
Citation: Hopwood, M.W.; Stein, J.S.;

Braid, J.L.; Seigneur, H.P.

Physics-Based Method for

Generating Fully Synthetic IV Curve

Training Datasets for Machine

Learning Classification of PV

Failures. Energies 2022, 15, 5085.

https://doi.org/10.3390/en15145085

Academic Editor: Abu-Siada Ahmed

Received: 14 June 2022

Accepted: 11 July 2022

Published: 12 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Physics-Based Method for Generating Fully Synthetic IV Curve
Training Datasets for Machine Learning Classification of
PV Failures
Michael W. Hopwood 1,2 , Joshua S. Stein 2,* , Jennifer L. Braid 2 and Hubert P. Seigneur 3

1 Department of Statistics and Data Science, University of Central Florida, Orlando, FL 32816, USA;
michael.hopwood@knights.ucf.edu

2 Sandia National Laboratories, Albuquerque, NM 87123, USA; jlbraid@sandia.gov
3 Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922, USA; seigneur@ucf.edu
* Correspondence: joshua.stein@sandia.gov

Abstract: Classification machine learning models require high-quality labeled datasets for training.
Among the most useful datasets for photovoltaic array fault detection and diagnosis are module or
string current-voltage (IV) curves. Unfortunately, such datasets are rarely collected due to the cost
of high fidelity monitoring, and the data that is available is generally not ideal, often consisting of
unbalanced classes, noisy data due to environmental conditions, and few samples. In this paper, we
propose an alternate approach that utilizes physics-based simulations of string-level IV curves as a
fully synthetic training corpus that is independent of the test dataset. In our example, the training
corpus consists of baseline (no fault), partial soiling, and cell crack system modes. The training corpus
is used to train a 1D convolutional neural network (CNN) for failure classification. The approach
is validated by comparing the model’s ability to classify failures detected on a real, measured IV
curve testing corpus obtained from laboratory and field experiments. Results obtained using a fully
synthetic training dataset achieve identical accuracy to those obtained with use of a measured training
dataset. When evaluating the measured data’s test split, a 100% accuracy was found both when using
simulations or measured data as the training corpus. When evaluating all of the measured data, a
96% accuracy was found when using a fully synthetic training dataset. The use of physics-based
modeling results as a training corpus for failure detection and classification has many advantages for
implementation as each PV system is configured differently, and it would be nearly impossible to
train using labeled measured data.

Keywords: photovoltaic systems; simulation; neural networks; IV curves

1. Introduction

Photovoltaic (PV) plants usually consist of hundreds of thousands of mass-produced
parts, each with many possible ways they can fail or degrade, leading to power loss. A typ-
ical utility-scale plant comprises several hundred thousand modules connected in series
to form strings, which are themselves connected in parallel to an inverter by means of
combiners and recombiners. Each part of the PV system can fail (Figure 1). Researchers
have identified dozens of power loss mode effects (i.e., failure modes) in photovoltaic
systems, especially modules, throughout the manufacturing process and operational life-
time [1–3]. On average, 25.49 failures occur in a PV plant per year; additionally, device
inefficiencies (e.g., module degradation, mismatching effect, soiling losses) reduce energy
yield by 25% [4]. Rapid and accurate detection and diagnosis of these PV operations and
maintenance (O&M) issues would save money and lower the cost of PV electricity [5,6].
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Figure 1. PV plant block diagram displaying potential failure locations.

Failures can generally be broken up into direct current (DC) and alternating current
(AC) failures. DC failures largely refer to issues with the PV array, namely cell-level faults,
such as cell cracks, delamination, and hot spots, or module-level faults, such as diode
failures, glass breakage, abnormal resistances, and short/open circuiting, but can also refer
to issues with the maximum power point tracker [7–9]. These failures consist of around 25%
of the total failures in the PV system, and they only contribute to around 4% of the energy
losses associated with failures [4]. Extensive research has been performed in characterizing
these failures [2,10]. AC failures are usually located inside the inverter, often caused by
damage to its internal components or overheating, but can also be found on the utility grid
side due to a high- or low-voltage demand. Inverter failures alone consist of 28% of the
total reported failures and contribute to about 27% of the total energy losses [4]. Therefore,
failure detection and diagnosis methods are an important contribution to the reliability of a
production PV system.

