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Abstract: This paper presents a discrete-time output feedback controller to regulate the output
voltage of a DC-DC buck converter. The proposal’s main feature is the application of a discrete-
time equivalent of the robust exact filtering differentiator. First, the document exposes a theoretical
analysis of the closed-loop system, where it is considered the problem of implementing a real-time
differentiator with a good relationship between exactness and noise filtration performance. Hence,
secondly, the controller in a laboratory setup is presented. The first experimental results suggest that
the proposed controller exhibits good robustness against noise and maintains the asymptotic accuracy,
even with saturated control inputs, as in the case of the DC-DC buck converter. Consequently,
aiming to verify the features of the proposed method, the controller is validated through multiple
experiments, showing satisfactory voltage tracking accuracy, good suppression of instantaneous load
and supply voltage disturbances, and robustness against bounded measurement noise.

Keywords: DC-DC buck converter; digital control; nonlinear PID controller; robust exact filtering
differentiator; saturated controller

1. Introduction

Nowadays, DC-DC switching converters are present in most branches of engineering,
and industry [1,2]. It is common to find applications of DC-DC switching converters in
aerospace systems [3,4], automotive electronics [5–7], uninterruptible power supplies
(UPS) [8,9] and especially in renewable energy systems, such as fuel cells [10,11],
photovoltaic systems [12–15] and wind power [16,17] just to mention a few. The main
characteristic of a DC-DC switching converter is the ability to ensure a constant output
voltage for the entire operating range, even in the presence of variations in the supply
voltage and non-constant power demand. Additionally, it is well known that these devices
exhibit nonlinear phenomena, and most of them operate in adverse conditions due to
commutation noise and other electromagnetic effects [18]. Therefore, the design of closed-
loop feedback control strategies that ensure the correct operation of DC-DC switching
converters is crucial.

The most common non-linearity in almost every physical system is the saturation of
the control input. In the case of the DC-DC switching converters, this restriction is in the
duty cycle that modulates the discontinuous activation signal of the switches [19,20].

Over the years, multiple authors have proposed discrete-time and continuous-time
control strategies to deal with the nonlinear dynamics and disturbances that the operation
of DC-DC switching converters exhibits. In [21], a comparison between a generalized
proportional integral (GPI) controller and a proportional integral derivative (PID) controller
implemented on a field-programmable gate array (FPGA) is presented. In [22], the authors
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present a fractional-order PID-type controller designed explicitly for DC-DC boost converter
and implemented in discrete-time using a floating-point digital signal processor (DSP).
In [23], a discrete global-sliding mode (SM) control of DC-DC switching converters is
presented and experimentally validated using a DC-DC buck converter. In [24], a digital
control based on fuzzy logic for the DC-DC buck converter with photovoltaic applications
is presented and validated through experimentation with low-cost digital platforms. In [25],
the authors propose finite-time output feedback control with a current sensorless mode for
the DC-DC buck converter, which is validated through experimentation. The discrete-time
controllers proposed in [21–25], show satisfactory results. However, a detailed analysis of
the control signal restrictions caused by duty cycle saturation is not performed. Due to its
complexity, it is common to neglect this phenomenon. However, it should be considered to
ensure the stability of the closed-loop control system.

On the other hand, few papers analyze the saturation of the control input in DC-
DC switching converters and its effect on the system’s stability. For example, in [26] a
Lyapunov-based proportional-integrative (PI) controller with ∆− Σ modulator for the DC-
DC buck converter with saturated input is presented and experimentally validated. In [27],
the authors propose a regional pole placement controller that considers the saturation of
the duty cycle for the DC-DC buck converter. In [28], a regulator based on the closed-
loop frequency response of the DC-DC buck converter is presented. The controller is
designed by considering the effects of system saturation and validated through numerical
simulations. In [29], the author presents a class of proportional-integral with anti-windup
(PIAW) controllers for the DC-DC buck converter. The controller considers the limitations
of the control input together with detailed stability analysis and is validated through
experimentation. In [30], a nonlinear PID regulator to avoid the windup effect with a
saturation function for the control signal is presented and validated by simulation. The
control strategies mentioned in [26–30] show a satisfactory regulation of the switched
DC-DC converters dynamics and analyze the effects of the saturation on the stability of
the system.

Nevertheless, most are based on continuous-time controllers and do not explore
the effects on stability when the algorithm is implemented on discrete-time platforms.
Likewise, the adverse effects that measurement noise has on the control loop are not directly
addressed, especially in controllers with derivative actions. As previously mentioned,
noise in DC-DC switching converters is a common situation and should be treated with
special attention.

One option to estimate those states for systems with noisy output and unavailable
states is a differentiator. Specifically, the homogeneous differentiator shows remarkable
properties, which have been implemented in different areas [31,32]. They are finite-time
convergence, accuracy, and robustness to noise [33,34]. These properties are obtained if the
n-th derivative of the free-noise signal has a known Lipschitz constant [33] and bounded
noise. Despite the asymptotic accuracy of the well-known robust exact differentiator [33],
this accuracy was improved by the robust exact filtering differentiator [34]. On the other
hand, the robust exact filtering differentiator used to be implemented in digital systems,
but it is a continuous-time observer. For this reason, some discrete-time realization [34–36],
which preserves the continuous-time properties of the differentiator. One strategy to obtain
a discrete-time realization is the implicit discretization [37]. Implicit realizations supersede
the explicit discrete-time differentiators based on homogeneous differentiators [35,38,39].

This paper proposes and experimentally validates an output feedback discrete-time
controller based on the implicit discretization of the robust exact filtering differentiator.
The main advantage of this controller lies in the estimation accuracy of the system states in
the presence of measurement noise and its finite-time convergence. The contributions of
this paper are as follows:

• The presentation of a discrete-time output feedback controller based on the robust
exact filtering differentiator for the DC-DC buck converter with saturated input.
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• The introduction of a rigorous stability analysis of the discrete-time controller
considering the asymmetric saturation of the system.

