0.385 −0.5923 −0.7515 −0.7911

3 Base Case_(12.0 h) 13 1179.431 883.47 295.961 −0.3717 −0.5719 −0.9246 −0.9732

4 Base Case_(18.0 h) 8 1212.317 892.902 319.415 −0.387 −0.5954 −0.752 −0.7915

5 Bus_14 (15%)_(0.0 h) 8 1230.963 904.232 326.731 −0.3898 −0.5996 −0.7553 −0.7951

6 Bus_14 (15%)_(6.0 h) 9 1226.665 902.71 323.955 −0.3878 −0.5966 −0.755 −0.7947

7 Bus_14 (15%)_(12.0 h) 13 1196.225 894.14 302.085 −0.3746 −0.5763 −0.8833 −0.9298

8 Bus_14 (15%)_(18.0 h) 8 1230.963 904.232 326.731 −0.3898 −0.5996 −0.7553 −0.7951

9 Bus_10 (15%)_(0.0 h) 8 1226.94 900.482 326.458 −0.3903 −0.6005 −0.7521 −0.7917

10 Bus_10 (15%)_(6.0 h) 9 1222.536 898.931 323.605 −0.3883 −0.5974 −0.7517 −0.7913

11 Bus_10 (15%)_(12.0 h) 13 1191.6 890.13 301.47 −0.375 −0.577 −0.8823 −0.9287

12 Bus_10 (15%)_(18.0 h) 8 1226.94 900.482 326.458 −0.3903 −0.6005 −0.7521 −0.7917
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Figure 5. System Risk with Wind Power Integration (Mumbai @Base Case). VaR based on NP (a),
CvaR basd on NP (b), VaR based on LF (c), CvaR based on LF (d).
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Figure 6. System Risk with Wind Power Integration (Mumbai @ Bus_14 (15%)). VaR based on NP (a),
CvaR basd on NP (b), VaR based on LF (c), CvaR based on LF (d).
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Figure 7. System Risk with Wind Power Integration (Mumbai @ Bus_10 (15%)). VaR based on NP (a),
CvaR basd on NP (b), VaR based on LF (c), CvaR based on LF (d).

The comparative studies of system generation cost with and without placement of
wind farms for the IEEE 14-bus system considering the cases of Mumbai are shown in
Figure 8. It can be seen that the generation cost is reduced by a huge amount after the
placement of the highest values of wind power in the system. Therefore, it can be concluded
that the placement of WF provides risk minimization and generation cost minimization for
any power system.

Case 3: With Wind Placement and Considering Imbalance Cost (Modified IEEE 14-bus System)

In the deregulated system, wind farms need to submit the future power generation
scenario to the ISO before the date of operation. Based on their submitted data of power,
ISO scheduled power generation from different generating stations. In reality, the wind
farm cannot generate the scheduled power in maximum cases due to the uncertain nature
of the wind flow. The violation of market contracts can impose an economic burden (i.e.,
imbalance cost) on the generating companies. The imbalance cost directly affects the system
economy. When RWP is more than the EWP, then ISO gives rewards to the wind farm for
their surplus power supply; however, ISO imposes a penalty if EWP is more than RWP.
Thus, the adverse effect of imbalance costs directly disturbs the economic advancement of
the market players. Here, the imbalance cost is calculated for every considered variation
in expected and real wind speeds. The imbalance cost of the system reflects the mismatch
between the predicted and real wind speed data. The imbalance cost is maximum when
the difference between expected and real wind speed is maximum. When the expected
wind speed is large compared to the real wind speed, the deficit charge rate arises, and
when the real wind speed is larger than the expected wind speed, the surplus charge
rate occurs. The deficit and surplus charge rates are zero for that case when the expected
and real wind speeds are the same. Using the deficit and surplus charge rates, the total
imbalance cost of the electrical system can be calculated. The imbalance cost is ‘−ve’ when
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ISO imposes the penalty on the generating station for their deficit supply of power from
renewable sources. However, the imbalance cost is ‘+ve’ when ISO provides the reward to
the generating station for their surplus supply of power from renewable energy sources.
Here, the imbalance cost is calculated for every variation in the expected and real wind
speeds using the formula stated in Equations (13)–(16). Both expected and real wind speed
data have been taken for Kolhapur and Mumbai, Maharashtra to check the effectiveness
of the proposed method. Tables 5 and 6 depict the profit comparison considering the
imbalance costs for Kolhapur and Mumbai, respectively.

