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Abstract: Nonlinear power-level control of nuclear reactors can guarantee wide-range closed-loop
stability that is positive for plant load-following capability. Nuclear reactor power dynamics are the
tight interconnection of both neutron kinetics and thermal hydraulics, which determines that the
corresponding control design model is a complex nonlinear system with large uncertainty. Although
nuclear reactor dynamics are complex, it is meaningful to develop simple but effective power-level
control methods for easy practical implementation and commissioning. In this paper, a passivity-
based control (PBC) is proposed for nuclear reactor power-level dynamics, which has a simple form
and relies on the measurement of both neutron flux and average primary coolant temperature. By
constructing the Lyapunov function based on the shifted ectropies of neutron kinetics and reactor
core thermal hydraulics, the sufficient condition for globally asymptotic closed-loop stability is
further given. Finally, this PBC is applied to the power-level control of a nuclear heating reactor, and
simulation results show the feasibility and satisfactory performance.

Keywords: nuclear reactor; power-level control; passivity

1. Introduction

Nuclear reactor power-level control is a nonlinear control problem that has been a hot
topic in the fields of nuclear engineering for more than two decades, and some exciting
results have been given. To design the autonomous control system of the space reactor
TOPAZ II, the sliding mode control (SMC) method is adopted for the automatic control
functions including reactor startup and shutdown as well as power-level maintaining,
ramping, and load-following [1]. In addition, some high-order SMC designs are presented
for pressurized water reactors (PWRs) to mitigate the chattering effect during power ma-
neuvering [2,3]. Feedback linearization (FL) is also an effective nonlinear control method,
which is interconnected with a robust disturbance observer for the disturbance attenuation
reactor power control in [4]. Although the SMC and FL-based power control can provide
strong closed-loop stability, these control laws usually have complicated expressions, induc-
ing the difficulty in the deployment. Actually, proportional–integral–differential (PID)-like
control laws still dominate practical control applications in nuclear power engineering.
Hence, it is meaningful to develop simple reactor power-level control laws that are able to
guarantee strong closed-loop stability performance.

Due to its simple expression and high performance, passivity-based control (PBC)
methods have been intensively studied in the last two decades, which are mostly developed
for mechanical, electrical, and magnetic systems and their interconnections. The basic idea
of PBC is to reshape the storage function of open-loop dynamics to a convex positive-
definite function with its setpoint as its minimal point by feedback control. The PBC
called control by interconnection (CbI) is proposed in [5], which gives simple static output
control laws by reshaping the energy function via Casimir functions. However, given by
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its energy-balancing characteristics, the CbI cannot inject extra damping for enhancing
the convergence of storage function, which is briefly called the dissipation obstacle [6].
The interconnection and damping assignment PBC (IDA-PBC) proposed in [7] avoids the
dissipation obstacle based on state-feedback control design of solving a set of first-order
partial differential equations, which is more complex in implementation and commissioning
with comparison to the CbI. To remove the dissipation obstacle by a simple manner, the
power-shaping CbI (PS-CbI) is given in [8]. The key idea of PS-CbI is to extend the original
dynamical system to a higher-order passive system, and the associated extend state vector
is the cyclopassive output of original system defined as the function of the control input,
the original state vector and its derivative. By adopting necessary adaptation mechanism
and injecting extra damping terms, the PS-CbI can further provide asymptotically closed-
loop stability [9]. In addition, the power-shaping PBC given in [10,11] is another method
being able to overcome the dissipation obstacle, which provides the design of a PBC by
reshaping the power function instead of the energy function. Similar to the IDA-PBC, the
power-shaping method still relies on solving partial differential equations. To sum up the
PBC design methods, it can be seen that: (1) obtaining a storage function with its minimal
point giving the expected balance of energy, mass, or momentum is the basis of applying
PBC methods; (2) traditional CbI gives simple static output feedback control without extra
damping; (3) IDA-PBC and power-shaping PBC can provide extra damping, whose design
procedures rely on solving partial differential equations; and (4) PS-CbI provides extra
damping by embedding the original dynamics to a higher-order passive system.

