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Abstract: In this paper, a full-order terminal sliding-mode control method is proposed for the rectifier
side and the inverter side of the soft open point (SOP). The rectifier-side DC voltage control system
consists of the voltage- and current-loops with controllers which are designed using full-order
sliding-mode (FOSM) to enhance the dynamic performances and anti-disturbance. The integral type
virtual control signal without chattering is designed to compensate for the unmatched uncertainties
including external disturbances and some parameter perturbations. The full-order terminal sliding-
mode (FOTSM) controller for the current-loop can force the current response to track its reference in
finite time. The inverter side power control system is designed to regulate the power. The FOTSM
controller for the power-loop ensures the power-tracking accuracy under a disturbed condition.
Finally, the simulations demonstrate the effectiveness of the proposed controllers for the rectifier and
inverter sides in the soft open point (SOP).

Keywords: soft open point (SOP); power distribution network; sliding-mode control (SMC); terminal
sliding-mode; unmatched uncertainties

1. Introduction

Soft open point is a power electronic device which can flexibly connect different
voltage-level feeders and provide flexible and accurate power regulation to networks [1,2].
Thanks to the great real-time power controllability, it has been widely used to replace the
normal open points in the electricity distribution networks [3,4].

The back-to-back voltage source converter (VSC) is a typical topology of the SOP,
including the rectifier-side, the inverter-side, and the DC-side components [5,6]. The
one-side VSC works in udc-Q mode to ensure the stability of the DC-side voltage [7].
The other VSCs work in P-Q mode to realize the power exchange of several AC feeders [8].
The mathematical model of the SOP is a class of nonlinear system with matched and
unmatched uncertainties [9]. The uncertainties contain external disturbance and parameter
perturbation, which bring a huge challenge to the controller design [10].

At present, model predictive control (MPC) is widely used for the current-loop and
power-loop controller design in the power electronic converters, owing to its simple algo-
rithm and excellent dynamic performance [11,12]. To enhance the dynamic performance,
a model predictive controller is proposed in [13] to replace the PI controller of the current-
loop. In [14], a three-vector-based MPC is proposed to reduce the current ripple in SOP.
However, MPC is a type of control method that depends on the model, which has un-
avoidable sensitivity to the parameter perturbation of the SOP [15]. Thus, the requirements
of the current- and power-tracking accuracy may not be satisfied under the condition of
parameter variation [16]. In practice, the most popular control methods for the outer-loop
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are PI control [17]; however, the PI controller is also sensitive to the parameter perturba-
tion and will result in large overshoot or extended response time [18]. Therefore, some
advanced control methods such as sliding-mode control (SMC) are utilized to enhance the
anti-disturbance of the SOP control system [19]. In [20], a linear sliding-mode controller is
designed for the SOP. Although the SMC method brings strong robustness to the control
system, it has irreducible chattering which may cause an unmodeled dynamic in the control
loop. In [21], a quasi-sliding-mode controller is proposed for the outer loop. However,
this method attenuates the chattering by sacrificing precision of the DC voltage and power
tracking. A disturbance–observer-based sliding-mode controller is proposed in [22]; how-
ever, the control method can only weaken the chattering but not eliminate that. Therefore,
the chattering-free control performance of SMC needs to be further improved.

The conventional sliding-mode control can only compensate for the matched uncertain-
ties existing in the same channel with the control input [23]. However, the uncertainties may
not satisfy the so-called matched condition, which becomes a challenge for sliding-mode-
controller design [24]. To compensate for the unmatched uncertainties, many improved
SMC methods have been proposed, such as integral-sliding-mode control (ISMC) [25],
disturbance–observer-based sliding-mode control (DOBSMC) [26] and backstepping [27].
In [28], the high-frequency-switching gain in ISMC can force the system states to converge
to the equilibrium in the case of unmatched uncertainties. However, the integral action
brings large overshoot and long setting time to the control system. In [29], the disturbance
observer is designed to deal with the parameter variation in the SOP. Nevertheless, these
methods can only suffer a class of time-invariant or slow-time-varying uncertainties [30].

According to the above analysis, the main problems in the control system of the SOP
can be summarized as follows:

1. The influence of the parameter perturbation in the SOP is not considered completely
in the existing controller design.

2. The uncertainties in the SOP control system cannot be compensated for by the existing
control methods such as PI and MPC. Therefore, the PI and MPC controllers cannot
satisfy the requirements of power and voltage control precision.

3. The conventional sliding-mode controller in the SOP control system cannot com-
pensate for the unmatched uncertainties, and the inherent chattering problem may
stimulate the unmodeled dynamic of the system.

To enhance the robustness and dynamic performance of the SOP control system, this
paper proposes a novel virtual-control-technique-based full-order sliding-mode (FOSM)
controller for the rectifier side to establish the DC-side voltage. In addition, a full-order
terminal sliding-mode (FOTSM) controller is designed for the inverter side to ensure
the stabilization of the power exchange. The main contributions of the paper can be
summarized as follows:

1. The precision, rapidness and robustness of the SOP control system are improved by
adopting the full-order sliding-mode control method.

2. On the premise that the anti-disturbance of the SMC is kept, the chattering in the
conventional sliding-mode controller is eliminated by the integral-type control law;
thus, the smoothed outputs of the controller can be obtained.

The paper is organized as follows: Section 2 introduces the mathematical model of
the soft open point and the outer-loop and the inner-loop subsystem. Sections 3 and 4
present the FOTSM controllers for the rectifier side and the inverter side. Section 5 gives
the simulation results. Finally, the conclusion is shown in Section 6.

