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Abstract: The performance of a fuel cell stack is affected by the operating temperature of the stack.
The thermal management subsystem of a multi-stack fuel cell system (MFCS) is particularly significant
for the operating temperature control of each stack in the MFCS. To study the influence of different
topologies of a MFCS thermal management subsystem, this paper proposes and establishes two
different topologies. Firstly, the integrated topology is proposed. Secondly, seven component models,
namely the mixer, thermostat, radiator, tank, pump, bypass value, and proton exchange membrane
fuel cell stack temperature models, are described in detail. Finally, the performance of the two
topologies of the MFCS thermal management subsystem under two working conditions, steady
(200 A) and variable (China heavy-duty commercial test cycle, C-WTVC), is compared. Furthermore,
there are two evaluating indicators, including the stability duration and deviation of the operating
temperatures of the single stack in the MFCS. Results show that when the MFCS operates under steady
working conditions, the integrated topology is superior in operating temperature control accuracy
(∆T < 0.5 K), while the distributed topology is superior in the adjustment process (t ≤ 100 s).
Moreover, when the MFCS operates under variable working conditions, the distributed topology is
superior in operating temperature control accuracy.

Keywords: MFCS; thermal management subsystem; operating temperature; topology

1. Introduction

Due to environmental protection and greenhouse gas emissions, the development
of new energy resources is becoming a significant measure for governments [1]. Among
them, hydrogen energy is a promising candidate because it has zero emissions, high power
density, and a wide variety of sources [2]. The fuel cell system using hydrogen energy is
developing rapidly [3]. However, with the enrichment of application scenarios for fuel
cell systems, the requirement for its power level is becoming higher and higher [4,5]. It is
difficult for a single fuel cell stack to meet the requirement because of uniformity, cost, and
technology issues [5]. The multi-stack fuel cell system (MFCS) can solve these issues, and
it has several advantages such as immense power, high efficiency, and a long lifespan [6].
It is widely known that the operating temperature is important to the fuel cell system
because it determines the performance and normal operation of the fuel cell system [7].
In the MFCS, the thermal subsystem plays a significant role in controlling the operating
temperature. Therefore, it is necessary to study the thermal subsystem of the MFCS. It is
noted that the thermal management subsystem consisting of seven component models is
applied to control the operating temperature of each stack in the MFCS. Each component
has its function. For example, the mixer model is applied to filter different outlet coolant
temperatures of the multi-stack into a temperature. The thermostat model is applied to
control the large and small cycles of the coolant. The radiator model is applied to calculate
the heat dissipation. The tank model is applied to store the coolant. The pump model is
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applied to provide the flow rate of the coolant. The bypass value model is applied to control
the coolant flow rate of each stack. The proton exchange membrane fuel cell (PEMFC) stack
temperature model is applied to calculate the stack heat production.

Unfortunately, there are few works about the thermal subsystem of the MFCS because
of few MFCS applications [5]. In our opinion, there are four aspects of thermal subsys-
tem research: topology, architecture, component selection, and control algorithm/strategy.
For thermal subsystem topology, there are two topologies: distributed and integrated.
Wu et al. [8] showed an actual 65 kW dual-stack PEMFC system, which arranges a parallel
coolant pipeline. The thermal subsystem is used by the integrated topology. Moreover,
the architecture is determined after the determination of the topology. For the thermal
subsystem architecture, Dépature et al. [9] proposed the series- and parallel-type architec-
tures and pointed out the advantages and disadvantages of the two architectures. In the
series type, the coolant flows to each stack in sequence. In the parallel type, the coolant
flows to each stack at the same time. It is noted that the integrated topology was used
in two architectures of their work. For the component selection, the thermal subsystem
components of the MFCS are similar to those of the single fuel cell stack. Therefore, the
component selection can be conducted according to specific requirements. For the control
algorithm/strategy, Mohamed et al. [10] proposed a thermal management control algo-
rithm to control the operating temperature of each stack in the MFCS. In their algorithm,
the excess heat quantity produced by the operating stack could preheat the next stack.
There are three benefits, namely shortening the startup time of the next stack, saving en-
ergy, and improving the MFCS response. Furthermore, de Bortoli et al. [11] proposed a
thermal management strategy to minimize the startup, heating/cooling, and cycling issues
inside the EV. Results show that the appropriate thermal management strategy is helpful to
improve the life span, cycling, and efficiency of the MFCS.

