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Abstract: A one-dimensional dual-pressure steam turbine (ST) model for the marine Rankine cycle
is built in this paper. Based on constructal theory, the optimal design of the dual-pressure ST is
performed with a fixed total volume of the high- and low-pressure STs. The total power output
(PO) of the dual-pressure ST is maximized. Seventeen parameters, including the dimensionless
average diameters (DADs) of the stages, steam inlet angles (SIAs) of the stages, average reaction
degrees (ARDs) of the stages, and volume ratio of the high-pressure ST are taken as optimization
variables. The optimal structure parameters of the stages are gained. It reveals that the total PO
of the dual-pressure ST is increased by 2.59% by optimizing the average diameter of the Curtis
stage, and the change in the total PO is not obvious by optimizing the average diameter of the
third stage of the low-pressure ST. Both the total PO and the corresponding efficiency of the dual-
pressure ST are increased by 10.8% after simultaneously optimizing 17 variables with the help of the
Matlab optimization toolbox. The novelty of this paper is introducing constructal theory into turbine
performance optimization by varying seventeen structure, thermal and flow parameters, and the
result shows that the constructal optimization effect is remarkable. Optimal designs of practical STs
can be guided by the optimization results gained in this paper.

Keywords: constructal theory; steam Rankine cycle; dual-pressure steam turbine; power output;
thermal efficiency; optimal structure design

1. Introduction

The steam turbine (ST) [1,2] is an important component for the energy conversion
process of a steam Rankine cycle, which converts the thermal energy of the steam into
kinetic energy and mechanical energy in turn. There are many parameters for a complex
multistage ST, and parameter optimization is one effective way to elevate the performance
of the ST.

Many scholars have conducted various performance optimizations for STs. Chen et al. [3]
performed multi-optimization of a marine ST stage and analyzed the effect of stage number
on the ST efficiency. Qin et al. [4] maximized the stage efficiency of an axial flow ST by
varying the geometric and steam flow parameters of the flow passage section and elevated
the stage efficiency by up to 1.8%. Ni et al. [5] built a segemented lumped parameter
model for a dual-pressure ST (DPST) and compared the simulation and measured results to
validate its correctness. Abadi et al. [6] built a turbine blade cascade model with two-phase
flows and augmented its efficiency by up to 2.1% after optimization. And̄elić et al. [7]
analyzed the performance of a marine ST under different loads and found that the losses
and efficiency of the ST augmented with the augment of the turbine load. Zhao et al. [8]
considered the guide ring in a low-pressure 300MW ST model and pointed out that the
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eddy current was abated, and the efficiency of the low-pressure cylinder was augmented
by introducing the guide ring. Vedran et al. [9] calculated the energy efficiency of a
three-cylinder ST and pointed out that the energy efficiencies of the three cylinders were
95.08%, 95.02% and 94.92% sorted by the reduction of the cylinder pressure. Moreover,
the performance of turbines with organic working fluids has also been investigated by
some scholars [10–13].

In the engineering field, constructal theory [14–26] provides a new idea for the optimal
design of various transfer systems. For power plants, this theory has been used in the
structure optimizations of boilers [27–31], evaporators [32–35], condensers [36–39], regen-
erators [40,41], turbines [42–47] and whole systems [48–50]. In the constructal research of
the turbines, Kim et al. [42] studied the weight distribution problem of a DPST for land
power plants with a fixed total weight and gained the maximum power output (PO) and
optimal weight distribution. Beyene and Peffley [43] applied constructal theory to the
design of a low-speed wind turbine and gained an optimal trailing edge angle, leading to
maximizing the PO of the turbine. Feng et al. [44] sought the minimum thermal resistance
of a gas turbine blade and reported that a multi-scale structure exhibited good thermal
performance. Stanescu et al. [45] built a constructal cooling model for a gas turbine and
compared the turbine performances of fog cooling and inter-stage water spraying cooling
by numerical calculations. Wu et al. [46] performed a structure design for an ammonia
radial turbine and augmented its PO by 2.02% after optimization. Chen et al. [47] built an
R245fa axial flow turbine model and sought the optimal volume and inlet pressure of the
turbine to elevate its PO.

The essence of constructal theory is constructal law, which can be described as follows:
“For a finite-size flow system to persist in time (to live), its configuration must change
in time such that it provides easier and easier access to its currents” [14,15]. Structure
optimization based on constructal law is called constructal optimization. Different from
land turbines, both PO and finite volume should be considered in the design of marine
turbines. For this paper, according to the constructal law, in the condition of the fixed
total volume (finite size) of the DPST, structure optimization of the ST will be conducted
with multi-variable optimization. The PO of the DPST will be maximized. The optimal
design variables will be obtained. From this point of view, this paper belongs to constructal
design work. In addition, Bejan and colleagues performed similar work [42]. This work is
inspired by [42].