• An extensive experimental analysis that includes various operating conditions and
disturbance scenarios to validate the performance of the controller.

The difference of this paper with respect to previous research is that the proposed
discrete-time controller has the properties of finite-time convergence, accuracy, and
robustness to noise of the homogeneous differentiator. It demonstrates that this controller
allows the states convergence even with instantaneous reference voltage changes, load
disturbances and supply voltage variations. Likewise, for the first time, the closed-loop
stability of the the implicit realization of the robust exact filtering differentiator and DC-DC
buck converter is analyzed considering the saturation of the duty cycle. It is important to
remark that the discrete-time implementation of homogeneous differentiators is a relatively
new research topic. However, there are not enough experimental results in the literature
about its use in a closed-loop controller.

This paper is organized as follows. In Section 2, the robust exact filtering differentiator
and its implicit discretization for discrete-time implementations are presented. In Section 3,
the topology of the DC-DC buck converter is analyzed, and its mathematical model based
on the classical averaged technique is presented. In Section 4, the proposed control strategy
based on the robust exact filtering differentiator is presented, as well as its closed-loop
stability analysis considering the saturation of the control signal of the DC-DC buck
converter. In Section 5, the experimental results of the controller implemented employing
a digital platform in a prototype of the DC-DC buck converter are shown. Finally, the
conclusions are presented in Section 6.

2. Robust Exact Filtering Differentiator

Let us consider a signal f0(t), f0 : R → R, which is assumed to be at least n − th
differentiable, and f (n)0 (t) has a known Lipschitz constant L > 0. Hence, one obtains

f (n+1)
0 (t) ∈ [−L, L] almost everywhere. Therefore, the differentiation problem is equivalent

to estimate the states of the following continuous-time system:

ẋ = Ax + en+1 f (n+1)
0 (t), f0(t) = eT

1 x, (1)

where the state variables are defined as x =
[

x0 x1 x2 · · · xn
]T ∈ Rn+1 with

xi = f (i)0 (t), e1 =
[

1 0 · · · 0 0
]T , en+1 =

[
0 0 · · · 0 1

]T and A is given by

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

.

For system (1), its noisy output, x̄0(t), is defined as x̄0(t) = x0(t) + ∆(t). Concerning
the noise ∆(t), it satisfies the following assumption:

Assumption 1. The measurement noise can be represented by n f + 1 components, i.e.,
∆(t) = ∆0(t) + ∆1(t) + · · ·+ ∆n f (t), where each possibly unbounded component ∆j(t)
(j = 0, 1, · · · , n f ) is a signal of global filtering order j and the jth-order integral magnitude δj ≥ 0.

Here, it is recalled the definition of a signal of global filtering order j introduced in [34].

Definition 1 ([34]). A function ∆j(t), ∆j : [0, ∞)→ R, is a signal of global filtering order j ≥ 0,
if ∆j is a locally integrable Lebesgue-measurable function, and there exists a globally bounded
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solution β j(t) of the equation β
(j)
j (t) = ∆j(t). Any number greater than sup |β j(t)| is called a

jth-order global integral magnitude of δj.

Assumption 1 was introduced in [40]. This assumption is more general than the
consideration that ∆(t) is a Lebesgue-measurable bounded noise. Indeed, this classical
assumption corresponds to the case n f = 0. Considering system (1) and Assumption 1,
the states of the systems can be estimated in real time using the robust exact filtering
differentiator, which was originally presented in [34]:

ẇj f = φj f−1,m(w1) + wj f +1,

ẇn f = φn f−1,m(w1) + z0 − x̄0,

żjd = φn f +jd ,m(w1) + zjd+1,

żn = φm,m(w1).

j f = 1, 2, · · · , n f − 1. jd = 0, 1, 2, · · · , n− 1,

(2)

where m = n + n f , φj,m(·) = −λm−jL
j+1

m+1 b·e
m−j
m+1 , wj are the states of the filtering part, zj are

the robust estimations of the state xj. The parameters λi are appropriate positive constants.
Note that the solution of system (2) is understood in the Filippov sense [41]. Then after a
finite-time, the filtering differentiator (2) satisfies the accuracy:

|σj(t)| ≤ µjLρn+1−j, µj > 0, j = 0, 1, 2, · · · , n.

ρ = max

( δ0

L

) 1
n+1

,
(

δ1

L

) 1
n+2

, · · · ,

(
δn f

L

) 1
m+1
,

(3)

where σj(t) = zj(t)− xj(t). The above was demonstrated in [34]. Furthermore, if there

exists a positive integer na > n such that
∣∣∣ f (na+1)

0 (t)
∣∣∣ ≤ L, then the accuracy of (3) can be

improved using a differentiator of order na (instead of n). On the other hand, if n f = 0,
then the accuracy of (3) becomes the asymptotic accuracy.

Implicit Discretization of the Robust Exact Filtering Differentiator

Some discrete-time realizations have been presented for the filtering differentia-
tor (2) [34,35,39]. In this paper, the implicit discrete-time differentiator presented in [42]
are implemented. Moreover, the states, the noise and signals at time tk are defined as
∆k = ∆(tk), wj,k = wj(tk), zj,k = zj(tk), xj,k = xj(tk), σj,k = σj(tk). For discrete-time
measurements, the following condition about the noise is considered:

Assumption 2. The sampled measurement noise consists of n f + 1 components, ∆k = ∆0,k +
∆1,k + · · ·+ ∆n f ,k, where each possibly unbounded ∆j,k (j = 0, 1, · · · , n f ) is a discretely sampled
signal of global filtering order j and jth-order integral magnitude δj ≥ 0.