Notations: Let Rn−m and Rm be the sets of n− m real matrices and m-dimensional
Euclidean space, respectively. For a vector x = [x1, ..., xn]T ∈ Rn, ‖x‖ denoting the 2.norm
of the vector ‖x‖2, and ‖x‖2 = (∑N

i=1(x2
i ))

1/2. In addition, for a square matrix A ∈ Rn×n,
‖A‖ denoting the 2.norm of the vector ‖A‖2, and ‖A‖2 = [max {λi(AHA)}]1/2.
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The back-to-back voltage source converter is a typical topology of the SOP. Each port
of the SOP consists of a three-phase voltage source converter which is connected to the
common DC bus. With its excellent real-time power controllability, the SOP has been
widely used in electricity distribution networks to deal with the problems caused by the
access of distributed power generation equipment to the distribution network. The related
work about the model and control strategy of the soft open point can refer to [14], and the
related work about the sliding-mode control methods can refer to [31].

2. Preliminary
2.1. Dynamic Model of the SOP

The structure of the two-port SOP is displayed in Figure 1 [32], where the rectifier side
and the inverter side are interconnected by the capacitance of the DC side.
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Figure 1. Structure of the two-port SOP with the rectifier side and the inverter side.

The mathematical model of the rectifier side and the inverter side in the stationary
coordinates can be obtained by e1a

e1b
e1c

 = L1
d
dt

 i1a
i1b
i1c

+ R1

 i1a
i1b
i1c

+

 u1a
u1b
u1c

 (1)

 e2a
e2b
e2c

 =

 u2a
u2b
u2c

− L2
d
dt

 i2a
i2b
i2c

− R2

 i2a
i2b
i2c

 (2)

where e is the gird voltage, i the current, u the voltage, the subscript [·]a,b,c represents states
in abc-axes, [·]1.2 represents the input states from the rectifier side and the output states
of the inverter side, L1 and L2 the inductance of the rectifier side and the inverter side,
respectively, R1 and R2 the resistance of the rectifier side and the inverter side, respectively.

The switching states are defined as follows

Sx =

{
1, the upper switch is on and the lower switch is off

0, the lower switch is on and the upper switch is off
, x = a, b, c. (3)

Then, the voltages of each converter can be calculated by uia
uib
uic

 =
udc
3

 2 −1 −1
−1 2 −1
−1 −1 2

 Sa
Sb
Sc

 (4)

where udc is the capacitor voltage of the DC link.
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The current of the DC side in the d-q coordinates can be expressed as

C
dudc

dt
= i1dc + i2dc = 1.5(−S1di1d + S1qi1q) + 1.5(−S2di2d + S2qi2q) (5)

where i1dc and i2dc are the currents in the DC side from the rectifer side and the inverter side,
respectively, i1d and i1q the input currents of the rectifier side in d- and q-axes, respectively,
i2d and i2q the output currents of the inverter side in d- and q-axes, respectively, S1d and S1q
the switching states of the rectifier side in d- and q-axes, S2d and S2q the switching states of
the inverter side in d- and q-axes.

Since the structure of each port of the SOP is the same, in this paper, one port of the
VSC is selected to build the mathematical model. The dynamic mathematical model of the
SOP in the d-q coordinates can be represented by

di1dq

dt
= −R1

L1
i1dq +

[
0 ω1
−ω1 0

]
i1dq −

1
L1

u1dq +
1
L1

e1dq

= −R1

L1
i1dq + H1i1dq −

1
L1

u1dq +
1
L1

e1dq

(6)

where i1dq = [i1d, i1q]
T is the rectifier-side current vector in d- and q-axes, ω1 the angular

speed of the grid voltage, u1dq = [u1d, u1q]
T the rectifier-side voltage vector in d- and q-axes,

e1dq = [e1d, e1q]
T the rectifier-side grid voltage vector in d- and q-axes.

2.2. Proposed Model of the SOP
2.2.1. Outer-Loop Subsystem

The outer-loop subsystem of the rectifier side in the SOP is the DC-side voltage
control subsystem. The parameter variation results in the unmatched uncertainties in
the outer-loop subsystem. The voltage controller uses udcre f as the input and i1dre f as the
output to establish the reference value of i1d, which is designed to stabilize the DC-side
voltage. According to the aforementioned mathematical model of the SOP, the tracking
error dynamic of the DC-side voltage can be expressed by

ėu = u̇dcre f − u̇dc = u̇dcre f +
3

2C
(S1di1d − S1qi1q) +

3
2C

(S2di2d − S2qi2q) (7)

Due to i1qre f = 0 being adopted as the current control strategy, substituting the
switching states S1d = (e1d − R1i1d)/udc and S2d = (e2d − R2i2d)/udc into the above,
(7) can be rewritten as

ėu = u̇dcre f +
3(e1d − R1i1d)

2Cudc
i1d +

3(e2d − R2i2d)

2Cudc
i2d (8)

Considering the variation of the parameters caused by the change of temperature and
frequency in the SOP, the resistance, the inductance and the capacitance can be expressed by

Rj = R̂j + ∆Rj, Lj = L̂j + ∆Lj, C = Ĉ + ∆C, j = 1, 2 (9)

where ˆ[·] and ∆[·] represent the nominal and the changed value of the parameters.
The above parameter perturbations can be assumed to be bounded as follows∣∣∆Rj

∣∣ ≤ MRj ,
∣∣∆Lj

∣∣ ≤ MLj , |∆C| ≤ MC, j = 1, 2 (10)

where MRj , MLj and MC are positive constants
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Therefore, considering the parameter perturbation and the external disturbance, the er-
ror dynamics of the DC-side voltage can be rewritten as