The impact of imbalance cost on system profit has shown in Figures 9 and 10 for
Kolhapur and Mumbai respectively. In the last considered case, the real wind speed is
8 km/h whereas the expected wind speed was 11 km/h. This is the maximum amount of
mismatch in wind speed. Therefore, at this hour, the impact of imbalance cost is also high.
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Table 5. Profit Comparison with Imbalance Cost (Kolhapur).

Sl.
No. Details Generation

Cost ($/h)
Revenue

($/h)

Profit without
Imbalance Cost

($/h)

Real Wind
Power
(km/h)

Expected
Wind Power

(km/h)

Imbalance
Cost ($/h)

Profit with
Imbalance
Cost ($/h)

1 Base Case_(00.00 h) 892.902 1212.317 319.415 8 9 −9.601 309.814

2 Base Case_(06.00 h) 891.468 1208.188 316.72 9 11 −27.07 289.65

3 Base Case_(12.00 h) 883.47 1179.431 295.961 13 13 0 295.961

4 Base Case_(18.00 h) 892.902 1212.317 319.415 8 7 1.602 321.017

5 Bus_14(15%)_(00.00 h) 904.232 1230.963 326.731 8 9 −9.6017 317.1293

6 Bus_14(15%)_(06.00 h) 902.71 1226.665 323.955 9 11 −27.0724 296.8826

7 Bus_14(15%)_(12.00 h) 894.14 1196.225 302.085 13 7 3.0779 305.1629

8 Bus_14(15%)_(18.00 h) 904.232 1230.963 326.731 8 8 0 326.731

9 Bus_10(15%)_(00.00 h) 900.482 1226.94 326.458 8 9 −16.3831 310.0749

10 Bus_10(15%)_(06.00 h) 898.931 1222.536 323.605 9 9 0 323.605

11 Bus_10(15%)_(12.00 h) 890.13 1191.6 301.47 13 11 1.8957 303.3657

12 Bus_10(15%)_(18.00 h) 900.482 1226.94 326.458 8 11 −65.58 260.878

Table 6. Profit Comparison with Considering Imbalance Cost (Mumbai).

Sl.
No. Details Generation

Cost ($/h)
Revenue

($/h)

Profit without
Imbalance Cost

($/h)

Real Wind
Power
(km/h)

Expected
Wind Power

(km/h)

Imbalance
Cost ($/h)

Profit with
Imbalance
Cost ($/h)

1 Base Case_(00.00 h) 894.28 1216.005 314.295 7 8 −10.43 311.295

2 Base Case_(06.00 h) 892.902 1212.317 319.415 8 9 −12.89 306.525

3 Base Case_(12.00 h) 887.8 1196.124 308.324 11 13 −51.03 257.294

4 Base Case_(18.00 h) 891.468 1208.188 316.72 9 9 0 316.72

5 Bus_14(15%)_(00.00 h) 905.42 1234.303 328.883 7 7 0 328.883

6 Bus_14(15%)_(06.00 h) 904.232 1230.963 326.731 8 9 −13.33 313.401

7 Bus_14(15%)_(12.00 h) 898.83 1215.162 316.332 11 8 9.0246 325.3566

8 Bus_14(15%)_(18.00 h) 902.718 1226.655 323.937 9 13 −94.0949 229.8421

9 Bus_10(15%)_(00.00 h) 901.71 1230.382 328.672 7 11 −61.5737 267.0983

10 Bus_10(15%)_(06.00 h) 900.48 1226.94 326.46 8 7 2.6938 329.1538

11 Bus_10(15%)_(12.00 h) 894.98 1210.795 315.815 11 13 −57.936 257.879

12 Bus_10(15%)_(18.00 h) 898.93 1222.536 323.606 9 9 0 323.606

Case 4: Solar PV-Battery Operation with SQP, ABC, and AGTO (Modified IEEE 14-bus System)

After a detailed study of the first 3 cases, it is found that the system imbalance cost is
very dangerous for the economic operation of generating stations. If the imbalance cost is
positive, the profit of the generation unit increases, but the system profit is lower for the
negative imbalance cost. In this scenario, solar PV and battery hybrid systems play a vital
role in mitigating the mismatch between real and expected wind power and minimizing
dependency on the thermal power plant. Environmental benefits can also be obtained by
using a solar PV-battery system. To check the effectiveness of the presented method, three
different optimization techniques have been used.