The PBC methods have been widely applied to industrial equipment and processes,
where the classic CbI and IDA-PBC are the most two popular methods. The classical CbI
has been applied to the frequency stabilization of multimachine power system [12], the
motion control of induction motors [13], and the temperature control of heat exchanger
networks [14], whose popularity comes from its simplicity. The IDA-PBC method is applied
for designing the state-feedback control laws for induction motors [15], hydroturbine
systems [16], multimachine power systems considering hydroturbine with surge tank [17],
a fuel cell/super-capacitor hybrid system [18], brushless DC motor [19], and electric vehicles
(EVs) [20]. The popularity of the IDA-PBC method is given by its capability of injecting
extra damping, and usually proper state observers are necessary for realizing practically
implementable dynamic output feedback control strategies. Moreover, the power shaping
PBC has been applied to the control of reaction systems such as the continuous stirred tan
reactor (CSTR) [21].

Since nuclear reactors are complex irreversible thermodynamic process with fission
reaction, it is meaningful to develop PBC methods for simply controlling the power level
of nuclear reactors, which might enhance the operation performance. Currently, there have
been some interesting results on the PBC design of nuclear fission reactors and plants. For
pressurized water reactors (PWRs), by giving the storage function from the shifted ectropies
of neutron kinetics and reactor thermal hydraulics, a proportional–differential (PD) control
is proposed by the use of classical CbI, being able to provide globally asymptotical closed-
loop stability [22]. The parameter uncertainties can be further compensated by coupling an
adaptation law with this PD control [23]. To further improve the performance of PD control,
the port-Hamiltonian form of PWR dynamics is given, and an extra damping integration
about the weighted sum of the errors in both neutron flux and primary coolant temperature
is newly added to the PD law [24]. Several PBC methods have been given for the modular
high-temperature gas-cooled reactors (mHTGRs) [25]. Based on the classical CbI, a simple
static output feedback power control is designed for mHTGRs, which provides globally
asymptotic closed-loop stability [26]. By coupling the IDA-PBC with backstepping, a
dynamic output feedback power-level control law is further given, which has stronger
performance but is too complicated to be implemented practically [27]. By considering
the nonlinearity from dead zone and saturation as well as the coupled primary pressure
dynamics, the simple control given in [26] can be further enhanced [28,29]. Moreover, based
on the basic idea of PBC, the coordinated control for a single mHTGR-based nuclear steam
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supply system (NSSS) module [30,31] and that for several NSSS modules coupled by a
common steam turbine [32] are also proposed for the control of the entire plant. The current
PBC design for the power control of nuclear reactors are mainly based on the classic CbI
method. The result based on the IDA-PBC should be implemented with an additional state
observer, which largely strengthens the complexity and difficulty in deployment. To further
enhance the closed-loop stability for better power ramping capability in the framework of
PBC, extra damping terms related with specific performance indices should be injected.

In this paper, a novel passivity-based power-level control of nuclear reactors is pro-
posed by extending the original power dynamics to a higher-order passive system, where
the extra damping terms are given by the extended state variables. The storage function is
given by not only the shifted ectropies of neutron kinetics and thermal hydraulics but also
the squares of extended state variables. The sufficient condition for globally asymptotic
closed-loop stability is given, and the PBC is then applied to the power-level control of a
nuclear heating reactor (NHR). Simulation results in the case of power stepping show the
feasibility and satisfactory performance.

