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Abstract: The electro-hydraulic brake (EHB) system of a vehicle should operate normally under
all circumstances to ensure automotive safety. This redundant system guarantees the minimum
required performance in the event of a critical failure of the brake system. In this study, we propose a
redundant motor control strategy for the EHB to fully realize a functional safety design. The EHB
system is composed of two identical electronic control units (ECUs), a dual three-phase dual-winding
permanent magnet synchronous motor (DW-PMSM), and hydraulic components to generate brake
pressure through the movement of an actuator. First, we propose a method to acquire the necessary
motor current for generating brake pressure. Second, we present an initial driving method for
the DW-PMSM for achieving stability before generating the braking pressure that involves setting
the actuator’s origin position without a position sensor. Lastly, we describe a redundant motor
control strategy for continuous brake operation depending on whether each ECU experiences system
failure. The experimental results showed the effectiveness and feasibility of the control strategy of
the dual-winding motor for a functional safety design.

Keywords: redundant brake system; electro-hydraulic brake; motor control; pressure control;
dual-winding permanent magnet synchronous motor; dual electronic control units; functional safety;
automotive vehicle

1. Introduction

As the driving performance of vehicles is continuously improved using electronic
control systems, their functional safety issues have gained importance, and it has become
necessary to develop brake systems that are in strict compliance with safety requirements.
Furthermore, throughout the lifespan of a safety-critical system, safety measures should be
given the greatest priority. The ISO-26262 functional safety standard was designed to en-
sure the development of safety-oriented systems [1,2]. Given these circumstances, all brake
systems must maintain the above-mentioned strict functional safety standards, especially
during driving. Hence, various types of brake systems, as well as the electric vacuum pump
(EVB), electro-mechanical brake booster (EMBB), and electro-hydraulic brake (EHB), have
been produced. The EVB system consists of an extra electric vacuum pump that acts as the
vacuum source to substitute for the combustion engine in electric vehicles (EVs), which re-
sults in a bulky and expensive brake system [3,4]. The EMBB system is a brake aid actuator
that boosts the driver’s pedal power independently of the vacuum source, enabling active
braking for highly automated driving (HAD). However, several calibrations are necessary
to account for the EMBB system’s significant nonlinearities and load-dependent friction
in position control [5]. The EHB is a hybrid electro-hydraulic system, in which electronic
parts replace some of the mechanical components of the original brake system [6,7]. The
brake pedal and wheel calipers are separated from the EHB system to generate pedal force
feedback, providing a pedal feel that is independent of the operating environment of the
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brake system. In addition to operator comfort, the EHB enables the continuous control
of each caliper pressure [8,9]. EHB systems, as opposed to typical braking systems using
vacuum boosters, allow for faster response times and smaller sizes [10]. A faster response
helps active safety systems, such as electronic stability control, work better [11]. However,
EHB systems have no option but to stop the vehicle by pressing on the driver’s pedaling
force in cases of a system failure, such as hydraulic leakage or electrical malfunction. In this
situation, the braking power may be insufficient to cope with an accident, especially when
the vehicle is driven at high speeds. To overcome this safety state, a redundant design is
typically suggested as a solution. Dual three-phase motors are used in such redundant
systems, and dual electrical control units (ECUs) are constructed as two electrically sepa-
rated units. The redundant brake system requires elementary infrastructure for safe and
reliable operation. Redundancy technology is a method for improving the reliability of a
motor drive system by adding extra resources, such as hardware or software [12–14]. This
brake system contains a dual-winding permanent magnet synchronous motor (DW-PMSM).
The configuration and drive of the DW-PMSM have been explored extensively in previous
studies. The advantages of the DW-PMSM include higher torque, lower torque ripple,
lower eddy losses owing to the reduced stator magneto motive force (MMF) harmonic
components, and better fault-tolerant capacity [15–20].

In this work, we propose a redundant motor control strategy for the EHB to generate
and maintain brake pressure for normal or fault conditions, such as a fault in one of the
windings. The main aim here was to propose a redundant motor control strategy and
ensure continuous control of hydraulic performance for functional safety. As shown in
Figure 1a, in the EHB system, when a driver presses the brake pedal, the ECUs measure
the physical change in the pedal length through a pedal sensor. Accordingly, the ECUs
calculate the required brake pressure and output the appropriate valve command to operate
the hydraulic control unit (HCU) and pulse-width modulation (PWM) duty through an
inverter to operate the DW-PMSM.

