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Abstract: Based on the square heat-generation body (HGB) with “arrow-shaped” high-thermal-
conductivity channel (HTCC) model established in the previous literature, we performed multi-
objective optimization (MOO) with maximum temperature difference (MTD) minimization and
entropy-generation rate (EGR) minimization as optimization objectives for its performance. Pareto
frontiers with optimal set were obtained based on NSGA-II. TOPSIS, LINMAP, and Shannon entropy
decision methods were used to select the optimal results in Pareto frontiers, and the deviation index
was used to compare and analyze advantages and disadvantages of the optimal results for each
decision method. At the same time, multi-objective constructal designs of the “arrow-shaped” HTCC
were carried out through optimization of single degree of freedom (DOF), two DOF, and three DOF,
respectively, and the thermal performance of the square heat-generation body under optimizations
of different DOF were compared. The results show that constructal design with the MOO method
can achieve the best compromise between the maximum thermal resistance and the irreversible loss
of heat transfer of the square heat-generation body, thereby improving the comprehensive thermal
performance of the square heat-generation body. The MOO results vary with different DOF, and
optimization with increasing DOF can further improve the comprehensive thermal performance of
square HGBs.

Keywords: constructal theory; maximum temperature difference; entropy-generation rate;
arrow-shaped high-thermal-conductivity channel; multi-objective optimization; generalized
thermodynamic optimization

1. Introduction

A crucial link in the design and manufacture of chips is how to effectively avoid dam-
age to components due to excessive local heat generation. The physical size of electronic
components is becoming smaller and smaller while their power is increasing. The ther-
mal stability and reliability of electronic devices may be greatly improved using the basic
theories of heat transfer optimization to optimize their heat dissipation capacity. Among
these is the entropy generation minimization theory [1–7], which provides optimization
criteria from the perspective of evaluating and decreasing the irreversibility of heat transfer
in processes and systems. Constructal theory [8–18] is a newly developed theory based
on thermodynamic optimization research. It addresses this problem by following the idea
that structure develops in the direction of better internal flow performance, provides a
new solution for traditional thermodynamic optimization problems, and makes many
bottlenecks that are difficult to explain and solve in theory and engineering possible to
solve through new angles. Introducing these cutting-edge theories into the research on
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constructal design of electronic devices adapts the research to the current development
trend in the field of thermal science.

Bejan [8] first studied the thermal performance of electronic components by using
constructal theory. Many scholars further applied this theory to the study of construc-
tal designs of various heat-generation structures. In the study of the constructal design
problems of the square heat-generation body (HGB), Lorenzini et al. [19,20] performed the
constructal design for the square HGB embedded with “I-shaped” [19] and “T-shaped” [20]
high-thermal-conductivity channels (HTCCs) by minimizing the maximum temperature
difference (MTD). Hajmohammadi and Rezaei [21] studied the constructal design of double-
branched HTCCs in a square HGB, and the research showed that the MTD of the square
HGB with double-branched HTCCs is smaller than that of a square HGB with “I-shaped”
HTCCs. Hajmohammadi et al. [22] developed a multi-level dendritic HTCC distribution
model in a square HGB to achieve the purpose of minimizing the MTD of the HGB. The
results showed that under the same number of branches, the same porosity of HTCCs, and
the same thermal conductivity, the performance of unequal-length dendritic structures
is better than that of equal-length dendritic structures. Fagundes et al. [23] combined an
exhaustive search with a genetic algorithm to derive the constructal design of the asym-
metric trigeminal HTCC, and obtained optimal constructal design of the trigeminal HTCC
when the porosity of HTCC was 0.4. Zhang et al. [24] established the “arrow-shaped”
HTCC model in a square HGB, and achieved constructal design under different degrees of
freedom (DOF) with minimum MTD. The results showed that the dimensionless minimum
MTD of the optimal constructal design obtained under three-DOF optimization was smaller
than that of the square HGB with “T-shaped” HTCC. Many scholars also studied the con-
structal designs of rectangular [25], triangular [26], and disc-shaped [27–29] HGB models.
In addition, constructal theory has also been applied to other thermal conduction problems.
Konan and Cetkin [30] experimented with constructal design of snowflake-shaped HTCC,
and found that the optimal constructal design of the HTCC with minimum MTD is very
close to the natural snowflake shape. Hajmohammadi et al. [31] devised a model in which
HTCCs are embedded in annular fins to assist heat dissipation, and achieved constructal
design of HTCCs with minimum MTD. Li and Feng [32] proposed a quadrilateral HGB
model with embedded vein-like HTCCs, and obtained optimal constructal design of this
model by with the objective of minimizing the MTD.