ėu = u̇dcre f +
3[e1d − (R̂1 + ∆R1)i1d]

2(Ĉ + ∆C)udc
i1d +

3[e2d − (R̂2 + ∆R2)i2d]

2(Ĉ + ∆C)udc
i2d + ρ1(t) (11)

where ρ1(t) is the external disturbance which can be upper-bounded as |ρ1(t)| ≤ Mρ1(t).
The virtual control signal is defined as φ = g1i1dre f = 1.5(T1/Ce1d−TR1/Ci1d)i1dre f /udc,

where T1/C = 1/Ĉ, TR1/C = R̂1/Ĉ and g1 = 1.5(T1/Ce1d− TR1/Ci1d)/udc, the d-axis current
tracking reference value can be calculated by i1dre f = g−1

1 φ = udcφ/1.5(T1/Ce1d− TR1/Ci1d).
Define the d-axis current tracking error as follows

eid = i1dre f − i1d = g−1
1 φ− i1d (12)

To simplify the equation, let f1 = u̇dcre f + 1.5(T1/Ce2d − TR2/Ci2d)i2d/udc, where
TR2/C = R̂2/Ĉ. Then, the tracking error dynamic of the DC-side voltage can be repre-
sented by

ėu = u̇dcre f +
3[e1d − (R̂1 + ∆R1)i1d]

2(Ĉ + ∆C)udc
i1d +

3[e2d − (R̂2 + ∆R2)i2d]

2(Ĉ + ∆C)udc
i2d + ρ1(t)

= u̇dcre f +
1.5(T1/Ce2d − TR2/Ci2d)i2d

udc
+

1.5(T1/Ce1d − TR1/Ci1d)i1d

udc

+
1.5(∆T1/Ce2d − ∆TR2/Ci2d)i2d

udc
+

1.5(∆T1/Ce1d − ∆TR1/Ci1d)i1d

udc
+ ρ1(t)

= u̇dcre f +
1.5(T1/Ce2d − TR2/Ci2d)i2d

udc
+

1.5(T1/Ce1d − TR1/Ci1d)(i1dre f − eid)

udc

+
1.5(∆T1/Ce2d − ∆TR2/Ci2d)i2d

udc
+

1.5(∆T1/Ce1d − ∆TR1/Ci1d)(i1dre f − eid)

udc
+ ρ1(t)

= f1 + φ + ∆g1g−1
1 φ− g1eid + d1(t) + ρ1(t)

= f1 + φ + ∆g1g−1
1 φ− g1eid + d̂1(t)

(13)

where d̂1(t) = d1(t) + ρ1(t) is defined as the lumped unmatched uncertainty in the
rectifier-side system of the SOP, d1(t) = 1.5(∆T1/Ce2d − ∆TR2/Ci2d)i2d/udc+1.5(∆T1/Ce1d −
∆TR1/Ci1d)eid/udc.

To analysis the lumped unmatched uncertainty d̂1(t), the following uncertainties are
defined as

δu = ∆g1/g1 (14a)

δLj = ∆T1/Lj
/T1/Lj

(14b)

∆g1 = −1.5(∆F1/Ce1d − ∆FR1/Ci1d)/udc (14c)

∆T1/C = −∆C/(Ĉ(Ĉ + ∆C)) (14d)

∆T1/Lj
= −∆LJ/(L̂j(L̂j + ∆Lj)) (14e)

∆TRj/C = −(Ĉ∆Rj − R̂j∆C)/(Ĉ(Ĉ + ∆C)) (14f)

∆TRj/Lj
= −(L̂j∆Rj − R̂j∆Lj)/(L̂j(L̂j + ∆Lj)), j = 1, 2 (14g)
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According to (10), the aforementioned uncertainties (14) can be upper-bounded as

|δu| ≤ Mδu < 1,
∣∣∣δLJ

∣∣∣ ≤ MδLj < 1, |∆T1/C| ≤ M1/C,
∣∣∣ijd

∣∣∣ ≤ ijdmax,
∣∣∣ujd

∣∣∣ ≤ ujdmax,

|∆g1| ≤ 1.5(M1/Ce1dmax −MR1/Ci1dmax)/udc = Mg1 ,∣∣∣∆T1/Lj

∣∣∣ ≤ M1/Lj
,
∣∣∣∆TRj/C

∣∣∣ ≤ MRj/C,
∣∣∣∆TRj/Lj

∣∣∣ ≤ MRj/Lj
, j = 1, 2

(15)

where Mδu , MδLj , M1/C, Mg1 , M1/Lj
, MRj/C and MRj/Lj

are positive constants.

Hence, the lumped unmatched uncertainty d̂1(t) satisfies

d̂1(t) = d1(t) + ρ1(t) = 1.5(∆T1/Ce2d − ∆TR2/Ci2d)i2d/udc + Mρ1(t) (16)

where d1(t) satisfies |d1(t)| ≤ 1.5(M1/Ce2dmax − MR1/Ci2dmax)i2dmax/udc = Md1(t).

The lumped unmatched uncertainty and its derivative are bounded by
∣∣∣d̂1(t)

∣∣∣ = Md1(t) +

Mρ1(t) ≤ Md̂1
(t) and

∣∣∣ ˙̂d1(t)
∣∣∣ ≤ M ˙̂d1

(t).