This is the biggest difference between this paper and the existing literature. The
marine turbine is always composed of two STs with different pressures, and it is impor-
tant to elevate turbine performance by optimizing its structure under finite size. Based
on Refs. [46,47], a one-dimensional DPST model for the marine steam Rankine cycle will
be built in this paper. Based on constructal theory, with a fixed total volume of the high-
and low-pressure STs, the optimal design of the DPST will be conducted by varying the
structure parameters of the stages to search for the maximum PO. The optimization results
of the DPST gained by single- and multiple-variable optimizations will be compared. The
first novelty of this paper is the introduction of constructal theory into turbine performance
optimization. Another novelty of this paper is optimizing the multistage DPST by simulta-
neously varying seventeen structure, thermal and flow parameters. The performance of
the multistage DPST is hoped to be improved by applying these methods.

2. Marine DPST Model

Figure 1 shows a schematic diagram of a marine one-dimensional DPST. The ST is
composed of high- and low-pressure axial flow STs in series. The superheated steam
generated by a boiler successively enters the high- and low-pressure STs to do work, and
finally, the torque generated by the STs is transmitted to the propeller through the reduction
gear and shaft. The high-pressure ST is an impulse internal bypass composed of a Curtis
stage and nine single-stage STs [5]. The design point condition of the STs is considered in
this paper, and only the Curtis stage and the last three single stages are working at this
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condition. The low-pressure ST is an impulse double-path one, which is composed of five
impulse stages in each path [5]. The low-pressure ST is symmetrical, and exhaust steam
is discharged into the condenser from its middle. It is assumed that the stable flow in
the ST is insulated from the environment and that the parameters of the steam are only
changed along the axis. Thus, the steam in the ST can be viewed as a one-dimensional
steady adiabatic flow.
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2.1. ST Model with Axial Flow

The stage is the smallest unit for the axial flow ST to work. Figure 2 shows the
thermodynamic process diagram of a single stage.
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Points 0 (pressure p0) and 0∗ (pressure p0
∗) are the state points of the steam at the

normal and stagnation states in front of the nozzle, respectively. Points 1 (pressure p1)
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and 2 (pressure p2) are the state points of the steam at the inlet and outlet of the rotating
blade. The ideal stagnation enthalpy drop of the steam in the whole stage and ideal enthalpy
drops of the steam in the nozzle and rotating blade are ∆h∗t , ∆hn and ∆hb, respectively.

The average reaction degree (ARD, Ωm) of the single stage is the ratio of the ideal
enthalpy drop (∆hb) in the rotating blade to the ideal stagnation enthalpy drop (∆h∗t ) in the
whole stage, i.e.,

Ωm =
∆hb
∆h∗t

=
∆hb

∆h∗n + ∆hb
(1)

where ∆h∗n is the ideal stagnation enthalpy drop of the steam in the nozzle.
Figure 3 further shows the thermodynamic process diagram of a Curtis stage with a

certain reaction degree. Each thermodynamic process of the Curtis stage is similar to that
of the single stage, which is not repeated here.

Energies 2022, 15, x FOR PEER REVIEW 4 of 22 
 

 

Points 0 (pressure 0p ) and *0  (pressure *
0p ) are the state points of the steam at the 

normal and stagnation states in front of the nozzle, respectively. Points 1 (pressure 1p ) 
and 2 (pressure 2p ) are the state points of the steam at the inlet and outlet of the rotating 
blade. The ideal stagnation enthalpy drop of the steam in the whole stage and ideal en-
thalpy drops of the steam in the nozzle and rotating blade are th

∗Δ , nhΔ  and bhΔ , re-
spectively. 

The average reaction degree (ARD, mΩ ) of the single stage is the ratio of the ideal 
enthalpy drop ( Δ bh ) in the rotating blade to the ideal stagnation enthalpy drop ( *Δ th ) in 
the whole stage, i.e., 

* *
b b

m
t n b

h h
h h h

Δ Δ
Ω = =

Δ Δ + Δ
 (1)

where nh
∗Δ  is the ideal stagnation enthalpy drop of the steam in the nozzle. 

Figure 3 further shows the thermodynamic process diagram of a Curtis stage with a 
certain reaction degree. Each thermodynamic process of the Curtis stage is similar to that 
of the single stage, which is not repeated here. 

 
Figure 3. Thermodynamic process diagram of the Curtis stage. 

2.1.1. Expansion Process of the Steam in the Nozzle 
The ideal velocity ( 1tc ) of the steam flow at the nozzle outlet is 

*
1 2t nc h= Δ  (2)

when the steam flows through the nozzle, its actual outlet speed ( 1c ) is less than the ideal 
speed ( 1tc ) due to the friction and vortex in the nozzle, i.e., 

1 1tc cϕ=  (3)

Figure 3. Thermodynamic process diagram of the Curtis stage.

