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Abstract: Herein, some novel metal-free 1,3,4-oxadiazole compounds O1–O7 were evaluated for
their photovoltaic properties using density functional theory (DFT) and time-dependent density
functional theory (TD-DFT) calculations to determine if they can serve as metal-free organic dyes in
the use of dye-sensitized solar cells (DSSCs). To understand the trends in the relative efficiencies of
the investigated compounds as dyes in DSSCs, their electron contributions, hole contributions, and
electron–hole overlaps for each respective atom and fragment within the molecule were analyzed
with a particular focus on the electron densities on the anchoring segments. As transition density
matrices (TDM) provide details about the departure of each electron from its corresponding hole
during excitations, which results in charge transfer (CT), the charge separation distance (∆r) between
the electron and its corresponding hole was studied, in addition to the degree of electron–hole overlap
(Λ). The latter, single-point excitation energy of each electron, the percentage electron contribution
to the anchoring segments of each compound, the incident-photon-conversion-efficiency (IPCE),
charge recombination, light harvesting efficiency (LHE), electron injection (Φinj), and charge collection
efficiency (ncollect) were then compared to ∆r to determine whether the expected relationships hold.
Moreover, parameters such as diffusion constant (Dπ) and electron lifetime (t), amongst others, were
also used to describe electron excitation processes. Since IPCE is the key parameter in determining
the efficiency, O3 was found to be the best dye due to its highest value.

Keywords: DFT; TD-DFT; DSSCs; donor; π-spacer; acceptor

1. Introduction

Although fossil fuels are still the most widely used energy source globally, concerns
have been expressed about whether reserves will soon run out, given that they are lim-
ited [1]. Additionally, widespread concerns have also been raised about the pervasiveness
of global warming caused by energy consumption [2]. Unlike fossil fuels, renewable energy
sources have several advantages: they replenish themselves naturally, produce little sec-
ondary waste, and reduce greenhouse gas emissions and promote sustainability [3,4]. These
sources include bioenergy, direct solar energy, geothermal energy, hydropower, wind, and
ocean energy (tide and wave) [4]. Photovoltaic (PV) systems and solar collectors are two
direct solar energy sources. Both systems generate power through the photoelectric effect.
The first-generation PV systems contained silicon and are still mostly used due to their
hole transportation and charge carrier mobility [5]. However, the challenge in fabricating
silicon solar cells and their high fabrication cost make it difficult to distribute PV systems
that contain silicon. In response to these challenges, extensive research has recently been
conducted to find more cost-effective materials to replace silicon in PV systems. One of
these materials is dye-sensitized solar cells (DSSCs) due to their low cost, facile fabrication,
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low toxicity, and high-power conversion efficiencies. Moreover, these cells have also been
proven to work under low light conditions [6]. A DSSC consists of a dye molecule with
a coated wide bandgap semiconducting layer, electrolyte (usually I−/I−3 redox couple),
and transparent conducting oxide (TCO) film. The TCO is usually coated with mesoporous
semiconductor TiO2 [7]. The dye molecule can include metal complexes and metal-free
organic dyes. Research has recently focused on metal–organic frameworks (MOFs) as dye
molecules due to their robustness, porosity, light-harvesting properties, thermal stability,
and structural versatility. However, their insulating properties limit their usage [8–14]. In
the past, Ru-based complexes held the top place for the highest efficiency in DSSCs, of over
11%, but were overtaken first in 2014 by zinc porphyrin compounds, with an efficiency
of 13%, and soon afterwards in 2015, by two co-sensitized metal-free organic dyes with
an efficiency of 14.30% [15]. It was not just the efficiency of metal-free organic dyes that
spurred researchers to focus more on them, but their low cost, simple synthetic procedures,
high molar absorption coefficients, and variable structure adjustability [16,17]. An organic
dye usually consists of three fragments, namely, a donor, π-spacer, and an acceptor (D-π-A),
where a push–pull system induces intramolecular charge transfer (ICT) from D to A via the
π-spacer (Figure 1) [18–22]. Commonly used donor groups include triarylamine, starburst,
carbazoles, indoles, phenoxides, phenothiazine, and coumarins [21,23–29], while com-
monly used π-spacer units include vinylene and thiophene groups [27,29], and commonly
used acceptor groups include cyanoacetic acid, rhodamine-3-acetic acid, barbituric acid,
hydroxyl, phosphoric acid, cyanoacrylic acid, and carboxylic acid [22,27,30]. ICT occurs
due to sunlight hitting the compound and following a process that mimics photosynthe-
sis [31]. Photophysicochemical properties of the dye determine the efficiency of electron
injection into the conduction band of TiO2. It is highly recommended that an ideal dye
has a high diffusion constant (Dπ) to ensure minimal charge recombination. Successively,
this leads to a large charge accumulation with a high charge collection efficiency (ncollect) at
the interface between the dye and the conduction band of TiO2. To achieve this, the dye
should absorb in the near-infrared region (NIR), and have a high fluorescence emission
factor (Φf), high ground state molar absorption coefficient (εg), large oscillator strength
(f ), and a high dipole moment [32]. The performance of a DSSC is dependent on a good
light-harvesting efficiency (LHE) from the dye and near quantitative collection (at the short
circuit) [33]. As the ground state reduction potential of the conduction band (ECB) has
a literature value of −4.21 eV, it should be noted that for efficient transfer of photoelec-
trons from the dye into the conduction band of the TiO2 semiconductor, the latter should
have a higher reduction potential than the former. The electron injection rate depends on
the difference between the LUMO of the dye and the conduction band edge (δp) of the
semiconductor (the smaller the difference, the faster the transfer). For a highly efficient
transfer, the ideal difference should be ≤0.40 eV. This will subsequently lead to a faster
photocurrent density in the cell. The energy level of the I−/I−3 redox couple should also lie
above the HOMO level of the dye for electrons to be successfully regenerated back into
the dye. The fact that the incident-photon-conversion-efficiency (IPCE) is a function of
the LHE, electron injection, and charge collection efficiency prior to the injection makes
it the key parameter to determine the efficiency of a dye [32]. Our study analyzed the
photophysicochemical properties of compounds containing 1,3,4-oxadiazole π-spacer units
(Figure 2). There have been some reports of compounds that contain this moiety as a
π-spacer unit of a dye in DSSCs [34–36]. These are efficient electron transporters with high
thermal stabilities and high photoluminescent quantum yields [37]. It is expected that
highly energetic electrons will create large electron–hole separation distances, subsequently
inducing small electron–hole overlaps. This will then cause them to diffuse more rapidly
towards the anchoring segments, resulting in a high accumulation of charge that is more
readily available for injection into the semiconductor’s conduction band. Rapidly diffusing
electrons will also be expected to regenerate more easily. As part of our ongoing research
to theoretically assess the efficiencies of DSSCs containing novel metal-free organic dyes
and provide plausible explanations for the observed trends, this study investigated the
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influence of selected moieties on the electron–hole charge separation distances in selected
dye molecules. Furthermore, we explored correlations between the charge separation
distance and other parameters, such as the electron–hole overlap, single-point excitation
energies, electron densities across the anchoring segments, IPCE, dye regeneration, LHE,
electron injection (Φinj), and ncollect. To the best of our knowledge, this is the first study
that explores how electron–hole excitation processes determine the efficiencies of DSSCs.
Herein, we provide the results from these analyses and their implications.
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2. Methodology
Computational Details