Figure 1. Cont.
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Figure 1. Configuration of the redundant electro-hydraulic brake system: (a) flowchart of the brake
operation and (b) schematics of the dual ECUs and DW-PMSM.

The rotational motion of the motor is converted to a forward motion in the actuator
by an internal gear, which generates brake pressure at the wheel cylinder. The position
sensor of the pump piston inside the actuator that moves forward and backward is not
built-in because position sensors, such as potentiometers and linear variable displacement
transducers (LVDTs), have nonlinear characteristics [21,22]. This nonlinearity leads to
inaccuracies or errors in measurements. Instead of correcting the nonlinearities in the
outputs of these position sensors, we propose a method to operate the actuator without
a position sensor by calculating the position of the pump piston according to the internal
gear ratio and motor rotation ratio. Failures of the sensors, valves, and inverters of each
of the ECUs are detected by the diagnostic function periodically, and the ECU in which
the failure occurs limits the control output. Thus, a normally operating ECU performs
continuous control. In Figure 1b, each ECU receives power independently of the other,
and each acquires separate sensor signals and vehicle information. The upper controller
calculates the required brake pressure value and sends the valve commands accordingly.
The sub-controller calculates the PWM output value according to the torque command
output from the upper controller. For normal operation, each ECU transmits 100% of its
output. This enables the creation of maximum pressure in the brake system; thus, if one
ECU fails, the remaining ECU maintains 100% of its output so that it can output 50% of
its maximum performance under normal conditions. When there is 50% of the required
output of this brake system, the sudden braking function of the vehicle is possible.

However, if the brake pressure command required by each ECU is calculated differ-
ently under normal operation, the torque command values will be different. Accordingly,
different current values are applied to each of the coils of the DW-PMSM, causing non-
uniform operation of the motor. To solve this problem, in this work, ECU A is set as
the master and ECU B is set as the slave, and the torque command output from the sub-
controller is transmitted from the master to the slave through universal asynchronous re-
ceiver/transmitter (UART) communication to achieve motor control with the sub-controller
commands. The diagnostic function determines whether the sensor status in each ECU is
normal. If the diagnostic function detects a fault in the ECU, the PWM is output only from
the normal ECU.

In the present study, we explain how to calculate the current command value required
for the DW-PMSM to generate brake pressure. Further, we describe a method for setting
the initial actuator position throughout the motor operation. In the redundant system, a
brake control method for brake operation in the single fault state is presented.
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2. Calculation of Required Current Reference of DW-PMSM for Brake
Pressure Generation
2.1. Mathematical Model of DW-PMSM

To calculate the value of the motor current required to generate the brake pressure
in the EHB system, it is necessary to first analyze the mathematical model of the DW-
PMSM to investigate the ratio between current and torque. Brake pressure is created
by pushing the incompressible hydraulic pressure inside the actuator according to the
motor torque. The voltage equation in the dq frame of the DW-PMSM can be expressed as
Equations (1) and (2).

Vdk = Raidk +
dλdk

dt
− ωrλqk (1)

Vqk = Raiqk +
dλqk

dt
+ ωrλdk (2)

Here, Ra is the stator winding resistance; ωr is the angular electrical speed; λdk and
λqk are the magnetic flux linkages in the dq frame, as expressed in Equations (3) and (4);
and the subscript k denotes motor coil-1 and coil-2.

λdk = Lqkiqk + φ f (3)

λqk = Lqkiqk (4)

Ldk and Lqk are the dq-axis self-inductances of each phase; φ f is the flux of the perma-
nent magnet. The torque of the DW-PMSM can be obtained from the mechanical output of
the motor. In the dq-axis coordinate system, the input power of the DW-PMSM is expressed
as Equation (5).

Pin,k =
3
2

(
Vdkidk + Vqkiqk

)
(5)

By substituting Equations (1) to (4) into Equation (5), the result is as follows.