2. State-Space Model for Control Design

The basic principle of nuclear reactor power level control by using control rods as the
actuator is schematically shown in Figure 1. The inputs of a power-level controller are the
errors of neutron flux and average coolant temperature, where the errors are the deviations
of the measurements from the setpoints. The output of a power-level controller is the
control rod speed signal, which drives the control rods for proper reactivity. The neutron
flux is measured by the instruments such as ion chamber detectors, and the measurement of
average coolant temperature is the algebraic mean of the measurements of reactor inlet and
outlet coolant temperatures. It is the basic requirement for a nuclear reactor power-level
controller to suppress or eliminate the errors while guaranteeing satisfactory closed-loop
stability. In this section, the nonlinear state-space model of point reactor dynamics is first
given. Then, a port-Hamiltonian form of nuclear reactor dynamics is proposed, and the
control problem to be solved is finally raised.

Figure 1. Schematic view of nuclear reactor power-level control, nr: normalized neutron flux, Tcout:
primary coolant temperature at the reactor outlet, Tcin: primary coolant temperature at the reactor
inlet, Tcav: average primary coolant temperature, vr: control rod speed signal, CRDM: control rod
driving mechanism.
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The nuclear reactor dynamics for control design is usually given by the point kinetics
with an equivalent group of delayed neutrons and the reactivity feedback from the averaged
fuel and coolant temperatures that can be given as

Λ
.
nr = −β(nr − cr) + nr[ρr + αf(Tf − Tf,m) + αc(Tcav − Tcav,m)],

.
cr = λ(nr − cr),

µf
.
Tf = −Ω(Tf − Tcav) + P0nr,

µc
.
Tcav = Ω(Tf − Tcav)− 2M(Tcav − Tcin),

.
ρr = Grvr.

(1)

where nr is the normalized neutron flux, cr is the normalized concentration of delayed
neutron precursors, β is the fraction of delayed neutrons, Λ is the effective prompt neutron
lifetime, λ is the radioactive decay constant of delayed neutron precursor, αf and αc are
respectively the reactivity feedback coefficients of the fuel and coolant temperatures, Tf
and Tcav are respectively the average temperatures of fuel assemblies and primary coolant,
Tcav,m and Tf,m are respectively the initial steady values of Tcav and Tf, Tcin is the primary
coolant temperature at reactor core inlet, Ω is the heat transfer coefficient between the
fuel and primary coolant, M is the primary heat capacity flow-rate, i.e., the multiplication
of primary mass flowrate and specific heat capacity at constant pressure, P0 is the rated
reactor thermal power, µf and µc are respectively the total heat capacities of fuel assemblies
and primary coolant, and ρr, Gr, and zr are the induced reactivity, differential worth, and
speed of control rods, respectively. It is not loss of generality to assume that scalar αf is
negative, which should be satisfied by all the current nuclear reactor designs to avoid
severe accidents.

Let nr0, cr0, Tf0, Tcav0, Tcin0, and ρr0 be the setpoints of reactor process variables nr, cr,
Tf, Tcav, Tcin, and ρr, respectively, where the setpoints are taken as the steady-state solution
of (1) corresponding to the power setpoint. Then, the deviations of process variables from
their setpoints can be given as δnr = nr − nr0, δcr = cr − cr0, δTf = Tf − Tf 0, δTcav = Tcav −
Tcav0, δTcin = Tcin − Tcin0, δρr = ρr − ρr0.

We define
x = [xi]4×1 =

[
δnr δcr δTf δTcav

]T (2)

ξ = δρr (3)

as the state variables while taking
u = Grvr (4)

as the control input. Here, it is assumed that δTcin = 0, which means that the influence of
secondary-loop is omitted. Based on (2)–(4), the nonlinear state-space model of nuclear
reactor dynamics can be written as

.
x = f(x) + g(x1)ξ,
.
ξ = u,

y = h(x),

(5)

where y is the measurement output, and vector functions f (x), g(x) and h(x) are given by

f(x) =


− β

Λ (x1 − x2) +
nr0+x1

Λ (αfx3 + αcx4)

λ(x1 − x2)

−Ω
µf
(x3 − x4) +

P0
µf

x1

Ω
µc
(x3 − x4)− 2M

µc
x4

 (6)

g(x1) =
[

Gr
Λ (nr0 + x1) 0 0 0

]T
(7)
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h(x) =
[
x1 x4

]T (8)

From (5), the evolutional trend of state vector x is given by both the neutron kinetics
and reactor thermal hydraulics, while that of the state variable ξ is determined by control
rod dynamics. To guarantee desirable operation performance, it is meaningful to design a
control law for nonlinear system (5) so that x→O as t→∞.