A discretely sampled signal of global filtering order j, ∆j,k , and its corresponding δj,
are defined as follows:

Definition 2. A discretely sampled signal ∆j,k : R+ → R is a signal of global filtering order j ≥ 0
and jth-order integral magnitude δj ≥ 0 if for each admissible sequence tk there exists a discrete

time signal β j,k =
[

β0
j,k β1

j,k · · · β
j
j,k

]T
∈ Rj+1, k = 0, 1, · · · , which satisfies

βl
j,k+1 − βl

j,k = τβl+1
j,k , l = 0, 1, · · · , j− 1,

β
j
j,k = ∆j,k,

∣∣∣β0
j,k

∣∣∣ ≤ δj.
(4)
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The implicit discrete-time differentiator presented in [35] is described by the
following equations

wj f ,k+1 =
τ(n f−j f +1)

(n f − j f + 1)!
(z0,k − x̄0,k) +

n f

∑
l=j f

τ(l−j f )

(l − j f )!
wl,k +

m+1

∑
l=j f

τ(l−j f +1)

(l − j f + 1)!
φl−1,m(w1,k+1),

zjd ,k+1 =
n

∑
l=jd

τ(l−jd)

(l − jd)!
zl,k +

τ(l−jd+1)

(l − jd + 1)!
φn f +l,m(w1,k+1),

j f =1, 2, · · · , n f . jd = 0, 1, 2, · · · , n.

(5)

Here, x̄0,k = (x0,k + ∆k) is the noisy input signal of the differentiator at time tk, and
zj,k is the robust estimations of the j-th derivative of x0(t) at time tk. The filtering order n f
is selected to be greater or equal to the greatest filtering order of the noise components. For
instance, if the noise is a signal of global filtering order 2, then one can use n f ≥ 2.

Concerning (5), it is clear that w1,k+1 is needed at time tk. To compute this value,
the following support variable is defined as ξk ∈ sign(w1,k+1). Following the methodology
presented in [38], the following lemma is introduced.

Lemma 1 ([38]). Let us define

aj =
τm−j+1

(m− j + 1)!
λjL

m−j+1
m+1 , bk = −

τn f

n f !
(z0,k − x̄0,k)−

n f

∑
l=1

τ(l−1)

(l − 1)!
wl,k. (6)

Then, the pair (w1,k+1, ξk) is defined as follows:

• If bk > a0, then ξk = {−1} and w1,k+1 = −(r0)
m+1, where r0 is the unique positive root of

the following polynomial:

p(r) = rm+1 + amrm + · · ·+ a1r + (−bk + a0). (7)

• If bk ∈ [−a0, a0], then w1,k+1 = 0 and ξk =
{
− bk

a0

}
.

• If bk < −a0, then ξk = {1} and w1,k+1 = rm+1
0 , where r0 is the unique positive root of the

following polynomial:

p(r) = rm+1 + amrm + · · ·+ a1r + (bk + a0). (8)

From Lemma 1, to implement the discrete-time differentiator (5), ξk is used instead of
sign(w1,k+1). The parameters aj can be computed offline while the parameters bk have to be
computed online. According to Descartes’ rule of signs [43], each polynomial has only one
positive root.

Remark 1. It is worth noting that from Lemma 1, a root-finding method is needed to compute the
unique positive root of the polynomials (7) and (8). One can use, for instance, Halley’s method [44],
which was demonstrated to converge to the unique positive root of the polynomials [38], or the
methodology presented in [45] to reduce the time complexity of the discrete-time differentiator.

Using the implicit discrete-time differentiator (5), one can derive the following result.

Theorem 1 ([35]). Under Assumption 2, there exist constants µjd > 0 such that after a finite-time
transient, the following inequalities are verified:

|zjd ,k − xjd ,k| ≤ µjd Lρn+1−jd , ρ = max

τ, max
0≤j≤n f


(

δj

L

) 1
n+j+1


, (9)
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where jd = 0, 1, · · · , n and the coefficients µjd only depend on the differentiator parameters
λ0, . . . , λm.

3. DC-DC Buck Converter Analysis

The DC-DC buck converter topology which considers the parasitic elements of the
capacitor and inductor is shown in Figure 1. It consists of a DC input source Vs, a controlled
ideal switch Ws, a rectifier diode D1, a filtering inductor Li, a filtering capacitor C, a load
resistance R, and the equivalent series resistance (ESR) Rc and RLi of the capacitor and the
inductor, respectively.

Figure 1. DC-DC buck converter topology. The ESR of the capacitor C and the inductor Li

are included.

The switched model [18] of the DC-DC buck converter in continuous conduction mode
(CCM) shown in the Figure 1 is given by[

v̇c
i̇Li

]
=

[
− γ

RC
γ
C

− γ
Li
− Rcγ+RLi

Li

][
vc
iLi

]
+

[
0
Vs
Li

]
u +

[
ζv
ζi

]
,

y =
[
1 0

][vc
iLi

]
,

(10)

where vc(t) is the capacitor voltage, iLi (t) is the inductor current, ζv is a disturbance in the
voltage capacitor, ζi is a disturbance in the inductor current, u ∈ {0, 1} is the control input,
and γ = R

R+Rc
.

For stability analysis and control purposes, this paper uses the large-signal-averaged
model that provides a good representation of the system macroscopic behavior and allows
to obtain the system response based on a continuous control input [46,47]. The large-signal
averaged model based on the set of state Equation (10) is given by

〈v̇c(t)〉0 =
1
C

[
γ

(
〈iLi (t)〉0 −

〈vc(t)〉0
R

)]
+ ζv,

〈i̇Li (t)〉0 =
1
Li

[
〈Vs〉0Dc(t)− γ〈vc(t)〉0 − (γRc + RLi )〈iLi (t)〉0

]
+ ζi,

(11)

where 〈〉0 denotes an average of the states variables over the switching period, and Dc is
the duty cycle or continuous control input. Next, for simplicity, the brackets of averaged
values are dropped. Thus the average dynamic Equation (11) can be written as

v̇c(t) = a1vc + a2iLi + ζv

i̇L(t) = a3vc + a4iLi + a5Dc(t) + ζi,
(12)

where a1 = − γ
RC , a2 = γ

C , a3 = − γ
Li

, a4 = − Rcγ+RLi
Li

and a5 = Vs
Li

. From (12) the following
model is obtained:
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v̈c(t)
a2a5