Pin,k =
3
2

(
Ra

(
i2dk + i2qk

)
+

(
idk

dλdk
dt

+ iqk
dλqk

dt

)
+ ωrφ f iqk + ωr

(
Ldk − Lqk

)
idkiqk

)
(6)

In the above equation, the first two terms are the copper loss, and the next two
terms are the variations in the magnetic field energy. The last two terms represent the
mechanical output of the motor [23]. PMSMs with concentrated, symmetrically arranged
windings of 8-pole and 12-slot combinations have low mutual inductance effects if the
battery input voltages and rotor position sensing values of ECUs A and B are the same.
Therefore, consideration of mutual electromagnetic coupling between motor coil-1 and
coil-2 was excluded. The torque is divided by the angular electrical speed ωr in the last
two terms representing mechanical output in Equation (6). Equations (7) and (8) show the
electromagnetic torque equations generated by the first (T1) and second (T2) winding sets.
Accordingly, the total torque is calculated by adding T1 and T2, and P is the number of
poles [24].

T1 =
P
2

3
2

(
φ f iq1 +

(
Ld1 − Lq1

)
id1iq1

)
(7)

T2 =
P
2

3
2

(
φ f iq2 +

(
Ld2 − Lq2

)
id2iq2

)
(8)

2.2. Calculation of Feedforward Current Reference according to Required Brake Pressure

When the d-axis is controlled with zero current (id1 = 0, id2 = 0), the total torque
equation (Tsum) is calculated as follows:

Tsum = T1 + T2 =
P
2

3
2

φ f (iq1 + iq2) (9)
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The torque applied to the DW-PMSM is determined by the current. Therefore, the
torque command can be expressed as a current value. The brake pressure is generated
according to the current value applied to motor coil-1 and coil-2. In Figure 2a,b, the same
current is applied in incremental steps from 0 to 60 A in each ECU. As a result, the pressure
generated in the EHB system is as shown in Figure 2c. Thus, the brake pressure that is
related to the current applied to the DW-PMSM can be expressed as a linear line, as shown
in Figure 2d. I_apply * represents the feedforward current required to increase the pressure.
Moreover, I_release* represents the feedforward current required to drop the pressure. Due
to the characteristics of the EHB brake system, the value of the current required when the
pressure is rising and falling is different. Accordingly, if the brake pressure required by
the upper controller is calculated in accordance with the state in which the driver applies
the brake, the current value required for the DW-PMSM can be estimated. This current
reference value is used as the feedforward term of the sub-controller. The feedforward map
of the speed controller has a different feedforward current reference according to the rise
and fall of pressure. The feedforward current reference is described in detail in Section 4.

Figure 2. According to the applied current reference: (a) changes in the current of motor coil-1;
(b) changes in the current of motor coil-2; (c) generated pressure according to the current of motor coil-
1 and coil-2; (d) extracted feedforward current reference of the DW-PMSM for generating pressure.
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3. Proposed Motor Operation Method for Position Alignment of Actuator
3.1. Actuator Control Mechanism for Brake Pressure Control

As shown in Figure 3a, in the EHB system, when the DW-PMSM rotates, the lead
screw converts the rotational motion of the shaft into linear motion. Hence, the pump
piston moves forward and backward in the actuator. Based on the mechanical design
specifications, it is possible to calculate the pump piston position according to the motor
rotation rate. Therefore, if the initial position of the pump piston is set, the position can
be calculated continuously according to the angular velocity of the DW-PMSM without
the position sensor of the actuator. Thus, the pump piston position can be identified in
real time during brake operation. Since the position alignment of the pump piston cannot
be performed while the driver is pressing the brake pedal to stop the vehicle, a method
to align the initial position of the pump piston at a specific point in time is proposed
herein. Once the initial position alignment is completed, when the brake pedal is pressed,
the pump piston advances according to the motor rotation, as shown in Figure 3b, to
increase the brake pressure. If the driver does not press the pedal, the motor rotates in the
opposite direction, and the pump piston moves to its initial position, thereby reducing the
brake pressure.