All calculations were carried out using Gaussian 09 rev E01 software [38]. The ge-
ometries of all molecules were optimized in the gas phase for both DFT and TD-DFT
calculations. All structures were optimized at the M06-2X/6-31G(d,p) level of theory. Pre-
vious studies have shown that the M06-2X functional obtained highly accurate electronic
excitation energies with minimal errors in the main-group thermochemistry [39,40]. The
optimization process was carried out in conjunction with frequency calculations to verify
that minimum energies were obtained for the structures. Using their optimized structures
as input, we carried out TD-DFT calculations on the organic dyes labelled O1–O7 (Figure 2)
in the gas phase, and their frontier molecular orbital natures (FMO) were analyzed with
multiwfn software [41] by dividing their structures into D-π-A fragments to study their ICT
at the same level of theory. In addition, molecular orbital structures, and energies of their
HOMO and LUMO, were also obtained from an analysis of the optimized structures, to-
gether with single point calculations through conceptual density functional theory (CDFT)
and molecular electrostatic potentials (MEPs).

3. Results and Discussion
3.1. Optimized Geometry

The predicted property of a molecule depends heavily on the accuracy of its optimized
structure. A series of optimization steps are required for each structure before reaching
its minimum energy configuration (Figure S1)—conventionally known as the optimized
structure. The optimized structures were validated as minima or transition state structures
by performing frequency calculations. As any structure with one imaginary frequency
(i.e., negative vibrational frequency) is denoted by a transition state, higher-order saddle
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points are assigned to structures with two or more imaginary frequencies. Hence, it is
generally accepted that a structure that has reached its minimum energy should not have a
negative frequency, and hence, is fully optimized. However, in the case of very large floppy
molecules, negative vibrational frequencies from 10 to 100 cm−1 can be ignored [42].