This paper fills the modeling gap of the MFCS thermal subsystem. It designs, models,
and compares two different topologies of the MFCS. Firstly, two different topologies,
distributed and integrated, are proposed. On the one hand, the distributed topology
consists of three independent thermal management subsystems. On the other hand, the
integrated topology consists of only one thermal management subsystem. Secondly, seven
component models, namely the mixer, thermostat, radiator, tank, pump, bypass value, and
PEMFC stack temperature, are described in detail. Finally, the performance of the two
topologies of the MFCS thermal management subsystem under two working conditions,
steady and variable, is compared.

2. Topology of the MFCS Thermal Management Subsystem

Depending on whether it is integrated or not, there are two topologies of the MFCS
thermal management subsystem. In this paper, the MFCS consists of three stacks, and
detailed topologies are shown in Figure 1a,b. On the one hand, the distributed topology
consists of three independent thermal management subsystems. On the other hand, the
integrated topology consists of only one thermal management subsystem. The advantages
and disadvantages of the two topologies are shown in Table 1. Moreover, the thermal
management subsystem includes several components, such as the tank, pump, deionizer,
thermostat, and radiator.
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Table 1. The advantages and disadvantages of the two topologies.

Advantages Disadvantages

Distributed topology Independently controls each stack
operating temperature A large number of components, high cost

Integrated topology A small number of components, low cost The operating temperature of each stack
interferes with the others

3. Component Models of the MFCS Thermal Management Subsystem

This section describes the main seven component models: the mixer, thermostat,
radiator, tank, pump, bypass value, and PEMFC stack temperature models.

3.1. Mixer Model

The mixer model consists of two parts: the flow rate and temperature. The coolant
flow rate of the mixer outlet can be represented in the form below:

Wco_mixer_out =
3

∑
i=1

Wco_st(i)_out (1)
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where Wco_mixer_out is the coolant flow rate of the mixer outlet, kg/s; Wco_st(i)_out is the
coolant flow rate of the ith stack outlet, kg/s, i = 1, 2, 3.

It is assumed that the mixer does not exchange heat with the environment, so only the
heat exchange between coolants with different temperatures occurs inside the mixer. The
coolant temperature of the mixer outlet can be represented in the form below:

Tco_mixer_out =
∑3

i=1 Wco_st(i)_outTco_st(i)_out

∑3
i=1 Wco_st(i)_out

(2)

where Tco_mixer_out is the coolant temperature of the mixer outlet, K; Tco_st(i)_out is the
coolant temperature of the ith stack outlet, K, i = 1, 2, 3.

It is noted that the coolant temperature change is described by the first-order inertia
link. The time constant can be determined by the experiment or experience. Moreover, it
determines the stability time of the coolant temperature. In this paper, the time constant is
set to 0.5 s.

The input and output and the Simulink model of the mixer are shown in Figures 2 and 3.
The input of the mixer includes flow rates and temperatures of the three stacks’ coolants
(Co_ includes the flow rate and the temperature of the coolant), and the output includes
the flow rate and temperature of the mixer outlet.
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3.2. Thermostat Model

The thermostat model also consists of two parts: the flow rate and temperature.
The coolant flow rate and temperature of the thermostat inlet can be represented in the
form below:

Tco_thermostat_in = Tco_mixer_out (3)

Wco_thermostat_in = Wco_mixer_out (4)

where Tco_thermostat_in is the coolant temperature of the thermostat inlet, K; Wco_thermostat_in
is the coolant flow rate of the thermostat inlet, kg/s.

The opening of the thermostat determines the proportion of the coolant flow rates of
the big and small loops:

Wco_big = Wco_thermostat_in · Phi_bypass_big (5)

Wco_small = Wco_thermostat_in · (1 − Phi_bypass_big) (6)

where Wco_big is the coolant flow rate of the big loop, kg/s; Phi_bypass_big is the opening
of the thermostat; Wco_small is the coolant flow rate of the small loop, kg/s.

It is assumed that the thermostat does not exchange heat with the environment, so only
the heat exchange between coolants with different temperatures occurs in the thermostat.
The coolant temperature of the thermostat outlet can be represented in the form below:

Tco_big = Tco_thermostat_in (7)

Tco_small = Tco_thermostat_in (8)

where Tco_big and Tco_small are coolant temperatures of the big and small loop, respectively, K.
The input and output and the Simulink model of the thermostat are shown in Figures 4 and 5.