Fundamental, physics-based failure detection methods are already used on the inverter,
ensuring the safety of the system [11]. However, more complicated methods are required
to detect and diagnose less obvious failures that can occur. Statistics-based methods can
require manually-defined thresholds that are hard to define; machine learning-based meth-
ods are easy to abstract and scale [12,13]. Machine learning-based fault detection and
classification algorithms make up a third of failure diagnosis methods reported in the
literature [14]. Such machine learning techniques have shown great potential as diag-
nostic tools for PV systems, boasting high detection and diagnostic accuracy for a wide
range of failure modes [8]. Typical input features for the machine learning models in-
clude 1-dimensional (1D) data such as environmental time-series data (irradiance, ambient
temperature, module temperature, wind speed), electrical parameter data (voltage, cur-
rent, power, energy) [3,15,16], and IV characteristics [17–20] or 2-dimensional (2D) data
such as visual (Vis) images [21], electroluminescence (EL) images [22–26], infrared (IR)
images [3,27,28], and full IV curves [29,30].

IV curves are measured by sweeping the voltage of a PV cell, module, or string
of modules, measuring the resulting current while illuminated. IV curves are typically
described by a set of cardinal points or parameters that include short-circuit current (Isc)
or current when V = 0, open-circuit voltage (Voc) or voltage when I = 0, maximum
power point (Vmp, Imp), and fill factor (Imp ×Vmp)/(Isc ×Voc). Many module failures and
degradation modes result in distinct changes to the IV curve shape, and while they can
affect the summary parameters, much more information is available if the whole IV curve
is available [31–34]. Standard practice, however, is to monitor either DC or AC power
from each inverter and not collect IV curves automatically. This results in the inability to
distinguish between many failures [3,15]. IV curves are typically measured after a problem
has been identified in order to classify and identify its root cause. Monitoring hardware
companies are starting to develop automated IV tracers that can be installed permanently
in the field and automatically measure curves [35], and some newer inverters have the
ability to trace IV curves [36,37]. This development could significantly help to reduce the
effects of component failures by allowing real-time analysis of system health, facilitating
rapid repairs or even prognostic O&M.
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In this publication, we focus on string-level IV curves as the input feature for our
machine learning models. String-level IV curves offer a rich data source for classifying
failures, as they characterize the electrical behavior of modules (often) in series at all
possible operating points [33]. In order to extract the valuable device health information
contained within IV curves using machine learning techniques, a diverse IV curve dataset
labeled by failure(s) is required. Assimilating a labeled training IV corpus from real or
experimental data requires either meticulous logging through O&M tickets in production
sites or the careful engineering of failed samples in the lab so that the feature space for
each failure class closely follows the field failures [38,39]. However, most production sites
do not continuously monitor IV data and wish to keep the performance of their systems
proprietary. Additionally, it is difficult to generate failures in the lab that are representative
of the wide range of problems that might be encountered in the field while including
variations in performance characteristics of different modules and system designs. As a
result, a comprehensive PV fault IV dataset does not currently exist.

A solution to this problem is simulation. In this paper, we apply a physics-based
simulation methodology from Bishop [40] to generate a training corpus of failures in
string-level IV curves. With this training corpus, a neural network architecture is trained
to diagnose the failures. The trained model is then leveraged to diagnose failures in
real, measured IV curves from laboratory and field experiments (see Figure 2). This
pipeline, one which builds a machine learning model with simulations and is deployed
on real-world data, is not new. Examples include: robotic hand dexterity [41], computer
animation [42], and fluid dynamics [43]. However, it has rarely been demonstrated in
the PV failure diagnosis literature [8,44,45], likely due to the inherent noise and high
variability of measured data compared to the unperturbed output of simulations. These
existing methods utilize simulations as a case study for demonstrating the performance of
a proposed failure classification algorithm.