2.1.1. Expansion Process of the Steam in the Nozzle

The ideal velocity (c1t) of the steam flow at the nozzle outlet is

c1t =
√

2∆h∗n (2)

when the steam flows through the nozzle, its actual outlet speed (c1) is less than the ideal
speed (c1t) due to the friction and vortex in the nozzle, i.e.,

c1 = ϕc1t (3)

where ϕ is the nozzle velocity coefficient, whose variation range is from 0.92 to 0.98.
The energy loss (∆hn,l) of the nozzle with the actual flow is equal to the kinetic energy

at the nozzle outlet under the ideal condition minus that under the actual condition, i.e.,

∆hn,l =
1
2

(
c2

1t − c2
1

)
=

1
2

c2
1t

(
1− ϕ2

)
=
(

1− ϕ2
)

∆h∗n (4)
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2.1.2. Flow and Energy Conversion Processes of the Steam in a Rotating Cascade

The circumferential velocity (u) at the average diameter (Db) of the rotating cascade is

u =
πDbn

60
(5)

where n is the rotational speed of the ST.
Figure 4 shows the velocity triangle of the single stage. The relative velocity (w1) and

relative inlet angle (β1) of the steam flow at the inlet of the rotating blade can be calculated
according to the velocity triangle.

w1 =
√

c2
1 + u2 − 2uc1 cos α1 (6)

β1 = arcsin
c1 sin α1

w1
= arctan

c1 sin α1

c1 cos α1 − u
(7)

where α1 is the absolute angle of the steam flow at the inlet of the rotating blade.
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According to the energy balance equations of the inlet and outlet of the rotating blade,
the ideal relative velocity (w2t) of the steam flow at the outlet of the rotating blade can be
calculated as

w2t =
√

2(h1 − h2t) + w2
1 (8)

where h1 − h2t is the ideal enthalpy drop (∆hb) of the rotating blade. Subsisting ∆hb =
Ωm∆h∗t into Equation (8), one has

w2t =
√

2Ωmh∗t + w2
1 =

√
2h∗b (9)

where ∆h∗b (= ∆hb + 0.5w2
1) is the ideal stagnation enthalpy drop of the rotating blade.

The absolute velocity (c2) and absolute angle (α2) of the steam flow at the outlet of the
rotating blade can be given as

c2 =
√

w2
2 + u2 − 2uw2 cos β2 (10)

α2 = arctan
w2 sin β2

w2 cos β2 − u
(11)

where w2 and β2 are the ideal relative velocity and relative angle of the steam flow at the
outlet of the rotating blade, respectively.
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Similarly, energy loss exists when steam goes through the rotating cascade. The actual
relative velocity (w2) at the rotating blade outlet is less than the ideal relative velocity, i.e.,

w2 = ψw2t = ψ
√

2h∗b (12)

where ψ is the speed coefficient of the rotating blade, whose variation range is from 0.85 to 0.95.
The energy loss (∆hb,l) of the steam going through the rotating blade, named the

rotating blade loss, can be expressed as

∆hb,l =
(

w2
2t − w2

2

)
/2 =

(
1− ψ2

)
∆h∗b (13)

The residual speed loss (∆hc2) of the steam flow caused by the kinetic energy of the
exhaust steam is

∆hc2 = c2
2/2 (14)

where c2 is the absolute speed at the outlet of the rotating blade.
In the multistage ST, the kinetic energy carried by the residual speed can be used by

the next stage, and its degree of utilization can be expressed by the utilization coefficient
µ(0 ≤ µ ≤ 1) of the residual speed.

After considering the energy losses of the nozzle, rotating blade and residual speed,
the effective specific enthalpy (∆hu) of a turbine stage is expressed as

∆hu = µ0c2
0/2 + ∆hn + ∆hb − (∆hn,l + ∆hb,l + ∆hc2) (15)

where µ0 is the utilization coefficient of the residual speed.
Figure 5 further shows the velocity triangle of the Curtis stage, and its velocity rela-

tionship is similar to Figure 4, which is not repeated here.
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2.1.3. Loss Model in the Stage

In addition to nozzle loss, rotating blade loss and residual speed loss, there exist other
losses in the stage, such as spanwise loss, sector loss, impeller friction loss, partial inlet
steam loss, steam leakage loss and wet steam loss.
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(1) Spanwise loss (∆hl)
The spanwise loss is the additional loss along the height of the blade, which is often

calculated by the semi-empirical formula [51], i.e.,

∆hl =
a
l

∆hu (16)

where the empirical coefficient a is usually 1.2 for the single stage and 2.0 for the Curtis
stage; the cascade height l is the nozzle height for the single stage and the average height
of the cascades for the Curtis stage; ∆hu is the effective specific enthalpy drop of the stage.