The MTD reflects the maximum thermal resistance in the HGB, while the entropy-
generation rate (EGR) can reflect the irreversible loss of heat transfer in the HGB. Some
scholars have further studied different HGBs based on EGR. Ghodoossi [33] experimented
with a rectangular HGB constructal design, and gained the corresponding EGR of the
rectangular HGB. You et al. [34], considering that heat-generation rate is non-uniform,
obtained optimal constructal design of the triangular HGB with the objective of minimizing
the EGR. Feng et al. [35] experimented with a disc-shaped HGB constructal design with the
objective of the EGR. Ribeiro and Queiros-Condé [36] obtained optimal constructal design
of the “I-shaped” HTCC in a square HGB. Zhu et al. [37] obtained optimal constructal
design of the vein-like HTCC in a quadrilateral HGB, and that was different from the
optimal constructal design obtained by minimizing the MTD [32].

The above constructal designs were all with single-objective optimizations, but the
actual engineering design often needs to meet multiple design requirements. Therefore, it
is necessary to reduce the conflict between different objectives through the use of multi-
objective optimization (MOO). The non-dominated sorting genetic algorithm II (NSGA-II)
with an elite strategy has been successfully applied to many engineering designs [38–49].
In particular, some scholars have demonstrated constructal design based on the NSGA-II.
Zhang et al. [50] performed MOO for a trapezoidal HGB with heat conduction and flow,
taking the EGR and the pumping power consumption as objectives, obtained the Pareto
frontier based on the NSGA-II, and selected the optimal result using the TOPSIS decision
method. Feng et al. [51] performed MOO for marine condensers and compared the op-
timization results of single-objective optimization and three decision methods based on
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the deviation index. Feng et al. [52] performed MOO of a marine boiler by taking the
EGR and the pumping power consumption as objectives, and compared the optimization
results of three decision methods based on the deviation index. Feng et al. [53] performed
MOO for a compound heat-dissipation channel, taking the MTD and the pumping power
consumption as objectives. Sun et al. [54] performed MOO for a cooling channel with semi-
circular sidewall ribs, taking the MTD and the pumping power consumption as objectives.
Kalkan et al. [55] performed MOO for a microchannel cooling plate.

In this paper, based on the square HGB with “arrow-shaped” HTCC model established
in the previous literature [24], MOO with MTD minimization and EGR minimization as
optimization objectives was performed, and Pareto frontiers with optimal set were obtained
based on NSGA-II. TOPSIS, LINMAP, and Shannon entropy decision methods were used
to obtain the optimal results. The deviation index [56] was used to compare and analyze
the advantages and disadvantages of the optimal results under each decision method.
At the same time, the multi-objective constructal designs of the “arrow-shaped” HTCC
were carried out through the optimization of single DOF, two DOF, and three DOF, and
the thermal performances of the square heat-generation body under the optimizations of
different DOF were compared. Our results indicate that introducing MOO into constructal
theory for design can improve the comprehensive thermal conductivity of HTCCs and
meet the needs of engineering design.

2. Square HGB Model
2.1. Physical Model

Figure 1 shows the square HGB with “arrow-shaped” HTCC model [24]. The length
of the square HGB (the heat-generation rate is q′′′ , the thermal conductivity is k0) is L, and
an “arrow-shaped” HTCC (thermal conductivity is kc) is arranged inside it. The heat flow
generated in the area of the square HGB converges into the “arrow-shaped” HTCC, and
flows out of the heat-generation area through the left side of the “arrow-shaped” HTCC
(temperature is Tmin). The remaining boundaries of the square HGB are adiabatic. The
thermal conductivity ratio of the high- and low-thermal-conductivity materials is defined
as k̃ = kc/k0, and the characteristic sizes of the “arrow-shaped” HTCC are L1, H1, L2 and
H2 respectively.
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From Figure 1, the area (A0) of the “arrow-shaped” HTCC can be expressed as
A0 = H1L1 + H2L2, the area of the entire square is L2, and the area fraction (φ) of HTCC
Pareto frontiers with optimal set of the entire square HGB is defined as:
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φ =
H1L1 + H2L2

L2 (1)

The L1, L2, H1, and H2 can be dimensionless as: L̃1 = L1/L, L̃2 = L2/L, H̃1 = H1/L,
and H̃2 = H2/L.