The input of the thermostat includes the opening of the thermostat, coolant flow rate, and
temperature of the thermostat inlet, and the output includes flow rates and temperatures
of the big and small loops.
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3.3. Radiator Model

The flow rate of the radiator is equal to that of the big loop, and it can be represented
in the form below:

Wco_rad_out = Wco_big (9)

The cooling capacity of the radiator is affected by its surface wind speed, heat dissipa-
tion area, ambient temperature, and installation position. Moreover, the surface wind speed
is determined by vehicle and fan speeds and measured by the experiment. The relationship
between the surface wind speed and vehicle and fan speeds obtained by the experimental
data fitting can be represented in the form below:

vw = 0.1568 + 0.0015846 × nfan + 0.02233 × v (10)

where vw is the surface wind speed, m/s; nfan is the fan speed, rpm; v is the vehicle
speed, km/h.

When the ambient temperature and the radiator size are determined, the cooling
capacity is determined by the surface wind speed and coolant flow rate, and the relationship
can also be measured by the experiment. The LUT

(
Wco_big, vwind

)
applied in this model is

shown in Figure 6.
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The above relationship is obtained when the temperature difference between the
coolant inlet and ambient temperature is 60 K. Moreover, the modified relationship is
represented in the form below when the ambient temperature is changing:

.
Qrad_rel =

.
Qrad_ exp

(Tco_big − Tamb

60

)
(11)

where
.

Qrad_rel is the real cooling capacity of the radiator, kW;
.

Qrad_ exp is the theoretical
cooling capacity of the radiator, kW; Tamb is the ambient temperature, K.

According to the heat transfer equation, the coolant temperature of the radiator outlet
is represented in the form below:

.
Tco_rad_out =

CcoWco_rad_out

(
Tco_big − Tco_rad_out

)
−

.
Qrad_rel

mco_radWco_rad_out
(12)

where
.
Tco_rad_out is the coolant temperature change rate of the radiator outlet, K/s; Cco is

the specific heat capacity, J/(kg·K); Tco_rad_out is the coolant temperature of the radiator
outlet, K; mco_rad is the coolant mass inside the radiator, kg.

The input and output and the Simulink model of the radiator are shown in Figures 7 and 8.
The input of the radiator includes the fan speed, vehicle speed, coolant flow rate and
temperature of the big loop, and ambient temperature. In addition, the output includes the
coolant flow rate and temperature of the radiator outlet.
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3.4. Tank and Pump Model

The temperature of the tank outlet is determined by the coolant states of the radiator
outlet, small loop, and the remaining coolant in the tank, and it can be represented in the
form below:

Tco_tank_out =
Wco_rad_outTco_rad_out + Wco_smallTco_small + Wco_tankTco_tank_out

Wco_rad_out + Wco_small + Wco_tank
(13)

where Tco_tank_out is the temperature of the tank outlet, K; Wco_rad_out is the coolant flow
rate of the radiator outlet, kg/s; Wco_small is the coolant flow rate of the small loop, kg/s;
Wco_tank is the coolant flow rate of the remaining coolant in the tank, kg/s; Tco_rad_out is
the coolant temperature of the radiator outlet, K; Tco_small is the coolant temperature of the
small loop, K.

The coolant flow rate of the tank outlet is determined by the pump and can be
represented in the form below:

Wco_rad_out = Wco_pump_out (14)

where Wco_pump_out is the coolant flow rate of the pump outlet, kg/s.
The input and output and the Simulink model of the tank and pump are shown in

Figures 9 and 10. The input of the tank and pump includes the coolant flow rates and
temperatures of the radiator outlet and small loop. Additionally, the output includes the
coolant flow rate and temperature of the tank outlet.
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3.5. Bypass Value Model

Coolant flow rates of different loops are determined by the coolant flow rate and
opening of the bypass:

Wco_1 = Wco_bypass_in ·Phibypass (15)

Wco_2 = Wco_bypass_in

(
1 − Phibypass

)
(16)

where Wco_i is the coolant flow rate flowing to the ith stack, kg/s; Wco_bypass_in is the coolant
flow rate flowing to the bypass, kg/s; Phibypass is the bypass opening.

It is assumed that the temperature flowing to the bypass is not changed:

Tco_1 = Tco_2 = Tco_bypass_in (17)

where Tco_i is the temperature flowing to the ith stack, K; Tco_bypass_in is the temperature
flowing to the bypass, K.

The input and outputand the Simulink model of the bypass are shown in Figures 11 and 12.
The input of the bypass includes the bypass opening, coolant flow rate and temperature of
the bypass inlet. In addition, the output includes the coolant flow rates and temperatures
of different loops.
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3.6. PEMFC Stack Temperature Model

The PEMFC stack temperature is determined by four parts: the stack heat generation,
natural convection, radiation convection, and force convection (radiator heat dissipation):

.
Qst =

.
Qadd −

.
Qconv_nat −

.
Qconv_rad −

.
Qconv_force (18)

where
.

Qst is the stack heat change, W;
.