(2) Sector loss (∆hθ)
Sector loss is the additional loss caused by the deviation from the design condition,

which is often calculated by the semi-empirical formula [51], i.e.,

∆hθ = E0ζθ (17)

ζθ = 0.7
(

lb
Db

)2
(18)

where lb is the height of the rotating blade, and E0 is the ideal energy of the stage.
(3) Impeller friction loss (∆h f )
The impeller friction loss is the additional loss caused by the friction movement

between the impeller surface and steam, which is often calculated by the semi-empirical
formula [51], i.e.,

∆h f =
3600∆p f

.
mst

(19)

∆p f = k1

( u
100

)3
Dm

2 1
v

(20)

where ∆p f is the friction power consumption of the impeller,
.

mst is the steam mass flow
rate of the stage, k1 is the empirical coefficient, Dm is the average diameter of the stage, and
v is the average specific volume of the steam.

(4) Admission loss (∆he)
The admission loss is composed of the blast loss (∆hw) and steam rejection loss (∆hs).

∆hw can be calculated as [51]:

∆hw = Be
1
e
(1− e− 0.5ec)E0x3

a (21)

where ec is the ratio of the arc length of the protective cover to the whole circumference
length; e is the admission degree; and the stage type coefficient (Be) of the ST is set as 0.15
for the single stage and 0.55 for the Curtis stage. ∆hs can be calculated as [51]:

∆hs = cs
1
e

Zn

Dn
E0xa (22)

where Zn is the group number of the nozzles; Dn is the average diameter of the stationary
cascade; and the coefficient (cs) related to the stage type of the ST is set as 0.012 for the
single stage and 0.016 for the Curtis stage.

Therefore, the total admission loss in this stage is:

∆he = ∆hw + ∆hs (23)
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(5) Steam leakage loss (∆hδ)
The steam leakage loss is composed of the partition leakage loss (∆hp) and blade top

leakage loss (∆ht). The leakage mass flow rate (∆mp) of the steam from the partition is
given as [51]:

∆mp = µp Ap

√
2∆h∗n

v1t
√zp

(24)

where µp is the discharge coefficient of the steam seal, Ap is the clearance area of the steam
seal, v1t is the ideal specific volume of the steam at the outlet of the steam seal teeth, and zp
is the teeth number of the steam seal.

∆hp can be calculated as [51]:

∆hp =
∆mp

mst
∆hu (25)

The leakage mass flow rate (∆mt) of the blade top is given as [51]:

∆mt =
eµtπ(Db + lb)δt

√
2Ωt∆h∗t

ν2t
(26)

where µt is the discharge coefficient of the blade top clearance, µn is the discharge coefficient
of the nozzle, Ωt is the reaction degree of the blade top, and δt is the equivalent clearance
of the blade top for steam leakage.

∆ht can be calculated as [51]:

∆ht =
∆mt

mt
∆hu (27)

Therefore, the total steam leakage loss (∆hδ) in the stage is:

∆hδ = ∆hp + ∆ht (28)

(6) Wet steam loss (∆hx)
When the steam flows into the last few stages of the turbine, a wet steam area is gener-

ated. The wet steam loss is usually calculated using the following empirical formula [51]:

∆hx = (1− xm)∆hu (29)

where xm is the average steam dryness.

2.1.4. Internal Power of the Stage

According to the internal losses of the stage, the effective enthalpy drop (∆hi) of the
stage can be given as

∆hi = ∆hu − (∆hl + ∆hθ + ∆h f + ∆he + ∆hδ + ∆hx) (30)

The calculation process of the internal power of the stage is shown in Figure 6. Finally,
the internal power (Pi) of a stage is given as

Pi =
.

mst∆hi (31)
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To illustrate the ST model more intuitively, the loss models and internal power of the
stage are further listed in Table 1.

Table 1. Lists of the loss models and the internal power of the stage.

Items Expressions Equation Numbers

Nozzle energy loss ∆hn,l =
1
2
(
c2

1t − c2
1
)
= 1

2 c2
1t
(
1− ϕ2) = (1− ϕ2)∆h∗n Equation (4)

Rotating blade loss ∆hb,l =
1
2
(
w2

2t − w2
2
)
=
(
1− ψ2)∆h∗b Equation (13)

Residual speed loss ∆hc2 = 1
2 c2

2 Equation (14)
Spanwise loss ∆hl =

a
l ∆hu Equation (16)

Sector loss ∆hθ = E0ζθ Equation (17)
Impeller friction loss ∆h f =

3600∆p f
.

mst
Equation (19)

Admission loss ∆he = Be
1
e (1− e− 0.5ec)E0x3

a + cs
1
e

Zn
Dn

E0xa Equation (23)
Steam leakage loss ∆hδ =

∆mp
mst

∆hu + ∆mt
mt

∆hu Equation (25)
Wet steam loss ∆hx = (1− xm)∆hu Equation (29)