2.2. Mathematical Model

For the square HGB with “arrow-shaped” HTCC, the two-dimensional thermal con-
ductivity differential equations in high- and low-thermal-conductivity materials are [24]:

∂2T
∂x2 +

∂2T
∂y2 +

q′′′

k0
= 0 (2)

∂2T
∂x2 +

∂2T
∂y2 = 0 (3)

Because the square HGB with “arrow-shaped” HTCC model is symmetrical, it is
sufficient to analyze the area y ≥ 0 within the square HGB. For the region of y ≥ 0, the
boundary conditions are:

T = Tmin x = 0, 0 < y < L1/2 (4)

∂T
∂x

= 0

{
x = 0, L1/2 ≤ y ≤ L/2

x = L, 0 ≤ y ≤ L/2
(5)

∂T
∂y

= 0

{
y = 0, 0 ≤ x < L

y = L/2, 0 < x < L
(6)

The MTD (∆T) in the square HGB can be dimensionless as:

∆T̃ = (Tmax − Tmin)/(q′′′L2/k0) (7)

where Tmax is the hot-spot temperature in the square HGB.
With steady-state heat conduction, the EGR in the entire HGB is:

σ = σk0 + σkc (8)

The expressions of σk0 and σkc are:

σk0 =
x

Ak0

k0 · [(dT/dx)2 + (dT/dy)2/T2]dA (9)

σkc =
x

Akc
kc · [(dT/dx)2 + (dT/dy)2/T2]dA (10)

where Ak0 and Akc are the areas of the HGB and the HTCC, respectively. k0 is thermal
conductivity of HGB, and kc is thermal conductivity of HTCC.

The EGR in the square HGB can be dimensionless as:

σ̃ =
σTmin

q′′′ L2 (11)

where q′′′ is heat-generation rate per unit volume, L is length of square HGB, and Tmin is
the lowest temperature of square HGB.

3. Multi-Objective Constructal Design for “Arrow-Shaped” HTCC

From Figure 1, the “arrow-shaped” HTCC area was determined by four characteristic
sizes: L1, L2, H1, and H2. Under the given condition of area fraction (φ) of the HTCC,
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the heat conduction problem of the square HGB has three DOF. The NSGA-II algorithm
program was run through MALAB software, and the connection between MATALB and
COMSOL was realized through COMSOL LiveLink for MATLAB. In this way, the multi-
objective constructal design of the “arrow-shaped” HTCC could be carried out through the
optimization of the single DOF, two DOF and three DOF, and the thermal performances
of the square HGB under the optimization of different DOF could be compared. In the
NSGA-II algorithm, the population size, mutation probability, and evolutionary generation
were set to 100, 0.8, and 10, respectively. The TOPSIS decision method was selected based
on the distances from each point in the Pareto frontiers to the ideal and non-ideal points.
The LINMAP decision method was selected based on the weighted distance from each
point in the Pareto frontiers to the ideal point. The Shannon entropy decision method was
selected based on the best feasible result of different objectives.

The deviation index is defined as [56]:

D =

√
∑m

j=1 (Giopt j − Gpositive
j )

2

√
∑m

j=1 (Giopt j − Gpositive
j )

2
+

√
∑m

j=1 (Giopt j − Gnegative
j )

2
(12)

where Gpositive
j is the normalized and weighted value of the jth objective of the ideal

point.Gnegative
j is the normalized and weighted value of the jth objective of the non-ideal

point, and iopt is the best feasible result.