Figure 3. Pump piston movement in the actuator according to motor driving: (a) initial actuator
configuration of the EHB system; (b) brake pressure application with pump piston advancement;
(c) brake pressure release with retraction of the pump piston.

3.2. Proposed Pump Piston Alignment Method
3.2.1. Wall Detection Process with the Ignition off

The proposed method aligns and calculates the pump piston position inside the EHB
actuator in real time without a position sensor. As shown in Figure 3a, the process of
aligning the pump piston with the back wall is called wall detection. This process should
be performed primarily when the vehicle is in the ignition off state. When this ignition
off state of the vehicle expires after a valid amount of time, the ECU of the EHB system
turns off. Before the ECU is turned off, the wall detection process shown in Figure 4 is
performed. The wall detection method proposed above is performed primarily when the
vehicle is turned off. When the power of the ECU is turned on, the process shown in
Figure 5 is performed.



Energies 2022, 15, 5090 7 of 19

Figure 4. Flowchart of the proposed wall detection with the EHB system with the ignition off.

A detailed description of the flowchart in Figure 4 is as follows:

1. After to f f has elapsed after ignition off, only the master ECU performs motor speed
control for wall detection. When the ignition is on or the driver presses the brake
pedal, t is reset.

2. As shown in Figure 6a, the motor speed control for wall detection maintains a constant
target speed reference. The master ECU executes PI control using the current value
measured by the current sensor and speed value of the motor based on the motor
position sensor (MPS).

3. While performing motor speed control for wall detection, if ∆lact is less than the value
of ε when the pump piston touches the rear wall, it is judged that the pump piston
inside the actuator is stably in contact with the rear wall.

4. When the pump piston is stably in contact with the rear wall, the value of Imeasured
increases by the I gain of the motor speed control for wall detection. If Imeasured is
between Iwall_min and Iwall_max, it is deemed that wall detection is successful.

5. When wall detection is deemed to have been successfully performed, the value of θm
is written as θnvm_m in the nonvolatile memory (NVM) circuit in the master ECU, and
the corresponding value is maintained even when the ECU is reset.

6. Once Steps 1 to 5 are completed or wall detection remains incomplete, the ECU of the
EHB system is turned off.
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Figure 5. Flowchart of the proposed motor initial operation with the EHB system ECU on.

Figure 6. Cont.
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Figure 6. Proposed motor operation control method for aligning the pump piston: (a) functional block
diagram for speed control of the wall detection process; (b) functional block diagram for position
control of origin setting.

3.2.2. Motor Initial Operation with the ECU on

By attaching the pump piston position to the rear wall of the actuator through the
previous wall detection process, when the ECU is turned on again, the wall detection
process can be skipped, thereby reducing the overall time required for the motor initial
operation. However, if the motor inside the EHB system rotates while the power is turned
off, the processes in the previous wall detection become invalid. Therefore, we propose
a method for an initial motor operation to align the pump piston positions. A detailed
description of the flowchart for initial motor operation, as shown in Figure 5, is as follows:

1. When the ECU is on, the master ECU checks the success of shutdown of wall detection
through the flag stored in the NVM.

2. If it is confirmed that wall detection was successful in the previous state, check
whether θNVM_m is between θm_min and θm_max.

3. If the value of θNVM_m is valid, setting of the position reference is performed. The
master ECU sets the pump piston position to the rear wall, which allows calculation
of the movement distance of the pump piston depending on the angle of rotation of
the motor.

4. Execute motor position control for the set origin. As shown in Figure 6b, the motor
position control moves the pump piston to a stable distance from the rear wall. This is
to prevent any mechanical deformation caused by the collision of the pump piston
with the front and rear walls of the actuator.

5. As the pump piston moves to the reference origin, check whether the value of pact is
between porg_min and porg_max. The motor position control process is continued until
the pump piston position reaches the target reference origin area.

6. Check whether the measured current value Imeasured of the DW-PMSM is between
Iorg_min and Iorg_max. If the condition is satisfied, it is judged that the motor’s initial
operation was performed successfully.