Figure 2. A failure classification pipeline is postulated where simulated data is utilized for training a
model. With this trained model, measured curves can be classified in a production setting. Using
simulated data allows the augmentation of data representing rare failures, which are not often present
in measured data.
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In contrast, the aim of this paper is to emphasize a simulation-backed training corpus
as a promising, scalable failure diagnosis solution path. Advantages of a fully synthetic
training dataset are that it can be made arbitrarily large, always balanced, instantly available,
and independent from the test dataset. Section 2 describes our methodology for simulating
and processing baseline and faulted IV curves and for constructing and evaluating the
ML model. Section 3.1 qualitatively evaluates and verifies the simulation framework’s
flexibility. Section 3.2 utilizes three case studies to evaluate the simulated training data and
effectiveness of IV fault classification. A generalized version of the software written for this
paper is available as an open-source python package at https://github.com/sandialabs/
pvOps [46], (accessed on 10 July 2022).

2. Methodology
2.1. Simulation Using the Diode Model

IV curves have been generated synthetically for decades. The avalanche breakdown
model, established by Bishop [40] and implemented in pvlib-python [47], was used to
generate our training corpus due to its explicit consideration of electrical mismatches and
their interactions in the negative voltage domain. The voltage array in the IV curve is
established using a similar procedure to PVMismatch [48]. Points are sampled between the
breakdown voltage Vbr and the open-circuit voltage with non-linear point spacing. Closer
point spacing is required to capture resistance information at the ends of the IV curve
(regions close to Isc and Voc). The current array is derived by the avalanche-model diode
equation [40]:

Idiode(Fcell) = IL − Ia − Ib − Ic (1)

where
Ia = I0[exp(

V + IRs

nNsVth
)− 1]

Ib =
V + IRs

Rsh

Ic = a
V + IRs

Rsh
(1− V + IRs

Vbr
)−m

(2)

The Ia segment removes loss due to recombination (commonly ∈ (0, 10)A), and the Ib
segment term represents the losses due to shunt resistances (commonly ∈ (−10, 0)A). The
Ic segment implements the “avalanche” effect by adding a non-linear impact on the shunt
resistance to account for losses due to the reverse bias breakdown.

Built-in voltage Vbi, breakdown voltage Vbr, the fraction of ohmic current involved in
avalanche breakdown a, and the avalanche breakdown exponential component m are con-
stants that can be found for commercially-available PV modules in the CEC database [49].
The parameters, photocurrent IL, saturation current Io, series resistance Rs, shunt resistance
Rsh, and nNsVth, the product of diode factor n, number of series cells Ns, and thermal
voltage Vth can be manipulated to change the state of the cell and can be utilized to define
failures, as described in the next section. Additionally, a cell’s performance is affected by
environmental conditions: irradiance E, and cell temperature Tc. In summary, the diode
equation is used to simulate each unique definition of a cell:

Fcell = (Rsh, Rs, Io, IL, nNsVth)

IVcell = Idiode(Fcell |E, Tc).
(3)

The cell-level IV curves serve as the basic building blocks for simulating PV modules
and strings. Failures are defined at the cell level and combined into substrings (series of
cells), modules (series of substrings in parallel with bypass diodes), and strings (series of
modules) to develop any number of combinations of failures.

The process of deriving the string-level IV curves from the cell-level definitions is
provided in Algorithm 1, as established in [40]. First, the cell-level IV curves are derived
using Equation (1). These cell-level IV curves are combined to derive the substring-level IV

https://github.com/sandialabs/pvOps
https://github.com/sandialabs/pvOps
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curves. The process of combining cell-level IV curves in series involves multiple steps. In its
first iteration, the IVsubstr is set equal to the first cell-level IV curve. Then, the short-circuit
current Isc of the IVsubstr is compared with the Isc of the cell-level IV curve. The curve with
the larger Isc is notated as IVlarge; conversely, the curve with the smaller Isc is notated as
IVsmall . At the intersection of the IV−1×V