3.1. Multi-Objective Constructal Design under Single-DOF Optimization

First, we considered the constructal design of the “arrow-shaped” HTCC when the area
of the arrowhead was fixed. Next, taking the width of the rectangular area of the “arrow-
shaped” HTCC L1 as the optimization variable, the multi-objective constructal design of
the “arrow-shaped” HTCC in the square HGB could be carried out with the objective of
minimizing the MTD and the EGR. According to Ref. [24], the relevant parameters are as
follows: φ = 0.1, L̃2 = 0.4, H̃2 = 0.1, k̃ = 200, k0= 2W/(m · K), q′′′= 500W/m3.

Figure 2 shows the Pareto fronters of the dimensionless MTD (∆T̃) and the dimen-
sionless EGR (σ̃) obtained by MOO under single-DOF optimization. Figure 3 shows the
distribution of L̃1 in the Pareto frontiers under single-DOF optimization. From Figure 2,
with the increase of ∆T̃, σ̃ decreased continuously. ∆T̃ and σ̃ cannot reach their minimum
values at the same time, so it is necessary to find the best compromise between ∆T̃ and σ̃
to make the comprehensive thermal performance of the square HGB optimal. Having at
least one objective function (σ̃ or ∆T̃) in the Pareto frontiers is better than having the other
solutions outside the Pareto frontiers. Decreasing σ̃ (or ∆T̃) will inevitably lead to ∆T̃ (or
σ̃) increases, so the Pareto frontiers have the least conflict of objectives compared to other
solutions. From Figure 3, in the Pareto frontiers under single-DOF optimization, L̃1 was
distributed between 0.0903 and 0.0981, and the optimal solutions with minimum ∆T̃ and σ̃
of L̃1 were on the boundary of the distribution range.

Table 1 shows the optimization results of the square HGB with different objectives
under single-DOF optimization. The three decision methods in the table, comprising
TOPSIS, LINMAP, and Shannon entropy, are commonly used for solving multi-objective
decision-making problems. From Table 1, the optimal result with the Shannon entropy
decision method was the same as that obtained with the objective of minimizing the ∆T̃.
The optimal results with the TOPSIS and LINMAP decision methods represent the optimal
compromise of ∆T̃ and σ̃. In the single-DOF optimization, the deviation index of the
optimal result with the TOPSIS decision method was the smallest, so the optimal result with
the TOPSIS decision method was selected as the design scheme for the best compromise
between the maximum thermal resistance and the loss of heat transfer irreversibility of the
square HGB.
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Table 1. Optimization results of the square HGB with different objectives under single-DOF optimization.

Optimization
Methods Decision Methods

Design Variables Optimization Objectives Deviation Indexes [56]
~
L1 ∆

~
T

~
σ D

Multi-objective
optimization

LINMAP 0.0973 0.0934 0.0431 0.2020
TOPISIS 0.0976 0.0932 0.0431 0.1862

Shannon Entropy 0.0981 0.0929 0.0432 0.197

Single-objective
optimizations

∆T̃ 0.0981 0.0929 0.0432 0.1997
σ̃ 0.0903 0.0981 0.0426 0.8003

3.2. Multi-Objective Constructal Design under Two-DOF Optimization

By further releasing the constraints fixed by the arrowhead shape and taking the
width (L̃1) of the rectangular area and the width (L̃2) of the arrowhead as the optimization
variables while keeping the area of the arrowhead (L̃2H̃2 = 0.04) unchanged, the multi-
objective constructal design of the “arrow-shaped” HTCC in the square HGB could be
carried out with the objective of minimizing the MTD and the EGR.
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Figure 4 shows the Pareto frontiers of ∆T̃ and σ̃ obtained by MOO under two- DOF
optimization. Figure 5 shows the distributions of L̃1 and L̃2 in the Pareto frontiers under
two-DOF optimization, respectively. From Figure 4, with the increase of ∆T̃, σ̃ decreased
continuously. Therefore, it was necessary to find the optimal constructs of L̃1 and L̃2.
Compared with Figure 2, the minimum values of ∆T̃ and σ̃ on Pareto frontiers were
reduced. From Figure 5, in the Pareto frontiers under two-DOF optimization, L̃1 was
distributed between 0.0911 and 0.0991, L̃2 was distributed between 0.4876 and 0.4980, and
the optimal solutions with minimum ∆T̃ and σ̃ of L̃1 and L̃2 were on the boundary of the
distribution range.
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Table 2 shows the optimization results of the square HGB with different objectives
under two-DOF optimization. From Table 2, the optimal result with the Shannon entropy
decision method was the same as that obtained with the objective of minimizing the ∆T̃,
which has smaller deviation indexes compared to the optimal result with minimum σ̃.
The optimal results with the TOPSIS and LINMAP decision methods were represent the
optimal compromise of ∆T̃ and σ̃. In the two-DOF optimization, the deviation index of the
optimal result with the TOPSIS decision method was the smallest, so the optimal result
with the TOPSIS decision method was selected as the design scheme of the square HGB.
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Optimization
Methods Decision Methods