2.2.2. Inner-Loop Subsystem

The inner-loop subsystem of the rectifier side in the SOP is the current-control sub-
system. To ensure independent dynamic characteristics of the d-q currents, a feedforward
compensation designed as ũ1 = −u1dq + e1dq + L̂1H1i1dq is used to achieve dynamic decou-
pling and avoid the interaction effect of the coupled voltage.

There is no longer external disturbance but only parameter variation in the inner-loop
subsystem, which belongs to the matched uncertainties. The current controllers use i1dre f
as the input and ũ1 as the output to generate the SVPWM modulation signals. According
to the aforementioned mathematical model of the SOP, the inner-loop subsystem can be
obtained by

di1dq

dt
= −R1

L1
i1dq +

1
L1

(−u1dq + e1dq + L1H1i1dq) (17)

Considering the parameter variation, the inner-loop subsystem can be rewritten as

di1dq

dt
= −R1

L1
i1dq +

1
L1

(−u1dq + e1dq + L1H1i1dq)

= − R̂1 + ∆R1

L̂1 + ∆L1
i1dq +

1
L̂1 + ∆L1

(−u1dq + e1dq + (L̂1 + ∆L1)H1i1dq)

= −TR1/L1 i1dq + (T1/L1 + ∆T1/L1)(−u1dq + e1dq + L̂1H1i1dq) + d̂2(t)

(18)

where T1/L1 = 1/L̂1, TR1/L1 = R̂1/L̂1, and the lumped matched uncertainty d̂2(t) =

−∆TR1/L1 i1dq + (T1/L1 + ∆T1/L1)∆L1H1i1dq and satisfies
∥∥d̂2(t)

∥∥ ≤ MR1/L1

∥∥∥i1dq

∥∥∥+ (T1/L1

+ M1/L1)ML1H1

∥∥∥i1dq

∥∥∥.

Introducing the feedforward compensation ũ1 = −u1dq + e1dq + L̂1H1i1dq into (18) yields

di1dq

dt
= −TR1/L1 i1dq + T1/L1 ũ1 + ∆T1/L1 ũ1 + d̂2(t) (19)

where the lumped matched uncertainty and its derivative can be upper-bounded as∥∥d̂2(t)
∥∥ ≤ Md̂2

(t) and
∥∥∥ ˙̂d2(t)

∥∥∥ ≤ M ˙̂d2
.

Lemma 1 ([33]). Consider a system ẋ = f(x), f(0) = 0, x ∈ Rn, if there exists a positive definite
continuous function V(x): U→ R, real numbers c > 0 and 0 < α < 1, and an open neighborhood
U0 ⊂ U of the origin such that V̇ + cVα(x) ≤ 0, x ∈ U0{0}, and then V(x) can approach zero in
a finite-time, tr ≤ V1−α(x(0))/(c(1− α)).
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3. Full-Order Sliding-Mode Control for the Rectifier Side

Let T1/L1 ũ1 = ui1 and combine the outer-loop voltage subsystem and the decoupled
inner-loop current subsystem, the mathematical model of the SOP can be summarized as a
second-order system with matched and unmatched uncertainties in the following form.{

ėu = f1 + φ + δuφ− g1eid + d̂1(t)

i̇1dq = −TR1/L1 i1dq + ui1 + δL1ui1 + d̂2(t)
(20)

where φ = g1i1dre f is the virtual control signal of the outer-loop subsystem.
In this section, a novel virtual-control-technique-based full-order sliding-mode con-

troller is proposed for the rectifier side of the SOP. The virtual control signal φ is designed
to deal with the unmatched uncertainties d̂1(t) and force the DC-side voltage tracking error
eu to converge to zero. In addition, the actual control signal ui1 is designed to compensate
for the matched uncertainties d̂2(t) and make the rectifier-side input current vector i1dq

track its reference i1dqre f = g−1
1 φ accurately.

3.1. Voltage Controller Design for the Outer-Loop

A full-order sliding-mode manifold s1 ∈ R1 is designed for the outer-loop subsystem
with the form as follows

s1 = ėu + c1eu (21)

where c1 is a positive constant.

Theorem 1. If the sliding manifold is selected as (21) and the virtual control law φ is designed as
follows, the outer-loop voltage-tracking error dynamics can be regulated to reach the ideal manifold
in a finite time tr1 ≤ (|s1(0)|/η1), thereafter remaining on it and converging to an equilibrium
point asymptotically after the current tracking error eid and its derivative ėid converge to zero.

φ = φeq + φn (22)

φeq = − f1 − c1eu (23)

φn = −
∫ t

0
k1sgn(s1)dτ (24)

k1 =
Mδu Meq(t) + M ˙̂d1

(t) + η1

1−Mδu

(25)

where Mδu and M ˙̂d1
(t) are defined by (14a) and (16), Mdeq(t) is the upper bound of the derivative

of the equivalent virtual control law (23), and η1 is a positive constant.