large (flipped about the current axis) and IVsmall in
the negative voltage domain is notated as IVequiv. The current value at this intersection is
then used to translate the IVlarge curve downwards by (IVsc

large − Iequiv) Amps. The IVsubstr
is then updated to reflect an addition in series (i.e., summation of the voltages) of the
translated IVlarge and IVsmall curves. Once all cells within the substring are added in series,
a voltage bypass limitation [−Vbypass, ∞) is established by setting values below −Vbypass
equal to −Vbypass. To calculate the string-level IV curves, the substring-level IV curves are
simply added in series. At any stage, whether it be at the substring level or string level, the
final current array after adding in series is post-processed to contain the sorted union of
the current of the two inputted IV curves.

Algorithm 1: String-level IV simulation pipeline [40]

1 Input: FN
cell : N cell-level failures per Equation (3)

2 FM
substr: M substring cell-mappings in string

3 IVstring: string-level IV curve
4 Vbypass = 0.5: bypass voltage
/* Simulate the unique cell definitions using Avalanche Model

(Equation (1)) */
5 IVN

cell ← Simulate(FN
cell)

/* Initialize string-level IV curve */
6 IVstring ← None
7 foreach Fi

substr ∈ FM
substr do

8 IVsubstr ← None
/* Iterate through cell IV curves (simulated earlier) in the

substring’s definition */
9 foreach IVcell ∈ Fi

substr do
10 IVlarge = maxIsc(IVcell , IVsubstr)

11 IVsmall = minIsc(IVcell , IVsubstr)
/* Find intersection of larger IV (flipped about the y-axis)

and smaller IV in the negative voltage domain. */
12 Iequiv = intersectV<0(IV−1×V

large , IVsmall)

13 IV I
large ← IV I

large − (IVsc
large − Iequiv)

/* Add IV curves in series */
14 IVV

substr ← IVV
small + IVV

large

15 IV I
substr ← sort(IV I

small ∪ IV I
large)

/* Voltage bypass limitation */

16 IVsubstr ← IV
V>−Vbypass
substr

/* Add IV curves n series */
17 IVV

string ← IVV
string + IVV

substr

18 IV I
string ← sort(IV I

string + IV I
substr)

2.2. Failure Definitions

Failures are simulated by modifying five parameters of the cell-level IV curve
(Equation (3)). Multipliers (Rsh_mult, Rs_mult, Io_mult, IL_mult, nNsVth_mult) are estab-
lished to scale the original parameters. Failures such as glass corrosion, delamination, soil-
ing, shading, and encapsulation discoloration will cause a reduction of Isc (0 < IL_mult < 1).
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Passivation degradation failures will result in a reduction in the Voc (0 < Io_mult < 1 and/or
0 < nNsVth_mult < 1). Corrosion/delamination of interconnects/contacts and cell breakage
will likely impact the Rs (Rs_mult > 1). Potential induced degradation, and poor edge
isolation will generate issues in Rsh (0 < Rsh_mult < 1).

Many failures in PV systems, especially when related to modules, are inhomogeneous;
the failure can exist at different intensities with diverse geometries across the array. Ad-
ditionally, multiple failures can impact the system simultaneously. To help capture the
range of possible representations of failures in IV curves, upsampling techniques were
introduced. Instead of passing single numeric values for the multipliers (summarizing
one failure), a statistical distribution (i.e., truncated Gaussian) can be passed and sampled
(using Latin hypercube sampling [50]) to generate a large number of definitions quickly.
This technique can be utilized to build a large corpus for machine learning applications.

2.3. Data

One method of evaluating the success of the simulator is to compare simulated IV
curves with measured IV curves for the same physical scenario. Here, two measured
datasets are used, one indoor IV curve dataset (in Section 2.3.1) and another outdoor
dataset with known failures (in Section 2.3.2).

2.3.1. Indoor Data

A Spire 4600 SP solar simulator was utilized to measure 1-sun IV curves of a 6-year-old
SolarWorld 260 W module permanently kept in the dark storage. Partial shading/soiling
was physically simulated by applying a neutral density film allowing 67.3% transmission
(at Isc) over a variable number of cells. Five measurements were taken: unshaded, 1-cell
shaded, 2-cells shaded, 5-cells shaded, and 10-cells shaded. The four shaded implementa-
tions were conducted on the same substring in the module.