Effective enthalpy drop of the stage ∆hi = ∆hu − (∆hl + ∆hθ + ∆h f + ∆he + ∆hδ + ∆hx) Equation (30)
Internal power (Pi) of the stage Pi =

.
mst∆hi Equation (31)

2.1.5. Volume of the DPST

The average stage diameters (Dm, j, j = H, L) of the high- and low-pressure STs are
calculated as

Dm, j =
D1, j + Dz, j

2
(j = H, L) (32)

where D1, j and Dz, j are the average diameters of the first and last stages, respectively. For
simplification, the average diameters of the stationary cascade and rotating cascade are
approximately equal to those of the stage.

The average diameters (Da, j, j = H, L) of the turbine casing and maximum lengths
(La, j, j = H, L) of the high- and low-pressure STs can be approximately gained based on the
empirical coefficients.

Da, j = βj · Dm, j (j = H, L) (33)

La, j = αj · Lsp, j (j = H, L) (34)
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where Lsp, j is the flow passage length of the ST, and βj and αj are the coefficients of the
average diameter and length, respectively.

The volumes (VHT and VLT) of the high- and low-pressure STs can be approximately
calculated as

VHT =
π(Da, H)

2

4
· La, H (35)

VLT =
π(Da, L)

2

4
· La, L (36)

The total volume (VT) of the DPST is

VT = VHT + VLT (37)

2.2. Performance of the DPST

The new steam generated by the boiler enters the high- and low-pressure STs to do the
work. Under the design point working condition, the steam only goes through the Curtis
stage and last three single stages in the high-pressure ST. Therefore, the PO (PT, H) of the
high-pressure ST is the sum of the POs of these four stages.

PT, H = Pi , DSH + Pi, H1 + Pi, H2 + Pi, H3 (38)

The low-pressure ST is symmetric. Therefore, the PO (PT, L) of the low-pressure ST is
the sum of the POs of all symmetric stages.

PT, L = 2(Pi, L1 + Pi, L2 + Pi, L3 + Pi, L4 + Pi, L5) (39)

The calculation process of the PO of the DPST is shown in Figure 7. The total PO (Pt)
of the multistage ST is the sum of the POs of the high- and low-pressure STs.

Pt = PT, H + PT, L (40)
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The theoretical PO (Pthe) of the ST is defined as the energy released by the steam.

Pthe =
.

mst(h0
∗ − hout, L5) (41)

where h0
∗ and hout, L5 are the steam stagnation enthalpy at the inlet of the high-pressure ST

and steam enthalpy at the outlet of the low-pressure ST, respectively.
The thermal efficiency (ηt) of the DPST is defined as the ratio of the total PO to the

theoretical PO.
ηt =

Pt

Pthe
(42)

3. Optimal Design of the DPST Based on Constructal Theory

In this section, with a fixed total volume of the DPST, the constructal design of the
double-pressure ST will be conducted subjected to the geometric constraints of increasing
dimensionless average diameters (DADs) of the stages along the direction of steam flow.
The dimensionless average diameter is defined as the ratio of the current value of the
average diameter to its initial value. The effects of the DADs and steam inlet angle (SIA)
of the stages on the total PO of the DPST will be analyzed first, and the results can guide
the following multivariable optimization. To illustrate the multi-variable optimization
problem more intuitively, the constant parameters, design variables, optimization objective,
and constraints of the model are listed in Table 2. Then, the total PO will be optimized
by simultaneously varying the design variables in Table 2. Due to the parameter settings
and geometric constraints of the DPST, the available variation range of one parameter
will be different in the following figures. Moreover, the difference between the theoretical
and actual total POs of the DPST under the initial parameters is 0.3%, which validates the
correctness of the theoretical model.

Table 2. Constant parameters, design variables, optimization objective, and constraints of the model.

Items Contents

Constant parameters Steam mass flow rate (
.

mst), pressure (p0), temperature (T0),
total volume (VT) and rotational speed (n)

Design variables
DADs (D̃m, DSH, D̃m, H1, D̃m, H3, D̃m, L1, D̃m, L3, D̃m, L4 and

D̃m, L5), SIAs (α1, DSH, α3, DSH, αH1 and αL1), ARDs (Ωb1,
Ωgb, Ωb2, ΩH and ΩL) and volume ratio (xv)

Optimization objective Total PO (Pt) of the multistage DPST

Constraints Total volume (VT) of the DPST and increasing average DADs
of the stages along the flow direction