Proof of Theorem 1. Substituting the error dynamic of the DC-side voltage (13) into the
sliding manifold (21), yields

s1 = ėu + c1eu = f1 + φ + δuφ− g1eid + d̂1(t) + c1eu (26)

According to the designed virtual control law (22), the derivative of the sliding mani-
fold can be represented by

ṡ1 = φ̇n + δuφ̇ + ˙̂d1(t)− g1 ėid − ġ1eid (27)

defined by a Lyapunov function as V1 = 0.5s2
1. The derivative of V1 can be obtained by

V̇1 = s1 ṡ1 = s1φ̇n + s1δuφ̇eq + s1δuφ̇n + s1
˙̂d1(t)− s1g1 ėid − s1 ġ1eid (28)
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Substituting the integral-type switching-control law (24) into the above, gives

V̇1 ≤ −k1|s1|+ k1|s1||δu|+ |s1||δu|
∣∣φ̇eq

∣∣+ |s1|
∣∣∣ ˙̂d1(t)

∣∣∣− s1g1 ėid − s1 ġ1eid

≤ −k1|s1|(1−Mδu) + Mδu |s1|
∣∣φ̇eq

∣∣+ |s1|M ˙̂d1
(t)− s1g1 ėid − s1 ġ1eid

(29)

Then, the derivative of the Lyapunov function V̇1 satisfies

V̇1 ≤ −|s1|[(1−Mδu)k1 −Mδu Meq(t)−M ˙̂d1
(t)]− s1g1 ėid − s1 ġ1eid (30)

where Meq(t) is the upper bound of φ̇eq.
If the switching gain k1 satisfies k1 = (Mδu Meq(t) + M ˙̂d1

(t) + η1)/(1−Mδu), it yields

V̇1 = s1 ṡ1 ≤ −η1|s1| − s1g1 ėid − s1 ġ1eid (31)

According to Theorem 2, the inner-loop tracking error eid and its derivative ėid can be
forced to converge to zero in finite time. Then, the above becomes

V̇1 ≤ −η1|s1| ≤ −
√

2η1V1/2
1 < 0 (32)

According to Lemma 1, if the current-tracking error eid and its derivative ėid can
converge to zero in finite time, the DC-side voltage tracking error dynamic will be forced
to reach the ideal sliding manifold (21) in a finite time tr1 ≤ (|s1(0)|/η1) under the de-
signed virtual control law (22). In addition, the system trajectory will converge to zero
asymptotically along the sliding manifold. It is obvious that the integral-type control law
can compensate for the unmatched uncertainties completely and make the control signal
smooth. This completes the proof.

The calculation flowchart of the FOSMC is depicted in Figure 2.

udcref +

− 
udc

eu s1 sgn 1/s

Integratorslidng-manifold (21) sign function 

c1k1
+ ϕ 

ϕeq

+
1 1u us e c e= +

udcref +

− 
udc

eu s1 sgn 1/s

Integratorslidng-manifold (21) sign function 

c1k1
+ ϕ 

ϕeq

+
1 1u us e c e= +

Figure 2. Calculation flowchart of the full-order sliding-mode control method.

3.2. Current Controller Design for the Inner-Loop

The current tracking error is defined as ei1 = iidqre f − i1dq = [i1dre f − i1d, 0− i1q]
T .

According to the current subsystem (), the error dynamic of the rectifier-side current can be
obtained by

ėi1 = i̇idqre f + TR1/L1 i1dq − ui1 − δL1ui1 − d̂2(t) (33)

A full-order terminal sliding-mode manifold s2 ∈ R2 is designed for the inner-loop
subsystem to have the form of [33]

s2 = ėi1 + C2eq/p
i1 (34)

where ei1 = [i1dre f − i1d, 0− i1q]
T ; C2 = diag(c21, c22) is the positive diagonal matrix, c21

and c22 are positive constants and q and p are odds and satisfy 0 < q/p < 1.
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Theorem 2. Based on the designed sliding surface (34), the virtual control law (22) and the
following actual control law, the inner-loop current-tracking error dynamics can be regulated to
reach the sliding surface s2(t) = 0 in finite time tr2 ≤ (‖s2(0)‖/η2). Then, the inner-loop tracking
error ei1 and its derivative can converge to zero along the ideal sliding manifold in finite time
ts2 ≤ max{p/[(c21(p− q))|ei1d(tr1d)|1−q/p], p/[(c22(p− q))

∣∣ei1q(tr1q)
∣∣1−q/p

]} [31].

ui1 = ui1eq + ui1n (35)

ui1eq =

[
−g−1

1 [c1( f1 + g1i1d) + k1sgn(s1)]− g−2
1 ġ1φ

0

]
+ TR1/L1 i1dq + C2eq/p

i1 (36)

ui1n =
∫ t

0
k2sgn(s2)dτ (37)

k2 =
MδL1 Mi1eq(t) + M ˙̂d2(t)

+ |g1|−1(M f 1 + c1M ˙̂d1
(t)) +

∣∣∣g−2
1 ġ1

∣∣∣(M f 2 + c1Md̂1
(t)) + η2

1−MδL1

(38)

where the known MδL1 , Md̂1
(t), M ˙̂d1

(t) and M ˙̂d1
(t) are defined by (15), (16) and (19), respectively;

Mi1dq(t) represents the upper bound of the equivalent actual control signal ui1eq, which satisfies∥∥ui1eq
∥∥ ≤ Mi1dq(t); M f 1 and M f2 are assumed as the upper bound of the known function f1 and

its derivative, which satisfy
∣∣ ḟ1
∣∣ ≤ M f 1,

∣∣ f̈1
∣∣ ≤ M f 2.

Proof of Theorem 2. Substituting the current tracking error dynamic (33) into the sliding
manifold (34), yields

s2 = i̇idqre f + TR1/L1 i1dq − ui1 − δL1ui1 − d̂2(t) + C2eq/p
i1

=[
φ̇
0

] + TR1/L1 i1dq − ui1 − δL1ui1 − d̂2(t) + C2eq/p
i1

(39)

Considering the designed virtual control law (22), the above becomes

s2 =

[
g−1

1 [− ḟ1 − c1( f1 + g1i1d + d̂1(t))− k1sgn(s1)]− g−2
1 ġ1φ

0

]
+ TR1/L1 i1dq − ui1 − δL1 ui1 − d̂2(t) + C2eq/p

i1 .