If it is confirmed that wall detection failed in the previous cycle, the wall detection
process is performed again. Moreover, if wall detection was not successfully performed,
the motor initial operation is judged to have failed. In addition, if it is determined that the
value of θNVM_m is invalid even after wall detection was successful in the previous cycle,
the wall detection process should be performed again. Similarly, if wall detection was not
performed successfully in this process, the motor initial operation is judged to have failed.
In Steps 4 to 6 above, if the values of the pump piston position pact and measured current
Imeasured of the DW-PMSM do not meet the conditions, the motor initial operation is not
deemed to be a failure. This is because the absolute position of the pump piston has already
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been set through the wall detection process. If the driver presses the pedal, the EHB system
can control the motor, so Steps 4 to 6 can be skipped.

4. Proposed Control Strategy of DW-PMSM for Generating Target Brake Pressure
4.1. Current Motor Control Method When the EHB System Is in Normal State

The current control method for the DW-PMSM has been studied extensively for control
stability [22–28]. This paper presents a current control method based on the two-individual-
current control method to ensure balanced current in each winding of the DW-PMSM. The
two-individual-current control is a useful method in industrial applications because vector
control for a single three-phase machine can be used redundantly. Furthermore, it has
the advantage of minimizing the instability of the current that can be caused by minute
differences in the two sets of three-phase stator windings [25,26]. Figure 7a schematically
shows the current motor control methods for the DW-PMSM of the EHB system. As shown
in Figure 2a, each ECU is composed of current and MPS sensors.

Once the required brake pressure is calculated by the upper controller of each ECU,
different brake command values may appear. To solve this problem, as shown in Figure 8,
we propose a method to use the upper controller value in the master ECU in the normal
state. When the driver presses the brake pedal, the upper controller outputs the speed
command value of the DW-PMSM to output the target brake pressure. The sub-controller
of the master ECU then calculates the motor current command value according to the speed
command value. Figure 7b schematically shows the process for this part. In this work,
the feedforward current reference value is already calculated, as previously described
in Section 2. The extracted feedforward current reference in Figure 2d is used as the
feedforward map of the master ECU speed controller. The sub-controller generates the
current reference value by adding the extracted feedforward value and output of the
PI controller through the measured motor speed (ωm). The proposed speed controller
generates a current command value (i∗s ) through the anti-windup process using the sum
of the feedforward current reference and the feedback current reference (i∗∗s ). The master
ECU divides the current reference value into two so that each ECU can generate 50%
output. Therefore, the master ECU outputs half of the current command value as PWM
duty through the current control. In addition, the slave ECU receives the current command
value from the master through UART communication and generates 50% of the torque
output from each ECU. Functions are performed in the functional block of ECU B in the
lower part of Figure 7a. ECUs A and B are configured by the same current control method,
so coil-1 and coil-2 of the DW-PMSM can acquire symmetrical current waveforms through
the same pressure reference and control method.
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Figure 7. Proposed motor current control method for generating brake pressure: (a) functional
block diagram for current control of the DW-PMSM; (b) functional block diagram for the proposed
speed controller.
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Figure 8. Flowchart of the proposed current control method in the normal state.

4.2. Current Motor Control Methods When the EHB System Is in A Single Fault State

The EHB system consists of two ECUs, and if one of them is in the fault state, the
diagnostic function of the ECU in the normal state identifies this faulty ECU status. It is
the same with DW-PMSM, where a fault changes the electrical characteristics of the faulty
device. In cases like this, some of the signal changes are discrete and irregular during fault
detection [27,28]. If one ECU fails, the remaining ECUs maintain the output so that 50% of
the maximum pressure can be output in the normal state. The EHB system is capable of
sudden vehicle braking at 50% of the required output. In Figure 9a, if ECU B in the slave
state is out of control, the upper controller and sub-controller are executed in ECU A in the
master state. Control is performed in the ECU in the master state without transmitting the
current command value to the slave through UART communication. In Figure 9b, if ECU
A, which is in the master state, is out of control, then ECU B, which is in the slave state, is
converted to the master. The configuration is such that only the master ECU can use the
output value of the upper controller, so ECU B can continuously control the target pressure
and speed command values of the DW-PMSM that are normally controlled by ECU A.
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Figure 9. Flowchart of the proposed current control method in the normal state: (a) single fault in
ECU B; (b) single fault in ECU A.