3.2. Coulomb Attractive Energy and Electron Excitation Analyses

The efficiency of a DSSC depends on the electro-optical properties and electron–hole
pair dissociation potential of the metal-free organic dye. As Coulombic forces exist between
electron–hole pairs, binding (Coulomb attractive) energy holds the electron to its hole. The
low dielectric constant of organic molecules causes a strong Coulombic force between the
electron–hole pair, resulting in a high binding energy, which is inversely proportional to the
dissociation energy. The latter causes the electron to depart from its hole. Equation (1) gives
the relation between binding energy, band gap energy, and single point excitation energy:

Eb = E(LUMO-HOMO) − E(S1-S0) (1)

where Eb is the binding energy, which can also be classified as the estimation of dissociation
energy of excitation; E(LUMO-HOMO) is the band gap energy; and E(S1-S0) is the single point
excitation energy between the ground and the excited state. For an electron to become
successfully excited to the LUMO level, it must possess positive single point energy. This
also separates it from its hole [43]. The ionization potential (IP) and electron affinity
(EA) can predict the electron–hole transport barrier. The former can be calculated using
Equation (2):

IP = −E(N−1) − EN (2)

The latter can be calculated through Equation (3):

EA = −EN − E(N+1) (3)

where N refers to the electron’s state. Previously, it was believed that a narrow E(LUMO)-(HOMO)
energy gap means higher IP [44]. However, a recent study by Bulat et al. revealed that
the energies of electrons in specific atomic or molecular orbitals play significant roles
in excitation processes. Electrons occupy specific sites within the space of a molecule
irrespective of the molecular orbitals that they may occupy. If an orbital ϕi has an electron
density ρi(r) and energy εi, then the total electronic density is ρ(r), and the average orbital
energy is:

ε(r)= ∑ ρi(r)εi
ρ(r)

(4)

The summation of Equation (4) over all the occupied orbitals is:

I(r)= ∑ ρi(r)|εi|
ρ(r)

(5)

where I(r) is the average local ionization energy at r. I(r) is the average energy required to
remove an electron at point r in the space of an atom or molecule. The least tightly held
electrons within atomic or molecular space are also the most energetic and correspond to
the lowest I(r) values. Like Fukui’s reasoning, these are the likely sites for electrophilic
substitution, protonation, and free radical attack. I(r) were shown to be related to other
critical molecular properties such as kinetic energy density and local temperature, local
polarizability/hardness, electronegativity, atomic shell structure, and the electrostatic
potential. When Bulat et al. studied the I(r) of twelve molecules, they observed that only
five of the twelve contained electrons that occupied the HOMO [45].

As electrons become excited, they are distributed unsymmetrically, causing an increase
in the polarity in the excited state. The polarity of the molecule influences its geometry,
which can be measured by the dipole moment. Thus, the symmetry of the molecule is
inversely proportional to the dipole moment. For an electron to become excited, it must
absorb a photon. The probability for a photon to be absorbed is proportional to its oscillator
strength (f ) [43]. Since the excited state is less stable than the ground state, electrons will
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return to the latter. Other than O7, all the compounds in Table 1 yield positive single point
excitation energies. Thus, in most compounds, electrons will become excited. The highest
single point energy in O5 indicates that an electron will become excited more easily than
the other compounds under study. However, its f is less than that of O2. The low dipole
moment in O4 means that it is highly symmetrical, and upon excitation, an electron will
more easily relax to the ground state than the other compounds.

Table 1. Electron excitation parameters of each molecule.

Compound HOMO
(eV)

LUMO
(eV)

E(LUMO-HOMO)
(eV)

Eb
(eV)

E(S1-S0)
(eV)

µ
(Debye) f εabs

(L·mol−1·cm−1)
λmax
(nm)

IP
(eV)

EA
(eV)

O1 −6.95 −2.59 4.36 3.72 0.64 7.48 0.545 27,692 337 6.69 2.00
O2 −7.37 −2.15 5.22 4.50 0.72 2.81 1.030 41,649 356 7.45 1.49
O3 −7.23 −2.17 5.06 4.17 0.89 5.73 0.853 34,505 360 7.75 0.48
O4 −7.59 −2.12 5.47 4.23 1.23 0.91 0.675 28,404 325 7.63 1.44
O5 −7.39 −2.45 4.94 3.37 1.57 6.66 0.782 37,278 325 5.52 4.17
O6 −6.69 −2.95 3.74 3.43 0.31 3.18 0.042 3522 429 5.28 4.26
O7 −7.06 −2.58 4.48 4.65 −0.17 5.12 0.380 15,470 496 4.65 5.00

As the dipole moment indicates the solubility of a molecule in polar solvents [43], it is
expected that O4 will be the least soluble, whereas O1 will be the most soluble. Upon
dissolution, an increase in the wavelengths of these compounds is expected due to interac-
tion with solvent molecules [43]. Figure 3 shows a correlation between IP and EA, where
the latter decreases as the former increases. This can be expected since IP requires energy
to remove an electron from its energy state, whereas EA releases energy when an atom
gains an electron. Observing EA in Table 1, it should be noted that EA lies in the order
O7 > O6 > O5 > O1 > O2 > O4 > O3. As all the LUMO energies lie above the literature value
of the conduction band edge of TiO2 (−4.21 eV) [32], each compound has the potential to
successfully transfer electrons into the conduction band edge once excited. As their HOMO
energies lie below the literature value of the HOMO energy (−4.6 eV) of I−/I−3 [32], their
electrons can also be successfully regenerated back into the dye. Other than O6 and O7,
none of the compounds absorb in the visible and near-infrared (NIR) regions.
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Molecular Electrostatic Potential (MEP)