(40)

Substituting the actual control law (35) into the above, then we obtain

s2 =

[
−g−1

1 ḟ1 − g−1
1 c1d̂1(t)

0

]
− ui1n − δL1ui1 − d̂2(t) (41)

and the derivative of the sliding manifold (34) can be calculated by

ṡ2 =

[
−g−1

1 f̈1 + g−2
1 ġ1 ḟ1 − g−1

1 c1
˙̂d1(t) + g−2

1 ġ1c1d̂1(t)
0

]
− u̇i1n − δL1 u̇i1 − ˙̂d2(t) (42)

We define a Lyapunov function as V2 = 0.5sT
2 s2, and its derivative is expressed as

V̇2 = sT
2 ṡ2 ≤

− sT
2 u̇i1n − sT

2 δL1 u̇i1n − sT
2 δL1 u̇i1eq − sT

2
˙̂d2(t)− sT

2 g−1
1 f̈1

+ sT
2 g−2

1 ġ1 ḟ1 − sT
2 g−1

1 c1
˙̂d1(t) + sT

2 g−2
1 ġ1c1d̂1(t)

 (43)

Substituting (37) into the above gives
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V̇2 ≤ ‖s2‖

− k2(1−MδL1) + MδL1

∥∥u̇i1eq
∥∥+ ∥∥∥ ˙̂d2(t)

∥∥∥+ ∣∣∣g−1
1

∣∣∣∣∣ f̈1
∣∣

+
∣∣∣g−2

1 ġ1

∣∣∣∣∣ ḟ1
∣∣+ c1|g1|−1

∣∣∣ ˙̂d1(t)
∣∣∣+ c1

∣∣∣g−2
1 ġ1

∣∣∣∣∣∣d̂1(t)
∣∣∣
 (44)

assume
∣∣ ḟ1
∣∣ ≤ M f 1,

∣∣ f̈1
∣∣ ≤ M f 2 and

∥∥u̇i1eq
∥∥ ≤ Mi1eq(t), considering the upper bounds of

the lumped uncertainties (16) and (19), the above becomes

V̇2 ≤ ‖s2‖

− k2(1−MδL1) + MδL1 Mi1eq(t) + M ˙̂d2
(t) +

∣∣∣g−1
1

∣∣∣M f 2

+
∣∣∣g−2

1 ġ1

∣∣∣M f 1 + c1|g1|−1M ˙̂d1
(t) + c1

∣∣∣g−2
1 ġ1

∣∣∣Md̂1
(t)

 (45)

If the switching gain k2 satisfies k2 = (MδL1 Mi1eq(t)+ M ˙̂d2
(t)+ |g1|−1(M f 1 + c1M ˙̂d1

(t))+∣∣∣g−2
1 ġ1

∣∣∣(M f 2 + c1Md̂1
(t))+ η2)/(1−MδL1), the derivative of the Lyapunov function V̇2 satisfies

V̇2 ≤ −η2‖s2‖ ≤ −
√

2η2V1/2
2 . (46)

According to Lemma 1, the above means that the error dynamic can approach the ideal
sliding manifold s2 = 0 in a finite time tr2 ≤ (‖s2(0)‖/η2). Thereafter, the tracking error of
the rectifier-side input current and its derivative will converge to the equilibrium point in
a finite time ts2 ≤ max{p/[(c21(p− q))|ei1d(tr1d)|1−q/p], p/[(c22(p− q))

∣∣ei1q(tr1q)
∣∣1−q/p

]}.
This completes the proof.

The calculation flowchart of the FOTSMC is depicted in Figure 3.

i1dqref +

− 

ei1 s2 sgn 1/s

Integratorsign function 

c1k2
+

ui1eqi1dq

ui1

+

/

2 1 2 1

q p

i i= +s e C e

sliding manifold (34)

i1dqref +

− 

ei1 s2 sgn 1/s

Integratorsign function 

c1k2
+

ui1eqi1dq

ui1

+

/

2 1 2 1

q p

i i= +s e C e

sliding manifold (34)

Figure 3. Calculation flowchart of the full-order terminal sliding-mode control method.

4. Full-Order Sliding-Mode Control for the Inverter Side

The controller for the inverter side is designed to control the output active power and
reactive power of the load power grid. The output active power P2 and the reactive power
Q2 of the inverter side in the d-q coordinates can be expressed by

P2 = e2di2d + e2qi2q, Q2 = e2qi2d − e2di2q (47)

where e2d and e2q are the inverter side grid voltages in the d- and q-axes, i2d and i2q the
output currents of the inverter side in the d- and q-axes.

Aligning the voltage vector of the AC system with the d-axis of the rotating coordinate
system, eq = 0 can be obtained, and ed is a constant, then

P2 = 1.5edi2d, Q2 = −1.5edi2q (48)

which illustrates that the power output from the inverter side to the grid can be controlled
independently by controlling the inverter-side output currents i2d and i2q. Therefore,
the design of the current controllers can refer to Theorem 2.

The tracking error of the output power can be defined as eo = [P2re f − P2, Q2re f −Q2]
T .