Qadd is the stack heat generation, W;
.

Qconv_nat is
the natural convection, W;

.
Qconv_rad is the radiation convection, W;

.
Qconv_force is the forced

convection, W.
.

Qst = Cstmst
dTst

dt
(19)

.
Qadd = (ncellEnernst − Vst)Ist + (

.
Qin −

.
Qout)react (20)

.
Qconv_rad = Ast_exterior × 0.85 × 5.67 × 10−8 ×

(
T4

st − T4
amb

)
(21)

.
Qconv_nat = hst Ast_exterior(Tst − Tamb) (22)

.
Qconv_force = CcoWco_st_in(Tst − Tco_st_in) (23)

where:
.

Qin = CpO2WO2_in(Tca_in − Tamb) + CpN2WN2_ca_in(Tca_in − Tamb) + CpN2WN2_an_in(Tan_in − Tamb)
+CpH2WH2_in(Tan_in − Tamb) + CpvapWvap_ca_in(Tca_in − Tamb)
+CpvapWvap_an_in(Tan_in − Tamb)

(24)

.
Qout = CpO2WO2_out(Tca_out − Tamb) + CpN2WN2_ca_out(Tca_out − Tamb) + CpN2WN2_an_out(Tan_out − Tamb)

+CpH2WH2_out(Tan_out − Tamb) + CpvapWvap_ca_out(Tca_out − Tamb)
+CpvapWvap_an_out(Tan_out − Tamb)

(25)
where Cst is the stack-specific heat capacity, J/(kg·K); mst is the stack mass, kg; Tst is
the stack temperature, K; ncell is the number of the single fuel cell in the stack; Enernst is
Nernst voltage, V; Vst is the stack voltage, V; Ast_exterior is the external surface area of the
stack, m2; Tamb is the ambient temperature, K; hst is the convective heat transfer coefficient,
W/

(
m2·K

)
; Cco is the coolant-specific heat capacity, J/(kg·K); Tco_st_in is the coolant

temperature of the stack inlet, K; CpO2 is the O2-specific heat capacity, J/(kg·K); CpN2

is the N2-specific heat capacity, J/(kg·K); CpH2 is the H2-specific heat capacity, J/(kg·K);
Cpvap is the vapor-specific heat capacity, J/(kg·K); Tca_in is the cathode inlet temperature,
K; Tan_in is the anode inlet temperature, K; WN2_ca_in is the N2 flow rate of the cathode inlet,
kg/s; WO2_in is the O2 flow rate of the cathode inlet, kg/s; Wvap_ca_in is the vapor flow rate
of the cathode inlet, kg/s; WN2_an_in is the N2 flow rate of the anode inlet, kg/s; WH2_in
is the H2 flow rate of the anode inlet, kg/s; Tca_out is the cathode outlet temperature, K;
Tan_out is the anode outlet temperature, K; WN2_ca_out is the N2 flow rate of the cathode
outlet, kg/s; WO2_out is the O2 flow rate of the cathode outlet, kg/s; Wvap_ca_out is the vapor
flow rate of the cathode outlet, kg/s; WN2_an_out is the N2 flow rate of the anode outlet,
kg/s; WH2_out is the H2 flow rate of the anode outlet, kg/s.

The input and outputand the Simulink model of the stack temperature are shown
in Figures 13 and 14. The input of the stack temperature includes the current, voltage of
the stack, H2, O2, N2 and vapor flow rates of the inlet and outlet, coolant flow rate of the
stack inlet, reacant temperatures of the inlet and outlet, ambient temperature, and coolant
temperature rate of the stack inlet. In addition, the output includes the stack temperature,
coolant flow rate and temperature of the stack outlet.
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4. Results and Discussion

This section compares the performance of the two topologies of the MFCS thermal
management subsystem under two working conditions: steady and variable. Steady (200 A)
and variable (China heavy-duty commercial test cycle, C-WTVC) working conditions are
shown in Figure 15a,b. There are two evaluating indicators: the stability duration and
deviation of the operating temperatures of the single stack in the MFCS. It is noted that for
the evaluation index of the thermal management, besides stability duration and deviation
of the operating temperatures, there are also the power consumption and life of the thermal
management subsystem. However, in the whole MFCS, the power consumption of the
thermal management subsystem accounts for only less than 1% of the power provided
by the MFCS, while the power consumption of the compressor (supply air) accounts
for 10~20% of the power provided by the MFCS. Therefore, the power consumption of
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the thermal management is negligible. Moreover, the life of the thermal management
subsystem is much longer than that of the MFCS. So, the life of the thermal management
subsystem is also negligible.
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4.1. Steady Working Conditions