− v̇c(t)
(

a1 + a4

a2a5

)
− vc(t)

(
a2a3 − a1a4

a2a5

)
= Dc(t)−

a4

a2a5
ζv +

1
a5

ζi +
1

a2a5
ζ̇v. (13)

Let us define the output voltage error as

ε1(t) = vc(t)− vre f , (14)

where vre f > 0 is constant and represents the desired output voltage. Therefore, the output
tracking error dynamics of the system can be represented as a chain of integrators as

ε̇1(t) = ε2(t)

ε̇2(t) = ε1(t)(a2a3 − a1a4) + ε2(t)(a1 + a4) + a2a5Dc(t) + ξ(t)

x̄0(t) = ε1(t) + ∆(t),

(15)

where ξ(t) = a2ζi − a4ζv + ζ̇v + vre f (a2a3 − a1a4) represents a disturbance, and ∆(t) is the
measurement noise.

4. Proposed Control Strategy

In this section, the following system is considered (15), where ξ(t) is considered such
that ξ− ≤ ξ(t) ≤ ξ+. Furthermore, ∆(t) at time tk satisfies Assumption 2. On the other
hand, Dc(t) is defined as

Dc(t) =


ukmax i f uk ≥ ukmax

uk i f ukmin
< uk < ukmax

ukmin
i f uk ≤ ukmin

, ∀t ∈ [tk, tk+1),

uk = KZk,

K = [ki kp kd],

Zk = [zI,k z0,k z1,k]
T ,

zI,k = zI,k−1 + τ
z0,k + z0,k−1

2
,

(16)

where zI,k is an approximation of
∫ t

0 x0(α)dα. Although a trapezoidal integration is used
in (16), it can be changed with other methods. In order to select an adequate gain, K,
a discrete-time analysis is performed, then the discrete-time version of (15) is given as

Xk+1 = Φ(τ)Xk +

 τ3

4
τ2

2!
τ

(a2a5Dc(tk) + ξ(tk)) +

 τ
2 (σ0,k+1 + σ0,k)

0
0

,

Xk = [zI(tk) ε1,k ε2,k]
T ,

τ = tk+1 − tk,

(17)

Φ(τ) =

 1 τ + τ3

4 (a2a3 − a1a4)
τ2

2 + τ3

4 (a1 + a4)

0 1 + τ2

2 (a2a3 − a1a4) τ + τ2

2 (a1 + a4)
0 τ(a2a3 − a1a4) 1 + τ(a1 + a4)

. (18)

The above equation is obtained using Taylor series expansion for ε1(t) and ε2(t).
With the purpose of estimating the states ε1,k and ε2,k, one can modify the discrete-time
differentiator (5) as follows:
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wj f ,k+1 =
τ(n f−j f +1)

(n f − j f + 1)!
(z0,k − x̄0,k) +

n f

∑
l=j f

τ(l−j f )

(l − j f )!
wl,k +

n f +2

∑
l=j f

τ(l−j f +1)

(l − j f + 1)!
φl−1,n f +1(w1,k+1),

z0,k+1 = z0,k + τz1,k + τφn f ,n f +1(w1,k+1) +
τ2

2
φn f +1,n f +1(w1,k+1),

z1,k+1 = z1,k + τφn f +1,n f +1(w1,k+1),

j f =1, 2, · · · , n f .

(19)

where it is implemented using Lemma 1, L ≥ |ε1(tk)(a2a3 − a1a4) + ε2(tk)(a1 + a4) + ξ(t)|,
and z0,k and z1,k are estimations of ε1,k and ε2,k. The estimation errors of the discrete-time
filtering observer (19) are defined as σ0,k = z0,k − ε1,k and σ1,k = z1,k − ε2,k. Additionally,
without saturation of the control law (16), system (17) can be represented as follows:

Xk+1 = Ω(τ)Xk + Θk(τ), (20)

where Ω(τ) and Θk(τ) are defined as follows:

Ω(τ) =

 1 + τ3

4 a2a5ki τ + τ3

4
(
(a2a3 − a1a4) + a2a5kp

)
τ2

2 + τ3

4 ((a1 + a4) + a2a5kd)
τ2

2 (a2a5)ki 1 + τ2

2
(
(a2a3 − a1a4) + a2a5kp

)
τ + τ2

2 ((a1 + a4) + a2a5kd)
τ(a2a5)ki τ

(
(a2a3 − a1a4) + a2a5kp

)
1 + τ((a1 + a4) + a2a5kd)

,

Θk(τ) =

 τ
2 (σ0,k+1 + σ0,k) +

τ3

4 (ξ(tk) + a2a5Ek)
τ2

2! (ξ(tk) + a2a5Ek)
τ(ξ(tk) + Ek)

,

(21)

with Ek = kpσ0,k + kdσ1,k. Note that each element of matrix Θk(τ) is bounded after a
finite-time, and their bounds are defined by µj parameters, which depend on λj parameters
and the methodology used to estimate εj,k. Then, K is selected such that the magnitude of
the n + 1 eigenvalues of Ω(τ) are lower than one and ki < 0, kp < 0 and kd < 0. Before
presenting the following theorems, the following definitions are presented:

• tk0 is the lowest sampling time such that Dc(t) is saturated for any measurement time
greater than tk0 and previous to the instant of time tk2 , i.e., uk ≥ ukmax or uk ≤ ukmin

for
any tk with tk0 ≤ tk < tk2 .

• tk1 is the sampling time when the discrete-time filtering observer (19) obtains and
keeps the accuracy (9).

• tk2 is the time instant such that uk is unsaturated and for the previous measurement
time uk was saturated, i.e., ukmin

< uk < ukmax at tk2 , and uk ≥ ukmax or uk ≤ ukmin
for

any tk with tk0 ≤ tk < tk2 .
• tk3 is the sampling time when ukmax > uk > ukmin

and the discrete-time filtering
observer (19) obtains and keeps the accuracy (9).