2.3.2. Outdoor Data

Data from the Florida Solar Energy Center (FSEC) were used to test the IV simulation’s
ability to model and classify outdoor IV curve data. These data contained a string of
12 multicrystalline modules facing south and tilted at 30° (Table 1). String-level IV curves
were collected every 30 min using a capacitive load. Module temperature readings were
collected every 5 s while plane-of-array (POA) irradiance data were measured every second
and averaged to 1-minute intervals. As a note, the benefit to using string-level IV curves is
it is more resolute than inverter-level (e.g., often multi-string) measurements but less costly
than module-level measurements.

To induce a partial shading/soiling failure, a semi-transparent polymer film was
placed over six of the 12 modules within the string (6M). As expected, a visible mismatch
in the IV curve was present (Figure 3). The cell cracking failure mode was induced by
applying cyclic mechanical loading on pristine modules until cell cracks were achieved and
validated by EL imaging. Four cracked modules (4M) were placed in the string. The other
eight modules were not damaged. The current loss seen in Figure 3, apparent in the blue
graph displaying the current_diff (i.e., the difference in current between a pristine simulated
curve and the measured faulted curve), is due to either electrical isolation of some cell
areas, a slight mismatch caused by minor soiling (i.e., uncleaned modules) of the otherwise
unstressed modules, or both.
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Table 1. Module specifications under standard test conditions of modules in the FSEC dataset. These
parameters describe the real system, which is collect measurements; however, the simulations also
use these parameter specifications to more accurately characterize the system.

Symbol Parameter Value

Pmax Maximum Power 270 W
Vmpp Maximum Power Voltage 31.7 V
Impp Maximum Power Current 8.52 A
Voc Open Circuit Voltage 38.8 V
Isc Short Circuit Current 9.09 A
β Voc temperature coefficient −0.3%/◦C
α Isc temperature coefficient 0.06%/◦C
θ Tilt Angle of system 30◦

φ Azimuth Angle of system (angle from North) 180◦

N Number of cells connected in series 60
Am Module Area 1.64 m2

Figure 3. Four features are passed into the neural network (i.e., current, power, current difference,
and finite difference), all of which are plotted here against voltage (except power). The normalized
current on the top plot clearly shows the partial soiling signal (in red). Similarly, the finite difference
represents the derivative of the current with respect to voltage; the plot (middle plot) clearly shows
the partial soiling signal. The current differential (bottom plot) calculates the difference between the
current from an unstressed simulation and the sample, providing a signal that helps discriminate
between the cell cracking and unstressed signals. The data visualized here comes from string-level
IV curves from the Florida Solar Energy Center (FSEC), which has known faults applied (see data
description in Section 2.3).

2.4. Data Filtering, Processing and Feature Generation

Prior to training ML models, preprocessing steps remove signals that are unrelated
to the classification task at hand. To correct the outdoor experimentally obtained IV
curves according to environmental conditions, the curves are standardized to a reference
condition via

Vre f = V ×
log Ere f

log Eact
− β× (Tact − Tre f )

Ire f = I ×
Ere f

Eact
− α× (Tact − Tre f )

(4)

where β is the Voc temperature coefficient, and α is the Isc temperature coefficient (Table 1).
The Gact is the measured POA, which is reported from a reference cell; Tre f is 25 ◦C and
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Gre f is 1000 W
m2 (i.e., under standard test conditions [51]). Without correction, the ML

model would have to contain information about recognizing faults at each environmental
condition separately, causing the theoretical model storage to be RE×T times larger.