As molecular electrostatic potential (MEP) calculations have proven to be a reliable
chemical descriptor for the measurement of electronegativities of atoms in a molecule
that are comparable to experimental observations [46], it was deemed worthwhile to
perform these measurements to obtain the electronegativities on selected atoms (Table 2).
When MEP measures the electronegativities, positive values indicate nucleophilic attacks
and negative values indicate electrophilic attacks. In our case, we will only consider the
electronegativities on the anchoring segments CN and COOH, since they play a significant
role in electron injections into the conduction band edge of the semiconductor. We observe
in Table 2 that the combination of the nitrogen atom (N15) of the cyano anchoring segment
and the oxygen atoms (O17 and O18) of the carboxylic acid anchoring segment in O1
contains the highest concentration of electrons, whereas the nitrogen atom (N53) of the
cyano anchoring segment in O7 clearly contains the lowest concentration of electrons. The
MEP trend lies in the order O1 > O5 > O2 > O3 > O4 > O6 > O7. It was expected that O7
would have the lowest electronegativity value due to its very low EA value.

Table 2. Electronegativities on the anchoring segments obtained through molecular electrostatic
potentials (−1 × 103).

Atoms
Compound N15 O17 O18 N25 N27 N28 O27 O28 O29 O30 O31 N53 N182 O184 O185

O1 235 349 414
O2 246 364 362
O3 251 308 411
O4 229 327 400
O5 233 341 402
O6 206 288 412
O7 86.6

3.3. Photovoltaic Parameters

As MEP measures the electron densities on atoms in a molecule, it is a good chemical
indicator that can distinguish between donor, π-spacer, and acceptor fragments, where the
latter contains the highest concentration of electrons amongst the three fragments. [44,47].
(For a detailed discussion of the atom-based electron–hole analysis, see ESI). From the
anchoring groups of the acceptor fragment, electrons diffuse into the TiO2 conduction band
via a diffusion constant Dπ , which can be calculated using Stoke’s Equation (6):

Dπ =
KBT

6πηrdye
(6)

where KB is Boltzman’s constant; η = the viscosity of the medium, which can be assumed
to be He at 300 K (20.0 × 10−6 Pas) in this case since the investigations were performed
in the gas phase; NA = Avogadro’s number; and rdye = the molecular radii of the dye. The
latter can be obtained from Equation (7):

rdye = a = 3

√
3M

4πρNA
(7)

where a = Onsager cavity radii, M = the molecular weight of the dye, ρ = the density of
He gas (9.00 × 10−2 kg·m−3) at STP, and NA = Avogadro’s number. As stated earlier, the
diffusion constant plays a key role in minimizing charge recombination during excitations
(electrons that diffuse more rapidly will have a lower probability for charge recombina-
tion) [22]. The low molecular weights of O2 and O4 cause them to display the highest Dπ

(Table 3). Thus, due to their small sizes compared to the other compounds, their photo-
electrons will diffuse more rapidly into the conduction band of TiO2. As electrons diffuse
towards the conduction band of TiO2, a charge builds up and is collected. The efficiency
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of this collection is called the charge collection efficiency (ncollect), which can be obtained
through Equation (8):

ncollect =
Dπ

(δp)2 (8)

where δp is the potential difference between the LUMO of the dye and the conduction
band of TiO2. ncollect measures the availability of electrons before injection [22]. The high
LUMO excited-state energy in O3 causes it to accumulate more charge across its ncollect
value than the other compounds. As a low potential difference between the LUMO excited
state energy and the conduction band of TiO2 exists due to the low excited state energy of
the former, low charge build-up occurs in O6.

Table 3. Photovoltaic parameters of compounds that were tested as organic dyes.