Through this process, the EHB system composed of two ECUs can maintain safe
braking performance under all conditions except for the double fault condition. In this
study, when a failure occurs in the counterpart ECU when brake pressure is applied, it
was experimentally proven that the brake pressure can be maintained constant before and
after failure.

5. Experimental Verification
5.1. Test Equipment Setup and DW-PMSM Parameters

The DW-PMSM used in this work consists of 8 poles and 12 slots. The maximum
value for the phase current of each motor coil is 60 A. The parameters of the DW-PMSM
are shown in Table 1. The EHB system contains the dual ECUs, actuators, valves, and
sensors (MPS, current sensing) described earlier. The two ECUs are electrically isolated
and powered by one battery each. The EHB system and four-brake caliper are shown in
Figure 10. When the motor rotates, brake pressure is created in the HCU, which increases
the hydraulic pressures in the four calipers. The test bench consisted of two power supplies,
the EHB system, a control PC, and a simulator, as shown in Figure 10. In addition, the
universal measurement and calibration protocol (XCP) equipment was linked with the
control PC to measure data in real time. The ignition on/off settings and driving states
were set through the vehicle simulator.
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Table 1. The design parameters of the DW-PMSM.

Parameter Name Value

Resistance (Ω) 0.023
d-axis self-inductance (mH) 0.078
q-axis self-inductance (mH) 0.079

Flux linkage (Wb) 0.0055
DC link voltage (V) 13

Figure 10. Photo of test bench.

5.2. Test Results of Proposed Motor Operation Method for Position Alignment of Actuator

In Section 3, we discussed how the proposed pump piston alignment method enables
the calculation of the pump piston position inside the EHB actuator in real time without a
position sensor. To prove the proposed method, a verification was carried out through a
test bench. The wall detection process with the ignition off is presented in Figure 11. While
performing motor speed control for wall detection, if ∆lact is less than the value of ε when
the pump piston touches the rear wall, as shown in Figure 11, it is judged that the pump
piston inside the actuator is stably in contact with the rear wall. Moreover, the value of
(Iq1) increases by the I gain of the motor speed control for wall detection. Hence, when
the measured current value (Iq1) is between the minimum current reference (Iwall_min) and
maximum current reference (Iwall_max), it is deemed that the wall detection process was
successfully conducted. Hence, the absolute pump piston position is set at −1.5 mm. Lastly,
the mechanical angle value of the motor (θm) and related information is written in the
NVM circuit in the master ECU to skip the wall detection process when the ECU power is
applied again.

When the ECU is turned on again, the wall detection process can be skipped. First
of all, the master ECU judges the success of the shutdown of wall detection through the
flag stored in the NVM when the ECU is on. Moreover, if the value of the mechanical
angle stored in the NVM (θNVM) does not differ from the current mechanical angle within
the 8deg, it is determined that the pump piston is already located on the rear wall. The
measurement graphs of the current and position, as shown in Figure 11, show the process
of motor position control for the origin set. from −1.5 mm to 0 mm of the pump piston
position with the ECU on.
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Figure 11. Measurement results regarding wall detection process with the ignition off and wall
detection skip and origin set. process through motor initial operation with the ECU on: (a) q−axis
current command value (I∗q1) and measured q−axis current value (Iq1); (b) target pump piston
position and calculated pump piston position.

However, if the previous wall detection process failed or the ECU was abnormally
initialized, the wall detection process and motor position control for the origin set. should
be conducted together as shown Figure 12. The initial position of the pump piston is shown
as 1.2 mm, which is an example of an error that appears when calculating the position by
integrating the mechanical angle of the motor. After finishing the wall detection process,
the absolute pump piston position is set to −1.5 mm. Then, the process of motor position
control is conducted to move to the pump piston position from −1.5 mm to 0 mm. The
target position command is created when performing motor position control for the origin
set., and the current command, which is the output value of position control, moves the
pump piston to the origin (0 mm). Hence, the target position command is not generated
when wall detection and brake pressure control are performed.

Figure 12. Measurement results regarding wall detection and origin set. process with the ECU on:
(a) q−axis current command value (I∗q1) and measured q−axis current value (Iq1); (b) target pump
piston position and calculated pump piston position.