According to the inner-loop subsystem (20), the error dynamic can be represented by



Energies 2022, 15, 4999 11 of 18

ėo =

[
Ṗ2re f
Q̇2re f

]
−
[

1.5e2d i̇2d
−1.5e2d i̇2q

]
= E

di2dq

dt
= E[TR2/L2 i2dq − ui2 − δL2ui2 − d̂3(t)] (49)

where E = diag(1.5e2d,−1.5e2d), ui2 the decoupled control signal with the form as following

ui2 = T1/L2 ũ2 = −u2dq + e2dq + L̂2H2i2dq, H2 = [0, ω2;−ω2, 0] (50)

where ρ2(t) is the external disturbance which can be upper-bounded as ‖ρ2(t)‖ ≤ Mρ2(t),
and the lumped uncertainties d̂3(t) = −∆TR2/L2i2dq + (T1/L2 + ∆T1/L2)∆L2H2i2dq + ρ2(t),

which satisfy
∥∥d̂3(t)

∥∥ ≤ MR2/L2

∥∥∥i2dq

∥∥∥+ (T1/L2 + M1/L2)ML2H2

∥∥∥i2dq

∥∥∥+ Mρ2(t). The lumped

uncertainty and its derivative can be upper-bounded as
∥∥d̂3(t)

∥∥ ≤ Md̂3
(t) and

∥∥∥ ˙̂d3(t)
∥∥∥ ≤ M ˙̂d3

.
A full-order terminal sliding manifold is designed as follows

s3 = ėo + C3eq/p
o (51)

where C3 = diag(c31, c32) is the positive diagonal matrix,c31 and x32 are positive constants
q and p are odds and satisfy 0 < q/p < 1.

Theorem 3. If the sliding manifold is selected as (50), the output-power-tracking error dynamics
can approach the sliding manifold in finite time. The system trajectory will remain on sliding
manifold and converge to zero under the designed control law as follows.

ui2 = ui2eq + ui2n (52)

ui2eq = TR1/L1 i1dq + C3E−1eq/p
0 (53)

ui2n =
∫ t

0
k3sgn(s3)dτ (54)

k3 =
MδL2 Mi2eq(t) + M ˙̂d3

+ η3

1−MδL2

(55)

where the known MδL2 and Md̂3
(t) are defined by (14b) and (49), respectively,and Mi2dq(t) rep-

resents the upper bound of the equivalent actual control signal ui2eq, which satisfies
∥∥ui2eq

∣∣ ≤
Mi2dq(t).

Proof of Theorem 3. According to the output-power-tracking error dynamic (48), the slid-
ing manifold (50) can be rewritten as

s3 = E(TR2/L2 i2dq − ui2 − δL2ui2 − d̂3(t)) + C3eq/p
o (56)

Substituting the control law (51) into the above, yields

s3 = E(−ui2n − δL2ui2 − d̂3(t)) (57)

Thus, the derivative of the sliding manifold (50) can be calculated by

ṡ3 = E(−u̇i2n − δL2 u̇i2 − ˙̂d3(t)) (58)

We define a Lyapunov function as V3 = 0.5sT
3 s2, and the derivative is

V̇3 = sT
3 ṡ3 ≤ sT

3 E(−u̇i2n − δL2 u̇i2 − ˙̂d3(t)) (59)
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Substituting (53) into the above gives

V̇3 ≤ ‖s3‖[−k3(1−MδL2) + MδL2

∥∥u̇i2eq
∥∥+ ∥∥∥ ˙̂d3(t)

∥∥∥] (60)

assuming
∥∥u̇i2eq

∥∥ ≤ Mi2eq(t). Then, it can be obtained from the designed switching gain
(54) that

V̇3 ≤ ‖s3‖[−k3(1−MδL2) + MδL2 Mi2eq(t) + M ˙̂d3
] ≤ −

√
2η3V1/2

3 (61)

which illustrates that the output-power-tracking error dynamic can be forced to reach the
sliding manifold in a finite time. Thereafter, the system trajectory will converge to zero
along the sliding manifold in finite time. This completes the proof.

According to Theorems 1–3, the block diagram of the control scheme of the SOP is
shown in Figure 4. The phase-locked loop (PLL) is used to obtain the angular speed of the
grid voltage which is omitted here for space due to its simplicity.
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dq
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u1d 
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udc

dq

αβ 

dq

αβ 

u2αβ s2abc

θ2 

θ1 
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P2ref
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+

-
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i1d

+

-

e1d+ω1L1i1q  

e1q+ω1L1i1d  

e2d+ω2L2i2d  

e2d+ω2L2i2q  

e2q

e2d

i2q

i2d

Figure 4. Block diagram of the control scheme of the SOP.

5. Simulations
5.1. Empirical Research Methodology

To demonstrate the effectiveness of the proposed method under a serious condition,
a model predictive control (MPC), a linear sliding-mode control (LSMC) and a full-order
sliding-mode control (FOSMC) were used to design the controllers for performance com-
parison in MATLAB/Simulink. The parameters of the SOP are listed in Table 1 [14],
and the controllers design parameters of the rectifier side and the inverter side are listed in
Tables 2 and 3, respectively.
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Table 1. The parameters of the SOP.

Symbol Mean Value

e1abc Grid-phase voltage 220 V
e2abc Load-grid-phase voltage 220 V
F1,2 Voltage frequency 50 Hz
udc DC-side voltage 850 V
C DC-side capacitor 5000 µf
R1 Grid resistance 0.01 Ω
R2 Load-grid resistance 0.01 Ω
L1 Grid inductances 20 mH
L2 Load-grid inductance 20 mH

Table 2. Controller design parameters for the rectifier side.

Control Outer-Loop Controller Inner-Loop Controller

MPC PI controller Kp = 50, Ki = 0.1 Model predictive controller
LSM k1 = 4000 k2 = 6000

FOSM c1 = 155, k1 = 15,000 c21 = c22 = 8000, k2 = 15,000, q/p = 3/5

Table 3. Controller design parameters for the inverter side.