Compound
rdye (m)

(1 × 10−7)
Dπ

(1 × 10−11) δp
ncollect

(1 × 10−12) LHE t (s)
(1 × 10−38) Φinj

IPCE
(1 × 10−12) ∆Gregen

dye (eV)

O1 1.62 6.73 −6.08 1.68 0.715 0.212 0.795 1.21 2.35
O2 1.15 9.51 −5.64 2.99 0.907 0.120 1.00 2.33 2.77
O3 1.16 9.47 −5.66 2.96 0.860 0.148 1.00 2.55 2.63
O4 1.15 9.51 −5.61 3.02 0.789 0.154 0.961 2.29 2.99
O5 1.41 7.73 −5.94 1.51 0.835 0.136 0.849 1.55 2.79
O6 1.89 5.76 −6.44 1.39 0.0922 4.56 0.480 0.0615 2.09
O7 1.54 7.07 −6.07 1.92 0.583 0.633 0.996 1.11 2.46

Light harvesting efficiency (LHE), which measures the spectral distribution of sunlight
that is being absorbed onto the molecule, can be expressed as:

LHE = 1 − 10−f (9)

where f is the oscillator strength of the dye molecules. From Equation (9), we can deduce
that a large oscillator strength will yield a high LHE. Thus, the large f value in O2 causes
it to display a large LHE. If the excited electron injection efficiency (Φinj) of the dye is
assumed to be equal to the fluorescence emission factor (Φf), then we can define the latter
as in Equation (10):

Φ f =
Iεem

Iεabs
(10)

where Iεem and Iεabs are the integrated emission and absorption coefficients, respectively,
and correspond to the areas under the emission and absorption spectra. The former can
be obtained through the extrapolation of the absorption spectra [22]. Due to a small
difference between the absorption and emission spectrum in O3, a large Φinj is displayed
in this compound. Thus, more photoelectrons can be transferred from the LUMO of this
compound into the conduction band of TiO2 than the other compounds. Conversely, a
small Φinj is observed in O6 due to large differences between absorption and emission
spectra in this compound, which arise from possible photo collisions [45]. The IPCE can
then be obtained through Equation (11):

IPCE = LHE × Φinj × ηcollect (11)

As mentioned earlier, IPCE is the key factor determining the efficiency at which the
dye can inject photoelectrons into the conduction band of TiO2 [22]. The large Φinj in O3
causes a large IPCE, whereas the small Φinj in O6 causes a very small IPCE. An electron
can be efficiently transferred to the first excited state if it has a long lifetime (t), which is
denoted by the equation:

t =
1.499
f × E2 (12)

where f is the oscillator strength, and E (cm−1) is the excitation energy of the different
electronic states [47]. The long t for the excited state in O6 means that electrons can
be more efficiently transferred to a higher energy level within this compound than the
other compounds.
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The free energy obtained from the electron injection (∆Ginject) can be expressed as:

∆Ginject = Edye∗
Ox = Edye

Ox − E00 (13)

where Edye
Ox is the oxidation potential energy of the dye in the ground state, and E00 is the

electronic vertical transition energy corresponding to λmax [47].
The regeneration of free energy (∆Gregen

dye ) is a significant factor that can affect the
photoelectric conversion efficiency and can be expressed as:

∆Gregen
dye = Eelectrolyte

redox − Edye
ox (14)

where a large ∆Gregen
dye can promote dye regeneration and increase the JSC [22,48]. As O4

displayed the highest ∆Gregen
dye , its photoelectrons will be more easily regenerated.

3.4. Fragment-Based Electron–Hole Analysis

After dissecting each molecule into atoms to establish the concentration of electrons
excited to the anchoring groups (see ESI), an evaluation was performed on the fragment
contribution to electron–hole analysis (Figures 4 and 5). In Figure 4, the values on the right-
hand side of the y-axis represent the hole, electron, and overlap contributions, where purple
indicates the least contribution and red indicates the highest contribution. The numbers 1,
2, and 3 in the x-axis represents the donor, π-spacer, and acceptor fragments, respectively.
These analyses were also performed for the first excited state. The darkest purple color
in fragment 1 for the electron contribution shows that it made lower contributions than
the hole and electron–hole overlap contributions in O1. A similar scenario is observed
in the π-spacer fragment, although the hole contribution is significantly more than the
electron–hole overlap contribution. At the acceptor fragment, it is clearly observed that the
electron contributions are the most. The rest of the compounds display similar scenarios
as those observed in O1. A loss of 1.12% in O1 is observed for the donor fragment during
excitations as the charge is transferred to the second fragment (Table 4). At the second
fragment, 35.68% of electrons are lost during excitations, which are then transferred to the
third fragment. About 36.52% of electrons are then delocalized to the third fragment due to
these excitations. This represents quantitative measurements of our observation in Figure 4.
Larger hole than electron contributions for the donor and π-spacer groups, in addition to
smaller overlap analyses for the acceptor group than its electron contributions, confirm
this (Figure 5). This also agrees with the atom-based electron–hole analyses, in addition to
our observations in Figure 4 and Table 4. Although to a lesser degree, a similar scenario is
observed in O2, which also agrees with the atom-based electron–hole analyses (Table 5).
The same trend holds for the rest of the compounds as for O1 and O2 (Tables 6–10), and
also agrees with our atom-based electron–hole analyses. As Figure 6 shows the electron
distribution across the different fragments in each compound for both HOMO and LUMO
analyses; it is observed that electrons are localized across the donor and π-spacer fragments
and then delocalized to the acceptor fragments in all the compounds other than O7, where
electrons are localized across the acceptor fragment for both HOMO and LUMO analyses.
This also confirms the findings of Bulat et al. [45].