5.3. Test Results for Proposed Control Strategy of DW-PMSM for Generating Target
Brake Pressure

In Section 4, we discussed how if one ECU fails, the remaining ECUs should maintain
the output so that 50% of the maximum pressure can be output in the normal state. In
order to prove the control strategy proposed in this work, a verification was carried out
through the explained test bench. First of all, if ECU B fails while the EHB system maintains
a brake pressure of 140 bar, depending on the vehicle condition, all functions of ECU B



Energies 2022, 15, 5090 16 of 19

are stopped, as shown in Figure 13. The ECU B failed at about 0.5 s. All functions of
ECU B were inhibited, and the target pressure (bar∗2) and output current command (I∗q2) of
ECU B were instantaneously switched to zero. ECU A detected the status of ECU B and
performed control to stably reduce the brake pressure to 70 bar. Accordingly, the vehicle
could continuously operate the brake function. Moreover, the maximum current that each
ECU could output was 60 A. It is also possible to set the brake pressure higher than that
shown in Figure 13 within the maximum allowable current in ECU A.

Figure 13. Measurement results when the malfunctioning of ECU B occurs: (a) target pressure
(bar∗1 ,bar∗2 ) and measured pressure (bar); (b) q−axis current command value (I∗q1,I∗q2) and measured
q−axis current value (Iq1, Iq2); (c) measured three-phase current (Ia1, Ib1, Ic1), (Ia2, Ib2, Ic2); (d) cal-
culated pump piston position.

When ECU A fails while the EHB system maintains a brake pressure of 140 bar,
depending on the vehicle condition, all functions of ECU A are stopped, as shown in
Figure 14. ECU A failed at about 0.5 s. All functions of ECU A were inhibited, and the
target pressure

(
bar∗1

)
and output current command

(
I∗q1

)
of ECU A were instantaneously

switched to zero. ECU B detected the status of ECU A and performed control to stably
reduce the brake pressure to 70 bar.
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Figure 14. Measurement results when the malfunctioning of ECU A occurs: (a) target pressure
(bar∗1 ,bar∗2 ) and measured pressure (bar); (b) q−axis current command value (I∗q1,I∗q2) and measured
q−axis current value (Iq1, Iq2); (c) measured three-phase current (Ia1, Ib1, Ic1), (Ia2, Ib2, Ic2); (d) cal-
culated pump piston position.

When ECU A, which is in the master state, is out of control, then ECU B, which is in
the slave state, is converted to the master. As presented in Section 4.2, only the master ECU
can use the output value of the upper controller, and the output current command (I∗q2) of
ECU B is momentarily output to zero, as shown in Figure 14b. However, this did not affect
pressure performance because it occurred within 1 ms.

As a result, we demonstrated that the proposed control method can be maintained
at a constant brake pressure even if any ECU fails. The measurement graphs of the brake
pressure, motor current, and pump piston position in Figures 13 and 14 show the equal
control with a time interval of 800 ms.

6. Conclusions

In this study, the redundancy motor control method for an EHB system composed of a
DW-PMSM demonstrated continuous brake performance to stably stop the vehicle even if
a failure occurs in one of the ECUs. It was also proven that the brake pressure performance
can be maintained constant even when one ECU fails, and we verified the maintenance of
high brake pressure in the normal state. Hence, the validity of the brake performance of
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the redundant EHB system was verified. A particular contribution of this study is that the
method can meet the safety standards required by self-driving vehicles, including those for
highly automated driving, which reflect the highest standard of automotive safety integrity
levels (ASILs) during the entire lifecycle of a safety-critical system.

A proposed initial motor operation method for aligning the pump piston position for
wall detection and the origin set. process was proposed and verified in order to not need
to mount a position sensor. The test results showed that the position of the pump piston
can be continuously identified and used to detect whether the EHB system is operating
normally. Hence, the ECU can prevent the pump piston from colliding with the actuator’s
wall during brake control. With the presented redundant motor control strategies, this
study demonstrated the actual pressure performance when preventing control inhibition in
the redundant EHB system.
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