Control Controller

MPC Model predictive controller
LSM k = 5000

FOTSM c31 = c32 = 1000, k3 = 6000, q/p = 3/5

5.2. Simulation Results
5.2.1. Start-up Response in the Case of Parameter Perturbation

To characterize the parameter perturbation, the resistances and inductances in the
rectifier and inverter sides are set to 300% of the original value, and the capacitance in the
DC side is set to 150% of the original value. The simulation starts at 0 s and runs for 0.5 s
in total. The reference value of the DC-side voltage udc and the load grid current i2d are
850 V and 40 A, respectively. The DC-side voltage response under the the MPC, the LSM
and the FOTSM controllers is depicted in Figure 5. It can be seen from Figure 5 that the
settling time of the DC-side voltage under the MPC, the LSM and the FOTSM is 0.096 s,
0.061 s and 0.032 s, respectively, which means that the proposed FTSM controller has the
most rapid dynamic response. The DC-side voltage response under the MPC controller
cannot be forced to reach the reference value and has a steady-state error of 2.5 V. The MPC
controller cannot satisfy the control requirements in the SOP. Figure 6 shows the d-axis
current response in the rectifier side. The voltage response under the MPC controller fails
to track the reference value in the case of parameter perturbation due to the controller’s
characteristics of model dependance. This also results in the steady-state error in the
DC-side voltage response. In Figure 5, it is obvious that the DC-side voltage response
under the LSM and the FOSM tracks the reference value. This demonstrates that the two
controllers can compensate for the uncertainties caused by the parameter perturbation.
It can be seen from Figure 6 that the output of the LSM controller contains chattering,
and the output of the FOSM controller is smooth thanks to the integral-type control law.
The load grid active and reactive power responses are shown in Figures 7 and 8. In the
case of parameter perturbation, the MPC controllers cannot force the active and reactive
power-tracking errors to converge to zero. It is evident that the ripple of the active and
reactive power under the FOSM controller is smaller than the LSM controller in Figure 7
because of the integral-type control law and the adaptive switching gain.
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Figure 5. The DC-side voltage responses under the MPC, the LSM and the FOSM.
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Figure 6. Therectifier side d-axis current responses under the MPC, the LSM and the FOSM.
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Figure 7. The load grid active power responses under the MPC, the LSM and the FOTSM.
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Figure 8. Theload grid reactive power responses under the MPC, the LSM and the FOTSM.

5.2.2. Load-Adding Response in the Case of External Disturbance

To attest the excellent dynamic performance and robustness of the proposed control
method, the load grid current i2d is changed from 40 A to 80 A at 0.2 s, and the external
disturbance ρ1(t) = 5 sin (100t) and ρ2(t) = diag(100 sin (100t), 100 sin (100t)) are added
at 0.4 s. The parameters of the resistances, inductances and capacitance are set to the original
value. The simulation starts at 0 s and runs for 0.6 s in total. From Figure 9, the setting time of
the DC-side voltage response under the MPC, the LSM and the FOSM are 0.094 s, 0.0017 s and
0.0026 s, respectively. Moreover, the DC-side voltage drop under the three control methods are
7.2 V, 2.7 V and 2.6 V, which means that the proposed FOSM controller has a better dynamic
performance in anti-disturbance and rapidness. After the external disturbance ρ1(t) is added
at 0.4 s, it is obvious that the outer-loop PI controller cannot suffer the external disturbance in
the form of sinusoid. The FOSM controller can deal with the added external disturbance ρ1(t)
and force the DC-side voltage-tracking error to converge to zero owing to the integral-type
virtual control law. The LSM controller can also eliminate the external disturbance; however,
the irreducible chattering exists in the control signal as shown in Figure 10. Figures 11 and 12
show the load grid active and reactive power response under the three control methods. It can
be seen that the MPC controller fails to deal with the sinusoidal disturbance ρ2(t), which results
in the tracking error after the external disturbance is added at 0.4 s. The LSM and FOTSM
controllers compensate for the external disturbance completely and force the tracking error to
converge to zero. However, the chattering still exists in the control law of the LSM and leads
to a larger rippler than the FOTSM in the active and reactive power responses as shown in
Figures 10 and 11.
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Figure 9. The DC-side voltage responses under the MPC, the LSM and the FOTSM.
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Figure 12. The load grid reactive power responses under the MPC, the LSM and the FOTSM.

6. Discussion

In this paper, a full-order sliding-mode control algorithm is designed in udc-Q and
P-Q working modes, and a corresponding simulation verification is carried out. However,
the dynamic process of switching between different working modes is not taken into
account. Combined with the dynamic process of the SOP, it will be the aim of a future work
to verify the control effect of the proposed method in an electricity distribution network.

7. Conclusions

In this paper, a full-order terminal sliding-mode control theory is proposed to enhance
the rapidness and robustness of the rectifier-side and the inverter-side controllers in a
soft open point converter. The matched and unmatched uncertainties in the control sys-
tem including external disturbances and parameter perturbation are considered in detail.
The main contributions of the paper can be summarized as: (1) The proposed virtual-
control-techinique-based full-order sliding-mode control method can improve the dynamic
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performance and anti-disturbance of the SOP control system with matched and unmatched
uncertainties. (2) The integral-type control law eliminates the chattering and guarantees
the current references and smooth responses . Finally, the simulations have demonstrated
the effectiveness of the proposed full-order sliding-mode controllers.
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