Table 4. Fragment contribution to electron–hole overlap in O1.

Fragment Hole (%) Electron (%) Overlap (%) Difference (%)

Donor 1.38 0.26 0.60 −1.12
π-spacer 75.52 39.84 54.85 −35.68
Acceptor 23.38 59.90 37.42 36.52



Energies 2022, 15, 4913 10 of 23

Table 5. Fragment contribution to electron–hole overlap in O2.

Fragment Hole (%) Electron (%) Overlap (%) Difference (%)

Donor 1.18 0.19 0.47 −0.99
π-spacer 86.04 56.91 69.98 −29.12
Acceptor 12.79 42.90 23.42 30.12

Table 6. Fragment contribution to electron–hole overlap in O3.

Fragment Hole (%) Electron (%) Overlap (%) Difference (%)

Donor 2.58 0.23 0.77 −2.36
π-spacer 80.66 58.70 68.81 −21.97
Acceptor 16.32 40.89 25.83 24.57
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Table 7. Fragment contribution to electron–hole overlap in O4.

Fragment Hole (%) Electron (%) Overlap (%) Difference (%)

Donor 1.32 0.10 0.35 −1.23
π-spacer 85.29 47.41 63.59 −37.88
Acceptor 13.39 52.50 26.51 39.11

Table 8. Fragment contribution to electron–hole overlap in O5.

Fragment Hole (%) Electron (%) Overlap (%) Difference (%)

Donor 3.44 0.87 1.74 −2.57
π-spacer 74.77 48.71 60.35 −26.07
Acceptor 21.78 50.42 33.14 28.64

Table 9. Fragment contribution to electron–hole overlap in O6.

Fragment Hole (%) Electron (%) Overlap (%) Difference (%)

Donor 12.71 −0.05 0.00 −12.75
π-spacer 60.42 9.38 23.80 −51.05
Acceptor 26.87 90.67 49.36 63.80

Table 10. Fragment contribution to electron–hole overlap in O7.

Fragment Hole (%) Electron (%) Overlap (%) Difference (%)

Donor 4.71 1.27 2.45 −3.44
π-spacer 71.84 52.24 61.26 −19.60
Acceptor 23.45 46.49 33.02 23.04
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Figure 6. The highest occupied molecular orbitals of molecules in their respective ground states and
lowest unoccupied molecular orbitals of molecules in their respective excited states.

3.5. Transition Density Matrix (TDM)

The transition density matrix (TDM) provides a spatial map that contains information
about charge-transfer lengths (∆r) (Table 11) and the degree of electron–hole overlap (Λ)
(Table 12) analysis during excitations. The former is the measurement of the separation
distance between the electron and its corresponding hole. This chemical index can be used
to distinguish between local excitations (LE) and CT. The former occurs if ∆r ≤ 2 Å, and the
latter if ∆r≥ 2 Å [49]. Table 11 shows the corresponding orbital pairs in which electron–hole
separation distance is measured. From Table 11, the degree of electron–hole separation
distance lies in the order O4 > O3 > O2 > O5 > O1 > O7 > O6. The corresponding orbital
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pairs also agree with the localization and delocalization of π-electrons for HOMO and
LUMO orbitals in Figure 6. Other than O6, CT is displayed for the orbital pairs in all
the compounds. The observation in O6 does not agree with the fragment-based electron–
hole analysis described earlier for this compound. A possible reason may be the level of
theory and basis set selected when performing DFT calculations [38]. It is believed that a
greater separation distance between an electron and its corresponding hole leads to lesser
electron–hole overlap, resulting in lower charge recombination [49]. However, Figure 7
clearly shows that such a trend was not observed within our study. When comparing the
data for ∆r to Λ, only O1, O2, and O6 followed the expected trend. Previous studies that
involve the chemical index Λ have shown inaccurate measurements, irrespective of the
level of theory used [49,50]. It is also expected that a high single point excitation energy of
an electron would induce a large ∆r. Although Figure 8 does not show this trend, only O5
and O7 spoil this relationship. It is also expected that each compound’s anchoring group
with the largest concentration of electrons should have the largest ∆r. However, as Figure 9
shows, the selected model failed to verify this relationship, as only O1, O2, and O7 follow
this trend. This significant deviation can be attributed to the direct relationship between Λ
and electron contributions.

Table 11. Charge-transfer lengths (∆r) for the first excited state within each compound.

Compound ∆r (Å) Orbital Pair

O1 3.31 242→ 251

O2 3.85 87→ 88

O3 3.98 91→ 92

O4 4.35 87→ 88

O5
3.12 159→ 165
3.38 161→ 165

O6 1.74 402→ 404

O7
2.26 213→ 217
2.89 216→ 217

Table 12. Degree of electron–hole overlap (Λ) for the first excited state within each compound.