• ū(t) is the continuous-time function analogous to uk, defined as

ū(t) = K[z̄I(t) ε1(t) ε2(t)]
T ,

z̄I(t) = zI,k, for t ∈ [tk, tk+1).
(22)

• t f is the time instant after tk0 and tk1 such that ukmin
< ū(t f ) < ukmax .

Time instants tk0 , tk1 , tk2 and tk3 are measurement times but t f may not be a
measurement time. Now, the main results are presented:

Theorem 2. Let system (15) under the controller Dc(t) be defined as in (16) and using the implicit
discrete-time filtering observer (19). K is selected such that the magnitude of the eigenvalues of
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Ω(τ) have a modulus lower than one and kI < 0, kp < 0, and kd < 0 if the following conditions
are satisfied:

a2a5ukmax > − 4
τ2 L−1 − (a2a3 − a1a4)L+

1 −
2
τ

L−2 − (a1 + a4)L+
2 +

4µ0Lρ2

τ2 − ξ−k ,

a2a5ukmin
< − 4

τ2 L+
1 − (a2a3 − a1a4)L−1 −

2
τ

L+
2 − (a1 + a4)L−2 −

4µ0Lρ2

τ2 − ξ+k ,
(23)

ukmin
≥ uk or uk ≥ ukmax at the time instant tk1 , |σ0,k|, |σ1,k|, and τ are such that

kizI,k + kpL−1 + kdL−2 + |Ek| < ukmax ,

kizI,k + kpL+
1 + kdL+

2 − |Ek| > ukmin
,

(24)

with Ek at time tk2 , then ukmin
< uk < ukmax at time tk2 .

Proof. Considering the case uk ≥ ukmax at time tk1 . If tk2 ≥ t ≥ tk0 , then ε1(t) and ε2(t) are
defined as

ε1(t) = F1(t) + G1(t),

ε2(t) = F2(t) + G2(t),
(25)

where F1(t), F2(t), G1(t) and G2(t) are given as:

F1(t) = L−1

{(
s2 − (a1 + a4)s

)
ε1(0) + sε2(0) + a2a5ukmax

s(s2 − (a1 + a4)s− (a2a3 − a1a4))

}
,

F2(t) = L−1
{
(a1 + a4)ε1(0) + sε2(0) + a2a5ukmax

(s2 − (a1 + a4)s− (a2a3 − a1a4))

}
,

G1(t) = L−1
{

L{ξ(t)}
s2 − (a1 + a4)s− (a2a3 − a1a4)

}
,

G2(t) = L−1
{

L{ξ(t)}s
s2 − (a1 + a4)s− (a2a3 − a1a4)

}
.

(26)

which depend on the roots r1 =
a1+a4+

√
(a1+a4)

2+4(a2a3−a1a4)

2 and r2 =
a1+a4−

√
(a1+a4)

2+4(a2a3−a1a4)

2 ,
whose real part is negative. Here, L{·} is the Laplace transform. Therefore, F1(t) and F2(t)
are continuous functions such that

lim
t→∞

F1(t) = −
a2a5ukmax

(a2a3 − a1a4)
,

lim
t→∞

F2(t) = 0.
(27)

Let L+
1 , L−1 , L+

2 and L−2 such that L−1 ≤ ε1(t) ≤ L+
1 , L−2 ≤ ε2(t) ≤ L+

2 , for any t ≥ tk1 .
One can rewrite zI,k+1 − zI,k

zI,k+1 − zI,k ≥ τL−1 +
τ3

4
(a2a3 − a1a4)L+

1 +
τ2

2
L−2 +

τ3

4
(a1 + a4)L+

2 + . . .

. . . +
τ3

4
(
a2a5ukmax + ξ−k

)
− τµ0Lρ2,

zI,k+1 − zI,k ≤ τL+
1 +

τ3

4
(a2a3 − a1a4)L−1 +

τ2

2
L+

2 +
τ3

4
(a1 + a4)L−2 + . . .

. . . +
τ3

4
(
a2a5ukmax + ξ+k

)
+ τµ0Lρ2,

(28)

Since a2a5ukmax > − 4
τ2 L−1 − (a2a3 − a1a4)L+

1 −
2
τ L−2 − (a1 + a4)L+

2 + 4µ0Lρ2

τ2 − ξ−k then
zi,k is increasing. Due to the above fact and the limits (27), ū(t) will satisfy the condition
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ū(t f ) < ukmax (29)

at the instant of time t f . Now, it is considered the value of uk for the sampling time after t f ,
which was defined as tk2 . The estimation errors |σ0,k|, |σ1,k| and sampling time τ must be
small enough to satisfy the following condition:

ukmax > ū(tk2) + Ek > ukmin
. (30)

where Ek is defined at time tk2 and t f + τ ≥ tk2 ≥ t f . The above condition implies that uk
is unsaturated at the sampling time tk2 . Furthermore, the above condition can be satisfied if

kizI,k + kpL−1 + kdL−2 + |Ek| < ukmax ,

kizI,k + kpL+
1 + kdL+

2 − |Ek| > ukmin
,

(31)

are satisfied, where zI,k is defined at the sampling time tk2 . A similar demonstration can
be performed for the case uk ≤ ukmin

at the sampling time tk1 , where F1(t) and F2(t) are
defined with ukmin

instead of ukmax , with the following condition:

a2a5ukmin
< − 4

τ2 L+
1 − (a2a3 − a1a4)L−1 −

2
τ

L+
2 − (a1 + a4)L−2 −

4µ0Lρ2

τ2 − ξ+k . (32)

It concludes the proof.