3. Passivity-Based Control Design

The PBC design for nuclear reactor power-level dynamics given by (5) is summarized
as the following theorem.

Theorem 1. Consider nonlinear system (5) with control input u determined by
u = −

(
kP1x1 + kD1

.
x1 + kP4x4 + kD4

.
x4
)
+ κ1ζ1 + κ2ζ2

.
ζ1 = −κ1ζ1 + kp1x1,
.
ζ2 = −κ2ζ2 + kp4x4,

(9)

where
ζ =

[
ζ1 ζ2

]T (10)

is the auxiliary state vector, ζi(0) = 0 (i = 1, 2), gains kD1, kD4, kP1 and kP4 as well as damping
coefficients κ1 and κ2 are positive constants. The extended state vector z defined by

z =
[
xT ζT]T (11)

converges to the origin globally and asymptotically if

kD1 +
GrP0

2αf

[
(kD4 − αc)

2

M
+

kP4

κ2

]
≥ c1 (12)

κ2

kP4
− 1

M
≥ c2 (13)

where ci (i = 1, 2) are arbitrarily given positive constants.

Proof. From model (5), it is reasonable to regard ξ as a virtual control, and design the
stabilizer for subsystem { .

x = f(x) + g(x)ξ,

y = h(x).
(14)

The shifted ectropies for the neutron kinetics and reactor thermal hydraulics are given by
positive definite functions

EN(x1, x2) = Λ

[
x1 − nr0 ln

(
1 +

x1

nr0

)]
+

β

λ

[
x2 − nr0 ln

(
1 +

x2

nr0

)]
(15)

and
ET(x3, x4) =

1
2

(
µRx2

3 + µHx2
4

)
(16)

respectively. By differentiating (15) and (16) along the trajectory of subsystem (14), it can be
found that the time derivatives of EN and ET satisfy

.
EN = − β(x1 − x2)

2

nr0(nr0 + x1)(nr0 + x2)
+ x1(αfx3 + αcx4 + Grξ), (17)

and .
ET = P0x1x3 −Ω(x3 − x4)

2 − 2Mx2
4. (18)
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respectively. �

Design virtual control ξ as

ξ = −kD1x1 − kD4x4 − ζ1 − ζ2 (19)

where positive constants kD1 and kD4 are feedback gains, and both ζ1 are ζ2 are the auxiliary
state variables to be designed.

Substitute control law (19) to Equation (17), and it can be seen that the time derivative
of EN is given by

.
EN(x1, x2) = −

β(x1 − x2)
2

nr0(nr0 + x1)(nr0 + x2)
+ x1(αfx3 + αcx4)− Gr

(
kD1x2

1 + kD4x1x4 + x1ζ1 + x1ζ2

)
. (20)

Design auxiliary state variables ζi (i = 1, 2) as

.
ζ1 = −κ1ζ1 + kP1x1 (21)

.
ζ2 = −κ2ζ2 + kP4x4 (22)

where positive constants κi (i = 1, 2) are given damping coefficients and ζi(0) = 0 (i = 1, 2).
Define Lyapunov function candidate of extended system

.
x = f(x) + g(x)ξ
.
ζ1 = −κ1ζ1 + kP1x1
.
ζ2 = −κ2ζ2 + kP4x4

(23)

as

V(z) = EN(x1, x2) +
ζ2

1
2kP1

− αf
P0

[
ET(x3, x4) +

ζ2
2

2kP4

]
(24)

Since both functions EN and ET are positive definite and feedback coefficient αf is
strictly negative, it can be seen that function V(z) is positive definite. Differentiate V(z)
defined by (24) along the trajectory of the closed-loop system formed by (23) and (19):