Compound Λ Orbital Pair

O1 0.324 242→ 251

O2 0.506 87→ 88

O3 0.471 91→ 92

O4 0.280 87→ 88

O5
0.150 159→ 165
0.118 161→ 165

O6 0.0476 367→ 404

O7
0.271 213→ 217
0.143 216→ 217

When acceptor moieties draw electron density from the donor core via the π-spacer, the
transition between different energy states does not change, as only the vibrational energy
levels change. This allows us to analyze and visualize the dynamics of shifting electron
density in terms of ∆r [43]. Observing the influence of the moiety on the photophysical
properties of each molecule will allow us to tune their light-harvesting efficiencies (LHEs)
and predict the outcome of charge recombination (i.e., the longer the ∆r, the lower the
charge recombination) [51]. A detailed discussion on the atom-based transition density
matrix is given in the ESI.
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Figure 7. Graphical relationship between electron–hole separation distance and degree of electron–
hole overlaps for the orbital pair within each compound.
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Figure 9. Electron–hole separation distance vs % electron contribution to anchoring groups within
each compound.
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Figure 10 can be interpreted in the same way as Figure S6. At first glance, the light
green color in the right-hand corner of O1 seems to display the largest electron–hole overlap
for the acceptor fragment in this compound, which results in large charge recombination.
However, the value in the y-axis indicates that O6 holds the largest charge recombination
in the acceptor fragment. This agrees with the measurement for ∆r, which showed LE. It is
also observed that O2 holds the least charge recombination across the acceptor fragment,
although it does not have the largest ∆r value. This is also verified in Tables 4–10.
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3.6. Intra-Fragment-Charge Transfer (IFCT) and Dihedral Angles

The positive IFCT values in Table 13 indicate a higher concentration of electrons on the
acceptor fragment than the donor and π-spacer fragments. A large IFCT value is achieved
for smooth electron movements between D and the π-spacer, and the π-spacer and A
fragments. Smooth electron movements typically occur for small dihedral angles between
D-π and π-A fragments [22]. This is verified in O4. However, a large IFCT is also observed
in O5, although large D-π and π-A dihedral angles are observed. A possible reason for this
may be the large concentration of electrons supplied by the arylamine donor group and
other factors such as atomic shell structure and local polarizability/hardness [45]. Although
a large IFCT is observed in O4, it is highly likely that dye aggregation from intermolecular
interactions between molecules can occur due to its small D-A dihedral angle, resulting in
low electron injection into the conduction band of TiO2 [32]. The largest IFCT value was
also observed for O6. This is a bit unexpected due to its small ∆r value, which indicates
LE and its large D-π and π-A dihedral angles. Its D-A dihedral angle shows that it is not
very prone to intermolecular interactions that lead to charge aggregations. A positive IFCT
in O7 also indicates a possibility for electron injection into the conduction band of TiO2,
although large D-π and π-A dihedral angles were also observed. Furthermore, a reasonable
D-A dihedral angle was observed that might be large enough to prevent dye aggregation.

Table 13. Intra-fragment charge transfer and dihedral angles between fragments within compounds.

IFCT Dihedral Angles (◦)
Compound (D-π-A) (D-π) (π-A) (D-A)

O1 0.35923 86.04 54.25 81.91
O2 0.29634 18.06 10.02 10.93
O3 0.23401 89.97 0 89.97
O4 0.38426 14.64 14.35 8.74
O5 0.27091 88.35 53.68 86.59
O6 0.52267 83.11 86.07 64.25
O7 0.21145 65.74 40.10 37.49

3.7. Relationship between Charge Separation Distance and Parameters Such as IPCE, Charge
Regeneration, LHE, Electron Injection, and Charge Collection

We then tested whether there is a correlation between ∆r and IPCE. It is expected that
a large ∆r will yield a high IPCE value. However, this relationship was spoiled by the
outliers O2 and O4, which caused the graph to display the pattern in Figure 11.
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Figure 11. Graphical relationship between electron−hole separation distance and incident photon
transfer efficiency.
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As we expected a large ∆r to regenerate the dye more easily, we also tested its relation-
ship against ∆Gregen

dye . In this case, O3, O5, and O7 were the outliers, causing the graph to
display the pattern in Figure 12.
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Figure 12. Graphical relationship between electron–hole separation distance and dye regeneration.

Since the IPCE comprises LHE, Φinj, and ncollect, we also tested ∆r against the latter
three parameters. When we tested ∆r against LHE, we observed that O3 and O4 were the
outliers that caused the pattern that is displayed in Figure 13.
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Figure 13. Graphical relationship between electron−hole separation distance and light-harvesting
efficiency.