Figure 8 shows the relationship between the dimensionless total PO (P̃t) of the DPST
and DAD (D̃m, DSH) of the Curtis stage of the high-pressure ST. Figure 8 shows that when
the SIA (α1, DSH) of the first row of the rotating blade is 14◦, with the augment of D̃m, DSH,
P̃t first abates and then augments. This is because when D̃m, DSH changes from 0.820 to
0.831, the PO of the high-pressure ST continuously abates, and its decrement is bigger than
the PO increment of the low-pressure ST. Finally, the total PO of the ST shows an abating
trend. When D̃m, DSH changes from 0.831 to 0.845, the POs of the high- and low-pressure
STs augment, so the total PO shows an augmenting trend. When α1, DSH = 14◦, within
the discussed variation range of D̃m, DSH determined by the geometric constraints of the
stages, P̃t reaches the maximum (P̃t,max) at 1.0259, and the corresponding optimal DAD
(D̃m, DSH, opt) is 0.845. The total PO of the DPST is augmented by 2.59% after optimization.
In addition, for a fixed D̃m, DSH, P̃t augments with the abatement of α1, DSH.
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Figure 8. Relationship between P̃t and D̃m, DSH with different α1, DSH.

Figure 9 shows the relationship between the dimensionless total PO (P̃t) of the DPST
and DAD (D̃m, H1) of the third stage from the last of the high-pressure ST. As shown in
Figure 9, when the SIA (αH1) of this stage is 12◦, with the augment of D̃m, H1, P̃t continuously
abates. When αH1 = 12◦, within the discussed variation range of D̃m, H1, P̃t reaches the
maximum (P̃t, max) at 1.0227, and the optimal DAD (D̃m, H1, opt) is 0.68. The total PO of
the DPST is augmented by 2.27% after optimization. In addition, for a fixed D̃m, H1, P̃t
augments with the augment of αH1.
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Figure 10 shows the relationship between the dimensionless total PO (P̃t) of the DPST
and DAD (D̃m, H3) of the last stage of the high-pressure ST. As shown in Figure 10, when the
SIA (αH3) of this stage is 12◦, with the augment of D̃m, H3, P̃t first abates and then augments.
When αH3 = 12◦, within the discussed variation range of D̃m, H3, P̃t reaches the maximum
(P̃t, max) at 1.0264, and the optimal DAD (D̃m, H3, opt) is 1.17. The total PO of the DPST is
augmented by 2.64% after optimization. In addition, for a fixed D̃m, H3, P̃t augments with
the augment of αH3, but the increment gradually becomes small.
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Figure 11 shows the relationship between the dimensionless total PO (P̃t) of the DPST
and DAD (D̃m, L1) of the first stage of the low-pressure ST. As shown in Figure 11, when the
SIA (αL1) of this stage is 23◦, with the augment of D̃m, L1, P̃t first augments and then abates.
When αL1 = 23◦, within the discussed variation range of D̃m, L1, P̃t reaches the maximum
(P̃t, max) at 1.0016, and the optimal DAD (D̃m, L1, opt) is 0.984. The total PO of the DPST is
only augmented by 0.16% after optimization, which shows that the optimization effect is
not obvious. Furthermore, for a fixed D̃m, L1, P̃t augments with the abatement of αL1.
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Figure 12 shows the relationship between the dimensionless total PO (P̃t) of the DPST
and DAD (D̃m, L4) of the fourth stage of the low-pressure ST. As shown in Figure 12, when
the SIA (αL4) of this stage is 23◦, with the augment of D̃m, L4, P̃t continuously augments.
When αL4 = 23◦, within the discussed variation range of D̃m, L4, P̃t reaches the maximum
(P̃t, max) at 1.0007, and the optimal DAD (D̃m, L4, opt) is 1.01. The total PO of the DPST is
only augmented by 0.07% after optimization, which shows that the optimization effect is
also not obvious. Furthermore, for a fixed D̃m, L4, P̃t augments with the abatement of αL4.



Energies 2022, 15, 4854 14 of 20

Energies 2022, 15, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 11. Relationship between tP  and m, L1D  with different L1α . 

Figure 12 shows the relationship between the dimensionless total PO ( tP ) of the DPST 
and DAD ( m, L4D ) of the fourth stage of the low-pressure ST. As shown in Figure 12, when 

the SIA ( L4α ) of this stage is 23 , with the augment of m, L4D , tP  continuously augments. 

When L4 23α =  , within the discussed variation range of m, L4D , tP  reaches the maximum 
( t, maxP ) at 1.0007, and the optimal DAD ( m, L4, optD ) is 1.01. The total PO of the DPST is only 
augmented by 0.07% after optimization, which shows that the optimization effect is also 
not obvious. Furthermore, for a fixed m, L4D , tP  augments with the abatement of L4α . 