From here, the IV data are resampled so that all curves share the same voltage points.
The resampling frequency was set at 1% intervals. This step allows the voltage array to
be ignored as an ML input, which is beneficial because the voltage array is commonly
determined by the IV trace measurement system, so it may vary between unprocessed
datasets. Additionally, we removed the first 3% of each IV curve near Isc, both simulation
and measured, due to perturbations in the curves commonly found in this region (Figure 4).
These deviations are likely a product of the measurement system rather than a failure
condition. Afterward, the current of the IV curve is normalized ι = I/Isc by its detected
Isc to remove system-specific information from the data. This is an important step toward
generating an ML model that is agnostic of the system specifications.

Figure 4. A heatmap of the difference in normalized current of a simulated unstressed curve (at the
measured curve’s environmental conditions) and a measured curve displays profiles consistent with
knowledge of the failure.

The resampling process described above is conducted on both simulated and measured
curves. However, for measured curves, it can be beneficial to apply additional filtering,
which removes curves that have dramatically irregular profiles. Firstly, the well-known
correlation between Isc and irradiance (E) was utilized to remove samples outside 3-sigma
of the Isc

E distribution. This step removes many variable-sky conditions where the irradiance

is changing during the IV curve measurement. Further, a filter E > 400 W
m2 was used to

remove irregular IV curve profiles at relatively low irradiance values.
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The IV curve alone can be utilized to detect observable failures, but the inclusion of
additional variables that emphasize phenomena in the IV curve helps the ML classifier
discriminate between failures with fewer data. Four features are used in the failure clas-
sification process: normalized current, power (V × I), current differential ∆I, and finite
difference δI

δV (Figure 3). The current differential ∆I = ~Isim. unstressed−~Isample captures
the element-wise difference in current between each IV curve and the unstressed (simulated)
IV curve for that module or string. This feature is important because it should help capture
failures that have uniform translations at the Isc and/or Voc, which otherwise would be
invisible if only observing the processed current array (which is normalized). Additionally,
the finite difference δI

δV = ~Ii −~Ii−1 is utilized as a feature due to the importance of the IV
curve’s slope in recognizing resistance changes.

2.5. Machine Learning

A 1-dimensional (1D) convolutional neural network (CNN) is utilized to investigate
the relationship between the features (i.e., IV, power, finite difference, and current difference
curve geometries, as visualized in Figure 3) and their corresponding failure modes. The 1D
kernels restrict the feature generation within the neural network to traverse solely down
the voltage dimension. Each convolution kernel (kernel size of 12) moves down the voltage
dimension, generating filtered matrices (64 filters). Through the training epochs, the kernels
become optimal features for mapping the input data to the solution. The convolutional
layer is followed by a dropout layer (dropout percentage of 50%), a flatten layer, and two
dense layers, which map the sequence to a shape ready for probability vectors (i.e., softmax
activation). Backpropagation is conducted using the adaptive movement estimation opti-
mizer [52]. This neural network architecture can be expanded to identify a larger number
of failures, which will require the retention of more information about (potentially) more
complicated failures.

The machine learning classifier can be inherently biased if the failure mode distribution
is nonuniform. Therefore, we incur a balance by mandating an equal number of samples
per failure mode. Then, the data was split with a 90–10% train-test split. Stratified 5-fold
cross-validation was utilized during the model training stage to reduce overfitting. A small
batch size of 8 rows was established to reduce memory requirements. The model was
evaluated using the classification accuracy. Using the preprocessing steps described in the
last section, the neural network model has around 560,000 trainable parameters, which,
depending on the complexity of the task, may be grown or shrunk by adjusting the network
architecture. All steps of the methodology, including the simulations and machine learning
model development, were computed using a personal laptop with an Intel i7-8665U CPU
and 16 GB available RAM.

3. Results

The simulation framework is evaluated through a verification and validation process.
In the verification step, a series of failures are implemented to observe the flexibility of
the framework. In the validation step, the simulation process is compared to curves with
known failures to evaluate its accuracy. Finally, the simulation framework is applied to IV
curve classification via machine learning.