Design Variables Optimization Objectives Deviation Indexes
~
L1

~
L2 ∆

~
T

~
σ D

Multi-objective
optimization

LINMAP 0.0983 0.4954 0.0907 0.0415 0.1867
TOPISIS 0.0988 0.4948 0.0903 0.0416 0.1628

Shannon Entropy 0.0991 0.4876 0.0902 0.0416 0.1860

Single-objective
optimizations

∆T̃ 0.0991 0.4876 0.0902 0.0416 0.1860
σ̃ 0.0911 0.4980 0.0959 0.0410 0.8140

3.3. Multi-Objective Constructal Design under Three-DOF Optimization

Considering that the “arrow-shaped” HTCC shape can be changed, taking the width
(L̃1) of the rectangular area, the width (L̃2) of the arrowhead, and the length (H̃1) of
the arrowhead as the optimization variables, the multi-objective constructal design of
the “arrow-shaped” HTCC in the square HGB can be carried out with the objective of
minimizing the MTD and the EGR.

Figure 6 shows the Pareto frontiers of ∆T̃ and σ̃ obtained by MOO under three- DOF
optimization. Figure 7 shows the distributions of L̃1, L̃2, and H̃1 in the Pareto optimal
frontiers under three-DOF optimization, respectively. From Figure 6, with the increase of
∆T̃, σ̃ decreased continuously. Therefore, it was necessary to find the optimal constructs
of L̃1, L̃2, and H̃1. Compared with Figure 4, the minimum values of ∆T̃ and σ̃ on the
Pareto frontiers were further reduced. From Figure 7, in the Pareto frontiers with three-
DOF optimization, L̃1 was distributed between 0.1170 and 0.1198, L̃2 was distributed
between 0.4794 and 0.4911, and H̃1 was distributed between 0.6258 and 0.7019. L̃1, L̃2
and H̃1 of the “arrow-shaped” HTCC in the square HGB were based on multi-objective
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constructal design distributed between the optimal solutions with minimum ∆T̃ and σ̃, and
the optimal solutions with minimum ∆T̃ and σ̃ of L̃1, L̃2, and H̃1 were on the boundary of
the distribution range.
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Table 3 shows the optimization results of the square HGB with different objectives
under three-DOF optimization. From Table 3, the optimal result with the Shannon entropy
decision method was the same as that obtained by taking the objective of minimizing the
∆T̃. The optimal results with the TOPSIS and LINMAP decision methods represent the
optimal compromise of ∆T̃ and σ̃. In three-DOF optimization, the deviation index of the
optimal result with the TOPSIS decision method was the smallest, so the optimal result
with the TOPSIS decision method was selected as the design scheme of the square HGB.

Table 3. Optimization results of the square HGB with different objectives under three-DOF optimization.

Optimization
Methods Decision Methods

Design Variables Optimization
Objectives

Deviation
Indexes

~
L1

~
L2

~
H1 ∆

~
T

~
σ D

Multi-objective
optimization

LINMAP 0.1199 0.4905 0.6483 0.0891 0.0396 0.3202
TOPISIS 0.1195 0.4914 0.6399 0.0886 0.0398 0.3010

Shannon Entropy 0.1198 0.4794 0.6258 0.0877 0.0403 0.3575

Single-objective
optimizations

∆T̃ 0.1198 0.4794 0.6258 0.0877 0.0403 0.3575
σ̃ 0.1170 0.4911 0.7019 0.0929 0.0390 0.6425