Figure 13 shows the relationship between the dimensionless total PO ( tP ) of the DPST 
and DAD ( m, L5D ) of the fifth stage of the low-pressure ST. Figure 13 shows that when the 

SIA ( L5α ) of this stage is 23 , with the augment of m, L5D , tP  continuously abates. When 

L5 23α =  , within the discussed variation range of m, L5D , tP  reaches the maximum ( t, maxP

) at 1.012, and the optimal DAD ( m, L5, optD ) is 1.16. The total PO of the DPST is only aug-

mented by 1.2% after optimization. Furthermore, for a fixed m, L5D , tP  augments with the 
augment of L5α . 

 
Figure 12. Relationship between P̃t and D̃m, L4 with different αL4.

Figure 13 shows the relationship between the dimensionless total PO (P̃t) of the DPST
and DAD (D̃m, L5) of the fifth stage of the low-pressure ST. Figure 13 shows that when
the SIA (αL5) of this stage is 23◦, with the augment of D̃m, L5, P̃t continuously abates.
When αL5 = 23◦, within the discussed variation range of D̃m, L5, P̃t reaches the maximum
(P̃t,max) at 1.012, and the optimal DAD (D̃m, L5, opt) is 1.16. The total PO of the DPST is only
augmented by 1.2% after optimization. Furthermore, for a fixed D̃m, L5, P̃t augments with
the augment of αL5.
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The single variable optimizations of D̃m, DSH, D̃m, H1, D̃m, H3, D̃m, L1, D̃m, L3, D̃m, L4
and D̃m, L5 are conducted in the above discussions. For the DPST, many parameters can
be taken as optimization variables. As listed in Table 3, seventeen parameters will be
considered in the following constructal optimization with multiple variables to elevate
the PO of the DPST. The seventeen parameters include the DADs (D̃m, DSH, D̃m, H1 and
D̃m, H3) of the Curtis stage, third stage from last and last stage of the high-pressure ST, the
DADs (D̃m, L1, D̃m, L3, D̃m, L4 and D̃m, L5) of the first, third, fourth and fifth stages of the
low-pressure ST, SIAs (α1, DSH and α3, DSH) of the first and second rows of the rotating blade
for the Curtis stage, SIAs (αH1 and αL1) of the third stage from last of the high-pressure ST
and first stage of the low-pressure ST, ARDs (Ωb1 and Ωb2) of the first and second rows of
the rotating blade for the Curtis stage, ARD (Ωgb) of the guide vane for the Curtis stage,
ARDs (ΩH and ΩL) of the single row stages for the high- and low-pressure STs as well as
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volume ratio (xv) of the high-pressure ST. Among these, the form of the DAD for each stage
is dimensionless, which is divided by its initial value. The selected optimization variables
and their variation ranges are listed in Table 3. The Matlab software function of “fmincon” is
applied to search for the maximum total PO, and the “interior-point” algorithm is adopted
in this function. Both the total tolerances of the variables and the optimization objective are
set as 10−20. The maximum iteration number is set as 200. Figure 14 shows the relationship
between P̃t and iteration number with different initial values in the function of “fmincon”.
This indicates that the optimization results are slightly influenced by the initial values. For
this reason and the local optimization solver of the “fmincon” function, different initial
variable values are tried to ensure the stability of the optimization results.

Table 3. Optimization variables of constructal design for a DPST.

Number Variables Names of the Variables Variation Ranges

1 D̃m, DSH DAD of the Curtis stage 0.69~1.32
2 D̃m, H1 DAD of the third stage from last of the high-pressure ST 0.69~1.32
3 D̃m, H3 DAD of the last stage of the high-pressure ST 0.67~1.27
4 D̃m, L1 DAD of the first stage of the low-pressure ST 0.86~1.36
5 D̃m, L3 DAD of the third stage of the low-pressure ST 0.80~1.26
6 D̃m, L4 DAD of the fourth stage of the low-pressure ST 0.76~1.20
7 D̃m, L5 DAD of the fifth stage of the low-pressure ST 0.70~1.0
8 α1, DSH SIA of the first row of the rotating blade for the Curtis stage 8~25◦

9 α3, DSH SIA of the second row of the rotating blade for the Curtis stage 8~25◦

10 Ωb1 ARD of the first row of the rotating blade for the Curtis stage 0.05~0.2

11 Ωgb
ARD of the guide vane for

the Curtis stage 0.05~0.2

12 Ωb2 ARD of the second row of the rotating blade for the Curtis stage 0.05~0.2
13 αH1 SIA of the third stage from last of the high-pressure ST 8~25◦

14 αL1 SIA of the first stage of the low-pressure ST 8~25◦

15 ΩH ARD of the single row stage for the high-pressure ST 0.05~0.2
16 ΩL ARD of the single row stage for the low-pressure ST 0.05~0.2
17 xv Volume ratio of the high-pressure ST 0.05~0.4
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After simultaneously optimizing the above seventeen variables, the dimensionless
maximum PO and the corresponding results of the DPST are obtained, which are listed in
Table 4. In Table 4, after constructal optimization, both the total PO and the corresponding
efficiency of the DPST are augmented by 10.8%. This reveals that the structure parameter
optimization with multiple variables significantly improves the performance of the DPST
compared to that with a single variable.