.
V(z) =

.
EN(x1, x2) +

Gr
kP1

ζ1
.
ζ1 −

αf
P0

[
.
ET(x3, x4) +

ζ2
.
ζ2

kP4

]
= − β(x1−x2)

2

nr0(nr0+x1)(nr0+x2)
− Gr

[
kD1x2

1 + (kD4 − αc)x1x4 + x1ζ2 +
κ1ζ2

1
kP1

]
+

αf
P0

[
Ω(x3 − x4)

2 + 2Mx2
4 − x4ζ2 +

κ2ζ2
2

kP4

]
= − β(x1−x2)

2

nr0(nr0+x1)(nr0+x2)
− Gr

{
κ1ζ2

1
kP1

+

[
kD1 +

P0Gr(kD4−αc)
2

2αf M + GrP0kP4
2αfκ2

]
x2

1

}
+

αf
P0

[
Ω(x3 − x4)

2 + Mx2
4 +

1
2

(
κ2
kP4
− 1

M

)
ζ2

2

]
+

αf M
2P0

{[
x4 +

GrP0(kD4−αc)
αf M x1

]2
+
(

x4 − ζ2
M

)2
}
+ αfκ2

2P0kP4

(
ζ2 −

GrP0kp4
αfκ2

x1

)2
.

(25)

From (25), it can be seen that if both inequalities (12) and (13) are satisfied, then

.
V(z) ≤ − β(x1 − x2)

2

nr0(nr0 + x1)(nr0 + x2)
− Gr

(
c1x2

1 +
κ1ζ2

1
kP1

)
+

αf
P0

[
Ω(x3 − x4)

2 + Mx2
4 +

c2

2
ζ2

2

]
, (26)

which means that z→O as t→∞, i.e., the extended system defined by (23) is globally
asymptotically stable.



Energies 2022, 15, 4997 7 of 11

Furthermore, from the relationship

u =
.
ξ

the control input u can be given as

u = −
(
kP1x1 + kD1

.
x1 + kP4x4 + kD4

.
x4
)
+ κ1ζ1 + κ2ζ2 (27)

By interconnecting (27) with (21) and (22), passivity-based control (9) can then be
obtained. This completes the proof of this theorem.

Remark 1. The system considered in the theorem is the nuclear reactor power dynamics, and the
designed control law is for the regulation of reactor power-level. The control input u is just the
control rod speed, i.e., the output of the control law. State variables x1 and x4 are just the error of
normalized neutron flux and reactor coolant temperature. The control input u is essentially given
by x1 and x4. By choosing storage function of nuclear reactor power dynamics as

S(x) = EN(x1, x2)−
αf
P0

ET(x3, x4) (28)

it can be derived that

.
S = − β(x1 − x2)

2

nr0(nr0 + x1)(nr0 + x2)
−Ω(x3 − x4)

2 − 2Mx2
4 + x1v (29)

where
v = αcx4 + Grξ (30)

From (28) and (30), the reactor power dynamics is passive, which is the reason to call control law
(27) as a PBC.

Remark 2. From (21) and (22), it can be seen that auxiliary state variables ζ1 and ζ2 are the
weighted integration of x1 and x4, respectively. Hence, virtual control law (19) can be seen as a
proportional–weighted–integral control law.

Remark 3. From PBC (9), control input u can be written in S-domain as

u1(s) = −[G1(s)x1(s) + G2(s)x4(s)] (31)

where
G1(s) =

kP1s
s + κ1

+ kD1s (32)

G2(s) =
kP4s

s + κ2
+ kD4s (33)

It can be seen from (31)–(33) that the controller takes a simple form, which leads to easy implemen-
tation and commissioning in the practical engineering. Furthermore, it can be seen that PBC (9)
degenerates to classical PD control if κ1 = κ2 = 0.