The solar PV-battery storage system has been placed on bus no. 9 with a supply
capacity of 2 MW. Here, the modeling of solar PV-battery storage systems has not been
considered. Only a fixed value of generated power from a solar PV-battery storage system
has been chosen. The placement bus has been considered at 9 due to the large load
connected to that particular bus. Tables 7 and 8 show the comparative studies of system
profit and system risk with different optimization techniques. For risk assessment studies,
some selected cases have been considered for Kolhapur. From both tables, it is observed
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that AGTO techniques provide the best results among all considered cases by providing
accurate optimal settings to minimize the system risk and maximize the system profit.
Therefore, it can be concluded that the solar PV-battery storage system can reduce the
negative impact of imbalance costs in the system economy and minimize system risk.
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Figure 9. Profit Comparison with Imbalance Cost (Kolhapur).

Case 5: Solar PV-Battery Operation with SQP, ABC, and AGTO for Kolhapur (Modified
IEEE 30-bus system)

Similar to the modified IEEE 14-bus system, the impact assessment of solar PV and
battery storage systems has also been investigated for the modified IEEE 30-bus system.
The system data has been taken from [33]. Only the base case of Kolhapur with four
time intervals (i.e., 0.0 h, 6.0 h, 12.0 h, and 18.0 h) has been studied for the modified IEEE
30-bus system. The same wind speeds have been considered here as the 14-bus system.
A combined amount of 2 MW of power from a solar PV-battery storage system has been
chosen.

Tables 9 and 10 show comparative studies of system profit and system risk with differ-
ent optimization techniques. For risk assessment studies, base cases have been considered
for Kolhapur. From both tables, it is observed that AGTO techniques offer the finest results
among all considered cases by providing accurate optimal settings. Therefore, it can be
concluded that the solar PV-battery storage system can also reduce the negative impact of
imbalance costs in the modified IEEE 30-bus system in terms of profit maximization. The
system risk has also been minimized after the placement of solar PV and battery storage
systems.
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Table 7. System profit with different optimization techniques.

Sl. No. Details

Kolhapur Mumbai

Profit with
Imbalance Cost
($/h) Using SQP

without Solar
PV-Battery

Profit with
Imbalance Cost
($/h) Using SQP

with Solar
PV-Battery

Profit with
Imbalance Cost
($/h) Using ABC

with Solar
PV-Battery

Profit with
Imbalance Cost

($/h) Using
AGTO with Solar

PV-Battery

Profit with
Imbalance Cost
($/h) Using SQP

without Solar
PV-Battery

Profit with
Imbalance Cost
($/h) Using SQP

with Solar
PV-Battery

Profit with
Imbalance Cost
($/h) Using ABC

with Solar
PV-Battery

Profit with
Imbalance Cost

($/h) Using
AGTO with Solar

PV-Battery

1 Base Case_(00.00 h) 309.814 313.265 318.256 319.165 311.295 315.354 320.651 321.425

2 Base Case_(06.00 h) 289.65 293.698 299.032 300.168 306.525 310.265 315.321 316.521

3 Base Case_(12.00 h) 295.961 299.021 304.658 305.785 257.294 261.954 266.357 267.462

4 Base Case_(18.00 h) 321.017 325.964 330.254 331.457 316.72 320.547 325.835 327.125

5 Bus_14(15%)_(00.00 h) 317.1293 321.238 326.265 327.158 328.883 332.154 337.254 338.652

6 Bus_14(15%)_(06.00 h) 296.8826 300.982 305.954 307.054 313.401 317.561 322.647 323.851

7 Bus_14(15%)_(12.00 h) 305.1629 309.347 314.325 315.647 325.3566 329.617 334.247 335.324

8 Bus_14(15%)_(18.00 h) 326.731 330.657 335.931 337.265 229.8421 233.991 238.487 239.623

9 Bus_10(15%)_(00.00 h) 310.0749 314.0535 320.654 321.781 267.0983 271.364 276.954 278.126

10 Bus_10(15%)_(06.00 h) 323.605 327.835 333.254 334.438 329.1538 333.614 338.725 339.957

11 Bus_10(15%)_(12.00 h) 303.3657 307.215 312.657 313.981 257.879 261.983 266.587 267.754

12 Bus_10(15%)_(18.00 h) 260.878 264.325 270.258 271.435 323.606 327.751 332.652 333.723

Table 8. System risk with different optimization techniques (for Kolhapur).