Figure 8 shows the optimal constructs of the “arrow-shaped” HTCC with the TOPSIS
decision method based on single-DOF, two-DOF, and three-DOF optimization. From
Figure 8, the corresponding ∆T̃ to the optimal construct under single-DOF, two-DOF, and
three-DOF optimizations was 0.0932, 0.0903, and 0.0886, respectively, and the corresponding
σ̃ was 0.0431, 0.0416, and 0.0398, respectively. Compared with the two-DOF and single-DOF
optimizations, the ∆T̃ of square HGB under three-DOF optimization was reduced by 1.9%
and 4.9%, respectively, and the σ̃ was reduced by 4.3% and 7.7%, respectively. The results
show that ∆T̃ and σ̃ of the square HGB can be further reduced by increasing the DOF
optimization of the “arrow-shaped” HTCC, which can improve the comprehensive thermal
performance of the square HGB. Compared to what was reported in [24], by taking into
account the thermal conductivity of the heat-generation body, the optimization process
may not be as obvious as optimizing for only one objective.
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4. Conclusions

Based on the square HGB with “arrow-shaped” HTCC model established in the
previous literature, in this study, MOO was performed with MTD minimization and EGR
minimization as optimization objectives, and the Pareto frontiers with optimal set were
obtained based on NSGA-II. TOPSIS, LINMAP, and Shannon entropy decision methods
were used to obtain optimal results. The deviation index was used to compare and analyze
the advantages and disadvantages of the optimal results under each decision method. At
the same time, the multi-objective constructal designs of the “arrow-shaped” HTCC were
carried out through the optimization of single DOF, two DOF, and three DOF, and the
thermal performances of the square HGB under the optimizations of different DOF were
compared. The results show the following:

1. In the Pareto frontiers of ∆T̃ and σ̃ obtained by MOO with single-DOF, two-DOF, and
three-DOF optimizations, with the increase of ∆T̃, σ̃ decreased continuously. ∆T̃ and
σ̃ could not reach their optimal values under single-objective optimization at the same
time; however, they could effectively compromise the two objectives and reduce the
conflict between them.

2. Under the optimization of single DOF, two DOF and three DOF, the deviation index
of the optimal result based on the TOPSIS decision method was the smallest, so the
optimal result with the TOPSIS decision method was selected as the design scheme
for the best compromise between the maximum thermal resistance and the loss of
heat transfer irreversibility of the square HGB.

3. Compared with the two-DOF and single-DOF optimizations, the ∆T̃ of square HGB
under three-DOF optimization was reduced by 1.9% and 4.9%, respectively, and
the σ̃ of square HGB under three-DOF optimization was reduced by 4.3% and 7.7%,
respectively. The ∆T̃ and σ̃ of the square HGB could be further reduced by increasing
the DOF optimization of the “arrow-shaped” HTCC, which could further improve the
comprehensive thermal performance of the square HGB. It may be possible to further
improve the comprehensive thermal conductivity of the square heat-generation body
by establishing HTCCs with more degrees of freedom.

4. Constructal theory and NSGA-II are powerful tools for thermal performance improve-
ments of a square HGB with “arrow-shaped” HTCC, and the optimization methods
can be applied to many problems.

At this stage, the optimal construct of the HTCC is only studied by means of simulation,
and experimental research will be carried out in the future.
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Nomenclature

A0 Area of high thermal conductivity material (m2)
L Length of square heat-generation body (m)
H1 Length of rectangular area of “arrow-shaped” channel (m)
L1 Width of rectangular area of “arrow-shaped” channel (m)
H2 Length of arrowhead area of “arrow-shaped” channel (m)
L2 Width of arrowhead area of “arrow-shaped” channel (m)
k̃ Ratio of thermal conductivity (-)
k0 Thermal conductivity of heat-generation body (W/mK)
kc Thermal conductivity of high-thermal-conductivity channel (W/mK)
q′′′ Heat generation rate per unit volume (W/m3)
T Temperature (K)
Greek Symbols
α Porosity of high-thermal-conductivity channel (-)
σ Entropy-generation rate (W/mK)
Superscript
˜ Dimensionless
Subscripts
min Minimum
Abbreviations
HGB Heat-generation body
HTCC High-thermal-conductivity channel
MTD Maximum temperature difference
EGR Entropy-generation rate
MOO Multi-objective optimization
DOF Degree of freedom
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