Theorem 2 shows that after the discrete-time differentiator (5) obtains the asymptotic
accuracy and if Dc(t) is saturated at time tk1 , then Dc(t) is unsaturated at the sampling
time tk2 . The following step is to obtain the required conditions to keep Dc(t) unsaturated
and the system (17) stable. These conditions are presented in the following theorem:

Theorem 3. Let system (15) be implemented with the control law Dc(t) defined as in (16), where
K is selected as in Theorem 2. If ukmin

≤ uk ≤ ukmax at the sampling time tk3 , ukmax and ukmin
satisfy the following conditions,

ukmax >

√
(λmax(PΩ(τ)Ω(τ)TP) + λmax(P))

(λmin(Q)− 1)
‖Θk‖2

|ki + kd + kp|
,

ukmax > KΩi(τ)Xk3 +
i−1

∑
j=0

KΩj(τ)Θk3+i−j−1,

ukmin
< KΩi(τ)Xk3 +

i−1

∑
j=0

KΩj(τ)Θk3+i−j−1.

(33)

then discrete-time system (17) is stable, and Dc(t) is unsaturated for any tk ≥ tk3 .

Proof. A discrete-time Lyapunov function is proposed as

Vk = XT
k PXk, (34)

where P is a symmetric definite positive matrix. From the previous function, one obtains:

Vk+1 −Vk =XT
k

(
Ω(τ)TPΩ(τ)− P

)
Xk + 2XT

k Ω(τ)TPΘk(τ) + Θk(τ)
TPΘk(τ),

Vk+1 −Vk ≤− XT
k QXk + XT

k Xk + Θk(τ)
T
(

PΩ(τ)Ω(τ)TP + P
)

Θk(τ),

Vk+1 −Vk ≤− (λmin(Q)− 1)‖Xk‖2
2 +

(
λmax(PΩ(τ)Ω(τ)TP) + λmax(P)

)
‖Θk(τ)‖2

2.

(35)
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It implies that Vk+1 −Vk is negative if

‖Xk‖2 ≥

√
(λmax(PΩ(τ)Ω(τ)TP) + λmax(P))

(λmin(Q)− 1)
‖Θk(τ)‖2. (36)

The above equation allows to define the convergence region of the discrete-time system
and therefore, to keep an unsaturated control law. ukmax must satisfy at least the following
condition:

ukmax >

√
(λmax(PΩ(τ)Ω(τ)TP) + λmax(P))

(λmin(Q)− 1)
‖Θk‖2

|ki + kd + kp|
(37)

Alternatively, one can obtain the following inequality:

Vk+1 −Vk ≤XT
k

(
Ω(τ)TPΩ(τ)− P + ΩTPΛPΩ

)
Xk + Θk(τ)

T
(

Λ−1 + P
)

Θk(τ), (38)

where Λ is a positive definite matrix and Q is defined as Q = −Ω(τ)TPΩ(τ) + P −
ΩTPΛPΩ. Then, one obtains

Vk+1 −Vk ≤− XT
k Q(τ)Xk + Θk(τ)

T
(

Λ−1 + P
)

Θk(τ), (39)

Then, if there exists positive definite matrices P, Q, Λ with P = PT , the following
conditions can be presented:

‖Xk‖2 ≥

√
λmax(Λ−1 + P)

λmin(Q)
‖Θk(τ)‖2,

ukmax ≥

√
λmax(Λ−1 + P)

λmin(Q)

‖Θk(τ)‖2∣∣ki + kp + kd
∣∣ .

(40)

Without saturation, the solution of the discrete-time system (20) is given as

Xk3+i = Ωi(τ)Xk3 +
i−1

∑
j=0

Ωj(τ)Θk3+i−j−1(τ), (41)

with i = 1, 2, 3, · · · . The above allows to define uk3 as

uk3+i = KΩi(τ)Xk3 +
i−1

∑
j=0

KΩj(τ)Θk3+i−j−1(τ). (42)

Then to keep an unsaturated control law Dc(t), ukmax and ukmin
have to satisfy the

following conditions:

ukmax > KΩi(τ)Xk3 +
i−1

∑
j=0

KΩj(τ)Θk3+i−j−1(τ),

ukmin
< KΩi(τ)Xk3 +

i−1

∑
j=0

KΩj(τ)Θk3+i−j−1(τ).

(43)

This concludes the proof.

The conditions related to ukmax and ukmin
in Theorem 3 define the convergence region

of the discrete-time system, and they are given in Equation (36). Theorems 2 and 3 allow to
show the stability of the continuous-time system (15) using the discrete-time law control
(16). However, an sufficiently small sampling time is required. It is important to note that
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there are not values of ukmax and ukmin
such that the discrete-time system is stable for any

initial condition Xk3 , which comes from the conditions in Theorem 2. In order to clarify the
use of the above theorems, we present the following numeric example:

Numeric Example

This example show how to calculate the conditions obtained from Theorem 3. Here,
the parameters shown in Table 1 are used:

Table 1. Parameters of the numerical example.

Vs = 12.7 V RLi = 0.32 Ω µ0 = 3 ukmax = 0.99 kd = −0.00002

R = 120 Ω C = 998 µF µ1 = 4 ukmin
= 0.01

Rc = 0.041 Ω ξmax = 200 τ = 25 µs ki = −3

Li = 255.81 µH ξmin = −200 ρ = 0.0001 kp = −0.185

Equation (44) allows to calculate Ω(τ), which is given as

Ω(τ) =

 0.999999 0.0000249 3.06 ∗ 10−10

−0.046621 0.9959002 2.44899 ∗ 10−5

−3729.654194 −327.9844193 0.959194

, (44)

and |Θk(τ)|2 ≤ 0.047114. Assuming that there exist Q � 0, P � 0, Λ � 0 then the Vk+1−Vk
is negative if ‖Xk‖2 such that

‖Xk‖2 ≥

√
λmax(Λ−1 + P)

λmin(Q)
‖Θk(τ)‖2. (45)

On the other hand, to keep the control unsaturated, Xk3 should satisfy the
following conditions:

0.99 >− 3ẑI,k − 0.185ε̂1,k − 0.00002ε̂2,k,

0.99 + 2.18909 ∗ 10−7 >− 2.91678ẑI,k − 0.17775ε̂1,k − 0.0000237ε̂2,k,

0.99− 1.694679 ∗ 10−7 >− 2.82004ẑI,k − 0.169322ε̂1,k − 0.0000271ε̂2,k,

0.99− 5.169639 ∗ 10−7 >− 2.711065ẑI,k − 0.15981ε̂1,k − 0.00003014ε̂2,k,
...