Sl.
No. Details

NP

VaR CVaR

With Wind
Farm Using

SQP

With Wind
Farm-Solar

PV-Battery Storage
Using SQP

With Wind
Farm-Solar

PV-Battery Storage
Using ABC

With Wind
Farm-Solar

PV-Battery Storage
Using AGTO

With Wind Farm
Using SQP

With Wind
Farm-Solar

PV-Battery Storage
Using SQP

With Wind
Farm-Solar

PV-Battery Storage
Using ABC

With Wind
Farm-Solar

PV-Battery Storage
Using AGTO

1 Base Case_(12.0 h) −0.3717 −0.3615 −0.3525 −0.3419 −0.5719 −0.5526 −0.5416 −0.5316

2 Bus_14 (15%)_(12.0 h) −0.3746 −0.3634 −0.3548 −0.3439 −0.5763 −0.5586 −0.5474 −0.5357

3 Bus_10 (15%)_(12.0 h) −0.375 −0.3647 −0.3559 −0.3442 −0.577 −0.5591 −0.5465 −0.5368
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Table 9. System profit with different optimization techniques (for Kolhapur).

Sl. No. Details

Kolhapur

Profit with Imbalance Cost
($/h) Using SQP without Solar

PV-Battery

Profit with Imbalance Cost
($/h) Using SQP with Solar

PV-Battery

Profit with Imbalance Cost
($/h) Using ABC with Solar

PV-Battery

Profit with Imbalance Cost ($/h)
Using AGTO with Solar

PV-Battery

1 Base Case_(00.00 h) 324.268 329.658 335.627 336.751

2 Base Case_(06.00 h) 297.685 302.685 308.776 310.021

3 Base Case_(12.00 h) 307.247 312.654 318.168 319.685

4 Base Case_(18.00 h) 341.038 346.658 352.951 354.237

Table 10. System risk with different optimization techniques (for Kolhapur).

Sl.
No. Details

NP

VaR CVaR

With Wind
Farm

Using SQP

With Wind
Farm-Solar

PV-Battery Storage
Using SQP

With Wind
Farm-Solar

PV-Battery Storage
Using ABC

With Wind
Farm-Solar

PV-Battery Storage
Using AGTO

With Wind Farm
Using SQP

With Wind
Farm-Solar

PV-Battery Storage
Using SQP

With Wind
Farm-Solar

PV-Battery Storage
Using ABC

With Wind
Farm-Solar

PV-Battery Storage
Using AGTO

1 Base Case_(12.0 h) −0.3735 −0.3667 −0.3521 −0.3434 −0.5753 −0.5567 −0.5423 −0.5334

2 Bus_14 (15%)_(12.0 h) −0.3748 −0.3675 −0.3536 −0.3445 −0.5771 −0.5574 −0.5446 −0.5348

3 Bus_10 (15%)_(12.0 h) −0.3759 −0.3686 −0.3571 −0.3462 −0.5792 −0.5585 −0.5475 −0.5359
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Figure 10. Profit Comparison with Imbalance Cost (Mumbai).

6. Conclusions

The hybrid effect of solar PV, wind farms, and battery storage systems on power
system economics has been considered in this paper. To authenticate the task, a deregulated
power market was considered. To evaluate system risk, Value-at-risk (VaR) and Cumulative
Value-at-risk (CVaR) have been used here. The stability and safety of an electrical system
can be improved by minimizing system risk. The placement of solar PV and battery storage
systems minimizes the negative impact of system imbalance costs, which are developed
due to the disparity between the bidding and running wind power quantities. The hybrid
system minimizes system risk, which can further reduce the instability conditions of the
system. To examine the effect of system risk considering wind farms with solar PV-battery
storage systems under deregulated power systems, comparative studies are conducted
using different optimization techniques, such as the Artificial Gorilla Troops Optimizer
Algorithm (AGTO), Artificial Bee Colony Algorithms (ABC), and Sequential Quadratic
Programming (SQP). The modified IEEE 14-bus and modified IEEE 30-bus systems have
been used here to analyze the efficiency and robustness of the presented work. As evident
from the results, the presence of a solar PV-battery storage system with a wind farm
improves the economic parameters of the system by reducing the system risk. The Artificial
Gorilla Troops Optimizer Algorithm (AGTO) has been used for the first time in this kind of
risk mitigation problem, which is the uniqueness of this paper. This work can be performed
with different renewable energy sources and energy storage devices in the near future for
any small or large electrical system.
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