The three stacks’ temperatures of the two topologies when the MFCS operates under
steady working conditions are shown in Figure 16a,b. On the one hand, the temperature
overshoot of the distributed topology is large, and the operating temperature of this
topology has a steady-state error. However, its advantage is the short stabilization time.
Moreover, the temperature overshoot of three stacks is Tst3 > Tst2 > Tst1. The possible
reason is that the temperature has characteristics of a strong time delay and slow response,
and the heat transfer process is related to the quality of the stack (mst3 > mst2 > mst1).
The reason for the steady-state error of the operating temperature is that the component
selection is not completely matched due to the parameters of components. The stabilization
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time of the three stacks is the same because the thermal subsystem of each stack in this
topology is independent of the others, and the temperature of each stack has no interference
with the others. This is also the biggest advantage of this topology. On the other hand, the
temperature overshoot of the integrated topology is minimal. However, it needs a long
stabilization time. The reason is that the three stacks interfere with each other. Moreover,
the temperature overshoot of the three stacks is Tst2 > Tst3 > Tst1. The reason is that the
coolant flow rate change of stack 2 is severe because it is at the intersection of two coolant
flows. It is noted that the operating temperature adjustment of the integrated topology
needs a longer time than that of the distributed topology because the coolant flow rates of
the three stacks interfere with each other.
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In this paper, the desired operating temperature is 348.15 K. The temperature overshoot
is defined as the difference between the actual maximum operating temperatures during the
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adjustment process and the desired operating temperature. The stabilization time is defined
as the adjustment process time. The temperature deviation is defined as the difference
between the steady-state operating temperatures after the adjustment process and the
desired operating temperature. A detailed comparison of the two topologies under steady
working conditions is shown in Table 2. Results show that the temperature overshoot of the
distributed topology is larger than that of the integrated topology, while the stabilization
time of the distributed topology is shorter than that of the integrated topology. This means
that when the MFCS operates under steady working conditions, the integrated topology
is superior in operating temperature control accuracy, while the distributed topology is
superior in the adjustment process.

Table 2. The detailed comparison of the two topologies under steady working conditions.

Parameter
Distributed Topology Integrated Topology

Stack1 Stack2 Stack3 Stack1 Stack2 Stack3

Temperature overshoot (K) 0.836 0.983 0.978 0.371 0.484 0.397
Stabilization time (s) 100 50 50 >300 >300 >300

Temperature deviation (K) −0.077 0.04 −0.058 - - -

4.2. Variable Working Conditions

The three stacks’ temperatures of the two topologies when the MFCS operates under
variable working conditions are shown in Figure 17a,b. On the one hand, the operating
temperature fluctuation of the distributed topology is obvious, and its range is −1∼0.8 K.
Operating temperature deviations in the three stacks are minimal. The operating tempera-
ture response of this topology is fast because each stack is separately controlled. On the
other hand, the operating temperature fluctuation of the integrated topology is relatively
moderate, and its range is −1 ∼ 1.5 K. Operating temperature deviations in the three
stacks are large. The operating temperature response of this topology is slow because the
coordinate control is adopted among the stacks.

A detailed comparison of the two topologies under variable working conditions is
shown in Table 3. Results show that the operating temperature difference of the distributed
topology is smaller than that of the integrated topology. This means that when the MFCS
operates under variable working conditions, the distributed topology is superior in op-
erating temperature control accuracy because the operating temperature of each stack is
controlled independently.
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Figure 17. Three stacks’ temperatures of the two topologies under variable working conditions: (a)
distributed topology and (b) integrated topology.

Table 3. The detailed comparison of the two topologies under variable working conditions.

Parameter
Distributed Topology Integrated Topology

Stack1 Stack2 Stack3 Stack1 Stack2 Stack3

Maximum temperature (K) 348.738 348.45 348.611 349.2 349.165 349.218
Minimum temperature (K) 347.061 347.577 347.283 347.142 347.143 347.144
Temperature difference (K) 1.677 0.873 1.328 2.058 2.022 2.074

5. Conclusions

This paper compares the stability duration and deviation of the operating temperature
between the distributed and integrated topologies of the MFCS. Detailed conclusions are
as follows:

(1) There are two topologies of the MFCS thermal management subsystem: the distributed
and integrated topologies.

(2) When the MFCS operates under steady working conditions, the integrated topology is
superior in operating temperature control accuracy (∆T < 0.5 K), while the distributed
topology is superior in the adjustment process (t ≤ 100 s).

(3) When the MFCS operates under variable working conditions, the distributed topology
is superior in operating temperature control accuracy.
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