4. Simulation Results with Discussions

In this section, PBC (9) is applied to the power-level control of a 200MWth nuclear heating
reactor (NHR), which is a typical integral pressurized water reactor (iPWR) with a series of
advanced design features such as integral arrangement, self-pressurization, full-power-range
natural circulation, passively decay heat removal, and a built-in hydraulic control rod driven
mechanism [33–35]. The main reactor design parameters are given in Table 1.

The simulation is performed on Matlab/Simulink. Feedback gains kP1, kD1, kP4, kD4,
and damping coefficients κ1 and κ2 should be chosen so that both inequalities (12) and (13)
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are satisfied. According to (12) and (13), it is set that kP1 = 1, kD1 = 10, kP4 = 0.0001,
kD4 = 0.001, and different values of damping coefficients κ1 and κ2 are adopted to show
their influence on control performance.

Table 1. Dynamical parameters of NHR200-II at the middle of fuel cycle around full power.

Parameter Unit Quantity Parameter Unit Quantity

β 0.0065 λ1 1/s 0.0784
Λ s 4.18 × 10−5 αf 1/◦C −2.48 × 10−5

µf kWs/◦C 5005.6 αc 1/◦C −2.71 × 10−4

µc kWs/◦C 1382.2 Ω kW/◦C 1013
M kW/◦C 4201.7 Gr 1/m 0.005

In the simulation, the case of power stepping from 100% full power (FP) to 40% FP is
considered. The transient responses of normalized neutron flux nr, normalized precursor
concentration cr, averaged fuel temperature Tf, average coolant temperature Tcav, primary
coolant temperatures at reactor core outlet Tcout and inlet Tcin, and primary coolant flowrate
Gp as well as control rod speed vr with different κ1 and κ2=1 and those with different κ2
and κ1=1 are shown in Figures 2 and 3, respectively.

Figure 2. Responses in power stepping with different κ1 and κ2 = 1.
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Figure 3. Responses in power stepping with κ1 = 1 and different κ2.

From the simulation results, it can be seen that the closed-loop stability is well guar-
anteed even under different values of damping coefficients κ1 and κ2, which verifies the
correctness of the theoretic result about closed-loop stability analysis. Furthermore, the
dynamic responses given in Figures 2 and 3 also show the influence of damping coefficients
κ1 and κ2 quantitatively. From Figure 2, it can be seen that the influence of κ1 to the transient
performance is limited, which is caused by the low inertia in neutron kinetics. It can be seen
from Figure 3 that the control performance is sensitive to the value of damping coefficient
κ2. Actually, the total heat capacity of a nuclear reactor is large, which gives a strong inertia
in the reactor coolant temperature dynamics. Damping coefficient κ2 is smaller, the integra-
tion effect of average coolant temperature error is stronger, i.e., auxiliary state variable ζ2
is larger, which leads to a shorter transition period of average coolant temperature while
causing a larger overshoot of neutron flux. Hence, in practical engineering, the value of
κ2 should be carefully tuned so as to obtain a satisfactory balance between the transition
period of coolant temperature and the overshoot of neutron flux.
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Finally, it can be seen from Equations (31)–(33) that the PBC has a simple expression
that not only determines an easy implementation on the current digital control system
platforms but also gives an easy tuning and commissioning procedure practically.

5. Conclusions

Nonlinear control of nuclear reactor power level guarantees wide-range operational
stability, which is meaningful to strengthen the flexibility of nuclear power reactors. Due to
the complexity, nonlinearity, and uncertainty in nuclear reactor dynamics, some classical
nonlinear control methods such as feedback linearization and sliding mode control may
lead to complicated control laws that are difficult to be deployed practically. In this paper,
by choosing the Lyapunov function based on the shifted ectropies of neutron kinetics
and reactor thermal hydraulics, a passivity-based power-level control of nuclear reactors
is newly proposed, and the corresponding sufficient condition for globally asymptotic
closed-loop stability is given. The control law is then applied for the power-level control of
a nuclear heating reactor, simulation results not only verify the theoretical analysis but also
show the influence of the damping coefficients to control performance.
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