(46)

0.01 <− 3ẑI,k − 0.185ε̂1,k − 0.00002ε̂2,k,

0.01 + 2.18909 ∗ 10−7 <− 2.91678ẑI,k − 0.17775ε̂1,k − 0.0000237ε̂2,k,

0.01− 1.694679 ∗ 10−7 <− 2.82004ẑI,k − 0.169322ε̂1,k − 0.0000271ε̂2,k,

0.01− 5.169639 ∗ 10−7 <− 2.711065ẑI,k − 0.15981ε̂1,k − 0.00003014ε̂2,k,
...

(47)

where Xk3 = [ẑI,k ε̂1,k ε̂2,k]
T , and the value of Θk(τ) was selected as a random value

between its maximum and minimum values, which are given as
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ΘMk(τ) =

 1.882362 ∗ 10−9

5.889251 ∗ 10−7

0.047114

,

Θmk(τ) =

 −1.882362 ∗ 10−9

−5.889251 ∗ 10−7

−0.047114

.

(48)

Therefore, for any Xk3 such that satisfy the above conditions define the stability area
of the system.

5. Experimental Results

This section evaluates the performance of the proposed control strategy through
experimentation. The block diagram of the entire system is shown in Figure 2. The system
is divided into three sections: the DC-DC buck converter, the digital control device, and the
peripheral signal conditioning subsystems (anti-aliasing filter and MOSFET drivers).

Figure 2. Block diagram representation of the system to evaluate the proposed control for the DC-DC
buck converter.

5.1. System Implementation

For the control algorithm validation, a prototype of the DC-DC buck converter with
synchronous rectification was designed and built with the parameters shown in the Table 2.
The design of the DC-DC buck converter corresponds to an output voltage variation due to
a capacitor less than 2% and an inductor current ripple less than 40% [48–50]. The converter
operates in CCM for the entire range of values specified in Table 2 [51].

Table 2. Specifications of a synchronous buck converter measured at 10 KHz.

Description Symbol Nominal Value

Input voltage Vs 12.3 V–24.7 V
Capacitance C 998 µF

Capacitor ESR RC 0.041 Ω
Inductance Li 255.81 µH

Inductor resistance RLi 0.32 Ω
Switching frequency Fs 40 KHz

Minimum load resistance Rmin 5 Ω
Maximum load resistance Rmax 124 Ω

Desired output voltage Vo 2 V–10.5 V
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The proposed control law (16) is implemented based on the robust exact filtering
differentiator (19) with a differentiation order n = 1 and a filter order n f = 1. It is given as

w1,k+1 =w1,k + τ(z0,k − ε1,k)− τλ2L
1
3 |w1,k+1|

2
3 ξk −

τ2

2
λ1L

2
3 |w1,k+1|

1
3 ξk −

τ3

6
λ0Lξk,

z0,k+1 = z0,k + τz1,k − τλ1L
2
3 |w1,k+1|

1
3 ξk −

τ2

2
λ0Lξk,

z1,k+1 = z1,k − τλ0Lξk,

(49)

Lemma 1 is used to calculate w1,k+1 on the right hand of (49), with the methodology
presented in [45] and two iterations of Halley’s method to estimate the polynomials roots
given as

p(r) = r3 + a2r2 + a1r + (−bk + a0),

p(r) = r3 + a2r2 + a1r + (bk + a0),
(50)

where a0 = τ3

6 λ0L, a1 = τ2

2 λ1L
2
3 , a2 = τλ2L

1
3 and bk = −w1,k − τ(z0,k − ε1,k).

The digital platform selected to execute the algorithm is the dSPACE DS1104 R&D
Controller Board, with a voltage feedback loop sampled at two different frequencies for
comparison purposes. A 16-bit resolution is used for analog-to-digital conversion, and the
resolution of the digital pulse-width modulator (DPWM) is 50 ns. Serial communication
between the dSPACE platform and ControlDesk software is used to monitor the DC-DC
buck converter output voltage Vo(tk), duty cycle Dc(tk) and the system error ε1(tk).

In order to avoid frequency distortion in the voltage control loop due to the aliasing
effect, a second-order Chebyshev low-pass filter with −20 dB of attenuation gain at the
Nyquist frequency is used. The analog filter implementation is performed through a non-
inverting Sallen–Key topology with the op-amp OPA4187. Finally, the DC-DC synchronous
buck converter switches are ultra-low on-resistance power MOSFET IRF3710 driven via
dual low side driver IR4427 to minimize propagation times and a pair of 6N135 high-speed
photocoupler to isolate the control signal from the power section.

5.2. Experimental Results

The experiments shown in this section and their corresponding subsections use the
control parameters of Table 3, where K is selected according to the Theorem 2, hence,
eigenvalues of Ω(τ) are 0.9995, 0.9554 + 0.0974i and 0.9554− 0.0974i for τ = 25 µs and
0.9956, 0.2943 + 0.8080i and 0.9956− 0.8080i for τ = 250 µs (calculated using the maximum
values of Table 2). Finally, λj is properly selected according to [52]. Likewise, Figure 3
shows the physical prototype of the system. Experiments are performed with different
values of load resistance and supply voltage to ensure that the controller is robust enough
to handle these uncertainties.

Table 3. Control gains and parameters of the observer.

Parameter Value

ki −3.35
kp −0.15
kd −0.00002

ukmin
0.01

ukmax 0.99
L 2500
τ 25 µs , 250 µs

λ0 1.1
λ1 2.12
λ2 2
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Figure 3. Experimental hardware setup.