3.1. Simulation Verification

In order to verify the simulation framework’s abilities, qualitative tests are conducted
to evaluate its flexibility. One test builds a set of discrete, simple failures (Figure 5); another
test constructs a random failure (Figure 6).
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Figure 5. The flexibility of the IV simulation is displayed in a heatmap showing the different IV
profiles across a spectrum of failure definitions. The test’s names on the vertical axis represent the
magnitude of the impact on the diode parameter. The horizontal axis contains the normalized voltage
domain. The color bar contains the difference between a pristine IV curve’s current and the failure IV
curve’s current.

In the first test, a univariate (i.e., impacting only one parameter), uniform (i.e., im-
pacting all cells in substring and all substrings in a string equally) failure definition is
applied to 12 modules, each containing three substrings of 20 cells. Each of the five diode
model parameters is impacted four times, generating 20 different failures. Figure 5 shows
a heat map of these failures, displaying the normalized voltage domain of the IV curve
on the x-axis, an experiment name on the y-axis, and the current difference between a
pristine simulated and the faulted measured curve as the color. In this plot, darker colors
represent locations where a larger difference in current is found. Overall, the results follow
expectations; the negative slope of the IV curve near Isc caused by a low Rsh is seen in
the top three rows. Here, an increasing effect on current is found when decreasing the
Rsh_mult. Similarly, an effect on the slope near the Voc (right side of the graph) is seen on
the graphs impacting the Rs_mult. As the Rs_mult increases, the effect on the IV curve
profile gets larger. Thirdly, the Il_mult translates the Isc of the curve, as shown in the graph.
While below 1, a decreasing Il_mult causes a larger translation downwards. The Io_mult
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correctly shows a minor effect on the Voc where an increasing value causes an increasing
effect. Lastly, the nNsVth_mult captures the current loss due to recombination (from diode
ideality factor) and energy manifested by heat (caused by thermal voltage). An increasing
effect on the current is caused by a decreasing nNsVth_mult.

The simulation framework can also be verified by generating a random failure and
observing its response. A faulted string of 12,270 W modules is developed by randomly
impacting 20% of the cells with a random selection of fault parameters (Figure 6). Many
modules show steps in the IV curve caused by the activation of one or multiple bypass
diodes. The magnitude of the step downwards (in Amps) is determined by the severity
of the substring’s cells’ shifts in Isc caused by the random failures. These modules are
combined into a string-level IV curve, generating a highly irregular profile from all of
the mismatches.

Figure 6. Module-level and string-level IV curves display a random failure, capturing the flexibility
of the simulation framework.

3.2. Simulation Validation

The validity of the simulations is tested by comparing them to both indoor-collected
measured data and outdoor-collected measured data to observe the simulation’s closeness
of fit.

The test using indoor data (see details in Section 2.3.1) compares the measured and
simulated partial shading/soiling of a module (Figure 7). The measured baseline (in
pink) and simulated baseline (in yellow) match closely. The faulted measured curves (in
black) and simulations (colored) also appear to match closely; however, in the second knee,
the simulations display a curved transition while the measured curves experience a sharp
transition. Additionally, the simulated faulted curves have linear slopes in the mismatched
section, while the measured curves appear to have a non-linear slope, likely caused by an
inhomogeneous resistance value across cells.

The test using outdoor data (see details in Section 2.3.2) compares the normalized
current of a simulated unstressed string and the measured faulted string, visualized in a
heatmap (Figure 4). A row on the heatmap signifies a single IV curve measurement; the
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y-axis label provides the fault condition. The x-axis comprises the normalized voltage.
Each IV curve (both measured and simulated) is interpolated to a common voltage domain.
The heatmap’s color bar is the difference between the normalized current of the simulations
and the measurements. At the top of the figure, baseline curves show little effect on the
IV curve’s profile, as expected. Partial soiling shows a significant loss in current in the
middle sections of the curve due to the current mismatch caused by artificially soiling 6
of the 12 modules in the string. The cracked cells render apparent losses in current and
minor changes near the knee of the curve (∼0.75 V/Voc). Minor losses in Pmpp are measured
for cell-cracking, noting the importance of IV curve collection for failure detection and
classification tasks.

Figure 7. A comparison of the module-level partial soiling across multiple cell-mapping configura-
tions for simulated and measured IV curves shows close matching profiles.