It is also expected that a larger ∆r will inject more electrons into the semiconductor’s
conduction band. The outliers O4 and O7 spoil this relationship, causing the pattern that is
displayed in Figure 14.
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Figure 14. Graphical relationship between electron–hole separation distance and electron injection
efficiency.

The same correlation between ∆r and ncollect was expected, but the outliers O3 and O7
spoiled this relationship and yielded the graph in Figure 15.
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Figure 15. Graphical relationship between electron−hole separation distance and charge collection
efficiency.

4. Conclusions

This study described the metal-free organic dye characteristics of compounds that
contained 1,3,4-oxadiazole moieties. The compounds were constructed and optimized
using DFT and TD-DFT methods. These moieties served as π-spacer units in each dye of
dye-sensitized solar cells (DSSCs). Starburst, hydroxide, methoxy, amino, and triarylamine
served as the donor groups, while cyano acrylic acid served as the acceptor group in all the
compounds other than O7, where a cyano group served as the acceptor group. Comparison
between IP and EA analyses showed consistent results throughout. When comparing
EA to MEP analysis across the anchoring segments of the compounds, reasonable results
were also observed. The probability of charge recombination was studied by analyzing
electron–hole overlaps for specific atoms and fragments. In doing so, the charge-transfer
lengths (∆r) were used as a chemical index that measures the separation distance between
the electron and its corresponding hole. It was assumed that the largest ∆r will cause the
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smallest degree of electron–hole overlap (Λ), leading to the lowest charge recombination.
As Λ has shown to be an unreliable chemical index, this correlation was not observed. It
was also expected that a large single point excitation energy would cause a large ∆r. Other
than a few outliers, this relationship was observed. It was then assumed that an increase
in ∆r will induce a high electron density around the anchoring groups. However, due to
the relationship between electron contributions and Λ, this correlation did not hold well.
Other than O6, all the compounds showed ∆r values above the minimum value for charge
transfer (CT) between their fragments, with O4 showing the largest ∆r value. However,
its anchoring groups contained lower electron densities than O6. The large ∆r value in
O4 also supports its large ∆Gregen

dye value, as the latter play a role in charge recombination.
However, the small D-A dihedral angle within this compound may render it inefficient as
a dye because intermolecular interactions can occur, leading to aggregation that results
in less electrons being injected into the semiconductor’s conduction band. The bulky
sizes of O6 and O7 cause slow diffusion constants (Dπ) for the movement of π-electrons,
inducing low charge collection efficiencies (ncollect). As IPCE is the key determinant for any
compound to be used as a dye, the large IPCE value observed in O3 indicates that it may
serve as the best dye. Since we expected a larger ∆r to produce a higher IPCE, this was
observed in all the compounds except O2 and O4. Similar relationships between ∆r and
the parameters LHE, Φinj, and ncollect, which comprise the IPCE, were also observed in most
of the compounds, apart from a few outliers. Although the M06-2X functional is highly
reliable for investigating electronic excitation energies, this study has shown that it has
some drawbacks. Nevertheless, this research shows the need for a comprehensive study of
the effect of various DFT functionals and levels of theories on the trend between ∆r and
the selected parameters. This study serves as a valuable guide to select any compound
from a range of compounds studied as a metal-free organic dye in dye-sensitized solar cells,
from which the actual efficiencies can be obtained when studying the DSSC properties by
performing TD-DFT calculations. However, when performing TD-DFT calculations on the
compounds that form the DSSC, interactions between the dye, the semiconductor, and
electrolyte will have to be considered.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/en15134913/s1, Figure S1: Optimization energies for the molecules ob-
tained through DFT calculations. Figure S2: Computed IR spectra of 1,3,4-oxadiazoles. Figure S3: Electron
excitation in each non-hydrogen atom of each molecule. Figure S4: Molecular structures of each
molecule optimized through Gaussian analysis and obtained from Mercury 2020. Figure S5: Electron–
hole contribution analyses of each non-hydrogen atom. Figure S6: Electron–hole overlap transition
density matrix of each non-hydrogen atom within each compound. Table S1: Contribution of each
selected non-hydrogen atom to holes and electrons within O1. Table S2: Contribution of each
selected non-hydrogen atom to holes and electrons within O2. Table S3: Contribution of each
selected non-hydrogen atom to holes and electrons within O3. Table S4: Contribution of each
selected non-hydrogen atom to holes and electrons within O4. Table S5: Contribution of each
selected non-hydrogen atom to holes and electrons within O5. Table S6: Contribution of each
selected non-hydrogen atom to holes and electrons within O6. Table S7: Contribution of each se-
lected non-hydrogen atom to holes and electrons within O7. Table S8: Cartesian coordinates of O1.
Table S9: Cartesian coordinates of O2. Table S10: Cartesian coordinates of O3. Table S11: Cartesian
coordinates of O4. Table S12: Cartesian coordinates of O5. Table S13: Cartesian coordinates of O6.
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