Additionally, the proposed state feedback controller is compared with a saturated
discrete-time PID controller with filter in the derivative action given as

Dc(t) =


ukmax i f uk ≥ ukmax

uk i f ukmin
< uk < ukmax

ukmin
i f uk ≤ ukmin

,

uk = Z−1[E(z)G(z)],

G(z) = kppid f + kipid f

τ

2
z + 1
z− 1

+ kdpid f

fn

1 + fnτ z
z−1

,

(51)

with kppid f = −0.1, kipid f = −1.5, kdpid f
= −0.00002 and fn = 150. Here Z−1{·} is the

inverse Z transform.

5.2.1. Output Voltage Tracking Performance

This analysis considers that the desired output voltage suddenly changes between
Vre f ,t1 = 2 V and Vre f ,t2 = 7 V. The experiments being shown in this subsection use a
fixed supply voltage of Vs = 12.7 V and a constant load of R = 120 Ω. This operating
point is selected because the value of R produces that the current in the inductor decreases
almost to zero (discontinuous conduction mode DCM). Figure 4 shows the results of output
voltage tracking performance for τ = 25 µs and Figure 5 for τ = 250 µs. Notice that the
proposed controller behaves better during reference changes since the settling time and
percent overshoot are small enough. Additionally, it is noted that the proposed controller
enters the saturation region of ukmin

; however, the voltage tracking is done correctly.
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Figure 4. Output voltage tracking performance of the proposed controller and a saturated
discrete−time PID with τ = 25 µs. (a) Output voltage and reference; (b) control output; (c) reference
tracking error and its estimation; (d) reference tracking error detail.
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Figure 5. Output voltage tracking performance of the proposed controller and a saturated
discrete−time PID with τ = 250 µs. (a) Output voltage and reference; (b) reference tracking error
and its estimation.

5.2.2. Load Variation Performance

This analysis shows the controller’s behavior in response to load disturbances, a
typical situation in power electronic converters. The experiments in this subsection are
performed with Vs = 12.7, Vre f = 5 V, and the load resistance that changes every 2 s
between the values Rt1 = 120 Ω and Rt2 = 40 Ω. The result of output voltage regulation
under these conditions is shown in Figure 6 for τ = 25 µs and Figure 7 for τ = 250 µs. It
is observed that the controller can suppress these disturbances, while the state estimation
does not diverge from the real value during the transient state. Note that the response of
the discrete-time PID controller is worse when implemented at a lower frequency.
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Figure 6. Load variation performance of the proposed controller and a saturated discrete−time PID
with τ = 25 µs. (a) Output voltage and reference; (b) control output; (c) reference tracking error and
its estimation; (d) reference tracking error detail.
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Figure 7. Load variation performance of the proposed controller and a saturated discrete−time PID
with τ = 250 µs. (a) Output voltage and reference; (b) reference tracking error and its estimation.

5.2.3. Input Voltage Variation

In this experiment, the input voltage of the DC-DC buck converter varies
instantaneously between two values every second. The parameters of the experiments
in this subsection are the supply voltage that changes between the values Vst1

= 6 V and
Vst2

= 10 V and R = 120 Ω. Figure 8 shows the results of the experiment for τ = 25 µs
and Figure 9 for τ = 250 µs. It is possible to see that the estimation of the system error z0,k
presents a considerably smaller noise amplitude than the system state x0,k, even when the
robust exact time filtering differentiator is implemented at a lower frequency.



Energies 2022, 15, 5288 18 of 21

0 1 2 3 4 5 6 7

Time [s]

2

2.5

3

3.5

4

4.5

5

V
o
lt
a
g
e
 [
V

]

V
ref

PID-F

Proposed Controller

0 1 2 3 4 5 6 7

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
u
ty

 C
y
c
le

PID-F

Proposed Controller

(a) (b)

0 1 2 3 4 5 6 7

Time [s]

-1

-0.5

0

0.5

1

R
e
fe

re
n
c
e
 T

ra
c
k
in

g
 E

rr
o
r

x
0,k

z
0,k

2.5 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.6

Time [s]

-0.1

-0.05

0

0.05

0.1

R
e
fe

re
n
c
e
 T

ra
c
k
in

g
 E

rr
o
r

x
0,k

z
0,k

(c) (d)

Figure 8. Input voltage variation performance of the proposed controller and a saturated
discrete−time PID with τ = 25 µs. (a) Output voltage and reference; (b) control output; (c) reference
tracking error and its estimation; (d) reference tracking error detail.
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Figure 9. Input voltage variation performance of the proposed controller and a saturated
discrete−time PID with τ = 250 µs. (a) Output voltage and reference; (b) reference tracking error
and its estimation.

6. Conclusions

This paper presents a new digital controller for a DC-DC buck converter with duty
cycle saturation. The proposed structure relies on a robust exact filtering differentiator based
on the implicit discretization of the homogeneous differentiator. Additionally, the design
considers the physical constraints of the DC-DC buck converter by adding a saturation law.
Moreover, the conditions for preserving the asymptotic precision of the robust exact time
differentiator are given, and the convergence analysis of the discrete-time system. Likewise,
these theorems offer a guide for selecting the control gains K.

The main advantage of this control scheme lies in the relationship between the
estimation accuracy of the system states and noise filtration performances. This feature
is especially useful in systems whose composition is based on switching actuators
subject to high-frequency noise, as in the DC-DC buck converter. Likewise, the problem
of filtering a noisy signal is often addressed, which is essential for implementing a
derivative through discrete time. Real-time experimentation was carried out based on an
efficient implementation method of the implicit discrete-time differentiator to ensure the
effectiveness of the proposed control law, where the output voltage tracking performance
and robustness to load and supply voltage variations were analyzed.
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The results show a satisfactory performance and a sufficiently accurate estimation of
the error, even in the presence of disturbances and measurement noise for a sampling period
of τ = 25 µs and τ = 250 µs, with a minimum difference in the measurement noise filtering
capacity. Likewise, the proposed controller showed a better behavior than a saturated
discrete-time PID with a filter in the derivative action, primarily when implemented
at a lower frequency. This feature is desirable for practical control applications where
hardware resources and digital processing capabilities are limited, and the plant is subject
to measurement noise.
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