3.3. IV Curve Classification

A final form of validation was conducted to evaluate an application of the simulation
framework on IV curve failure classification. Here, an IV curve classifier is compared
when using measured and simulated data. We define a generalized classifier as one that is
robust to the wide spectrum of definitions that exist for a single failure. Simulations were
generated to establish a training corpus for a classifier that would identify the failures in
the outdoor FSEC data (see Section 2.3.2).

All failures were defined at a series of environmental conditions (Irradiance: [400, 500, . . . ,
1000] W

m2 , Cell Temperature: [35, 40, . . . , 55] C). A baseline cell is defined to have a minor
impact on Rs_mult with a truncated Gaussian distribution (µ = 1.05, σ = 0.1, min = 0.98,
max = 1.20) to account for minor changes in slope found in measurements near the area
between the IV curve’s knee and Voc. Establishing a definition as a distribution (no matter
how small) enables the generation of samples by sampling the distribution and permits
the creation of a (potentially) large number of samples, aiding the generation of a training
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corpus for ML. A shaded cell is defined to have a large impact on IL_mult with a truncated
Gaussian distribution (µ = 0.6, σ = 0.7, min = 0.33, max = 0.95). Lastly, a cracked cell is
defined with an impact on Rs_mult (µ = 1.3, σ = 0.5, min = 1.1, max = 1.8) and Rsh_mult
(µ = 0.5, σ = 0.6, min = 0.3, max = 0.7). All cells in a faulted module were impacted with
their respective failure definition. For partial soiling, 6 out of 12 modules were faulted,
and for cell cracking, 4 of the 12 modules were faulted. After simulation, all curves are
preprocessed according to the procedure in Section 2.4. The processed curves are utilized
to train the classifier described in Section 2.5.

The results show a 100% classification accuracy when using simulated curves to
classify measured curves from the test split (Table 2). The studies using simulated data
split the data using a 90–10% train-test split, similar to the split used on the measured data.
A ∼96% accuracy is found when using a simulated corpus to classify all measured curves.
Every misclassification was found between the unstressed and cell cracking failure modes,
which is intuitive because the IV curve profiles are similar. Because we had full control of
the simulations, we were able to tune the simulations towards the failures that we knew
were in the measured corpus; this allowed us to reach high, perfect accuracies. Further
work will need to be conducted to build a more generalized model using larger sets of
simulated data with more failure definitions, namely incipient faults, for the purpose of
failure prevention.

Table 2. Consistent classification results are found when using different measured, and simulated
data splits. Seeing similar performance using simulated data as the training set provides validation
that the simulations replicate the measured failures well. With this validation, future work will focus
on including more failures in the classifier’s capabilities.

Training Set Evaluation Set Accuracy (%) Train Support Test Support

Measured Measured (test split) 100 288 33
Simulated Simulated 100 2457 273
Simulated Measured (test split) 100 2457 33
Simulated Measured (all) 95.9 2457 321

4. Conclusions

In this paper, we have developed, verified, and validated an IV curve simulation
framework by observing the framework’s flexibility to a diverse set of failures, comparing
simulations to measurements with failures, and utilizing simulations for machine learning
failure classification. The goal of this endeavor was to generate a toolset for the rapid
analysis of IV curve monitoring data collected on PV plants. Future work will extend
the functionality of this classifier by building a library of failure definitions. With the
constructed simulation methodology, an augmented training corpus can be built to increase
failure specificity (i.e., failure diagnosis of more failures and failure combinations) and
failure location estimation. As a note, embedding the knowledge to discriminate between
a large number of failures will likely require a larger neural network. Attention-based
models may be helpful in conditioning the model to observe certain areas on the curve
for a given failure category, potentially allowing for a more generalized model with fewer
parameters. Additionally, confirming the system-independent nature of the ML models
will be an important step toward deploying generalized models. If the pipeline indeed is
reliant on system-specific tendencies in the classification process, then that would mandate
that a new model be generated for each field. Instead, having one centralized model that
can be utilized on all systems would allow faster incorporation of an established model.
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