Table 4. Multiple-variable optimization results of the DPST.

Optimization Objectives
and Variables Before Optimization After Optimization

P̃t 1.0 1.108
ηt 0.875 0.97

D̃m, DSH 1.0 0.69
D̃m, H1 1.0 0.69
D̃m, H3 1.0 0.77
D̃m, L1 1.0 0.86
D̃m, L3 1.0 1.24
D̃m, L4 1.0 1.18
D̃m, L5 1.0 1.1
α1, DSH 14◦ 8◦

α3, DSH 23.4◦ 8◦

Ωb1 0.12 0.05
Ωgb 0.12 0.05
Ωb2 0.12 0.05
α1, H 12◦ 25◦

α1, L 23◦ 25◦

ΩH 0.12 0.2
ΩL 0.12 0.2
xv 0.16 0.08

4. Conclusions

A one-dimensional model of a marine dual-pressure axial flow ST is researched in this
paper. With fixed total volume of the high- and low-pressure STs, constructal design of the
DPST is implemented by altering the DADs, SIAs and ARDs of the stages. The maximum
total PO and the corresponding optimal construct of the DPST are gained. The results are
summarized as follows:

(1) For the single-variable optimization, within the discussion scopes of the DADs of
the stages, the total PO of the DPST is augmented by 2.59% after optimizing the DAD of
the Curtis stage, and the change in the total PO is not obvious after optimizing the DAD of
the third stage of the low-pressure ST. Within the certain variation ranges, the total PO of
the DPST can be further improved by abating the SIA of the first row of the rotating blade
for the Curtis stage and SIA of the last stage of the high-pressure ST and augmenting the
SIAs of the third, fourth and fifth stages of the low-pressure ST, respectively.

(2) For the multiple-variable optimization, both the total PO and the corresponding
efficiency of the DPST are augmented by 10.8% after simultaneously optimizing 17 variables.
This reveals that the structure parameter optimization with multiple variables significantly
improves the performance of the DPST compared to that with a single variable.

The DPST model with various loss items is considered in this paper. The loss items
and volume of the DPST are estimated by the empirical formulas. A more practical model
of the DPST will be established in the future, and more practical guidelines will be offered
for the optimal designs of axial flow STs to enhance the energy saving and consumption
reduction of marine steam power plants.
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Nomenclature
a Empirical coefficient
Be Stage type coefficient
c Absolute velocity (m/s)
Da Average diameter of the turbine casing (m)
Db Average diameter of the rotating cascade (m)
Dm Average diameter of the stage (m)
Dn Average diameter of the stationary cascade (m)
ec Length ratio
k1 Empirical coefficient
La Maximum length of the ST (m)
l Cascade height (m)
lb Height of the rotating blade (m)
.

mst Steam mass flow rate of the stage (kg/s)
n Rotational speed (Revolutions/s)
Pi Internal power (kW)
PT, H Power output of the high-pressure ST (kW)
PT, L Power output of the low-pressure ST (kW)
Pt Total power output of the multistage ST (kW)
Pthe Theoretical power output of the ST (kW)
p0 Pressure (Pa)
u Circumferential velocity (m/s)
VHT Volume of the high-pressure ST (m3)
VLT Volume of the low-pressure ST (m3)
VT Total volume of the dual-pressure ST (m3)
v Average specific volume of the steam (m−3)
w Relative velocity (m/s)
xm Average dryness of the steam
xv Volume ratio of the high-pressure ST
Zn Group number of the nozzles
Greek symbols
α Absolute angle (degree)
β Relative angle (degree)
ηt Efficiency of the dual-pressure ST
µ Utilization coefficient
µp Discharge coefficient
ϕ Nozzle velocity coefficient
ψ Speed coefficient
∆hn Enthalpy drop (kJ)
∆mp Leakage mass flow rate of the steam (m/s)
∆p f Friction power consumption of the impeller (kW)
Ωm Average reaction degree
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Superscript
∼ Dimensionless
* Stagnation state
. Rate
Subscripts
b Rotating blade
DSH Curtis stage of the high-pressure
H High-pressure
i Internal
L Low-pressure
m Middle
max Maximum
n nozzle
T Total
the Theoretical
0 State point at the inlet of the nozzle
1, 2 State points at the inlet and outlet of the rotating blade
Abbreviations
ARD Average reaction degree
DAD Dimensionless average diameter
DPST Dual-pressure steam turbine
PO Power output
SIA Steam inlet angle
ST Steam turbine
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