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Abstract: In view of the serious heat loss in the process of steam injection for heavy oil recovery,
nonhydrocarbon gas combined with steam has attracted much attention in recent years to realize the
efficient development of heavy oil. Due to the wide variety of nonhydrocarbon gases, their perfor-
mance in pressurization, dissolution, viscosity reduction, and heat loss decrease is changeable. In this
paper, four groups of one-dimensional physical simulation experiments on different nonhydrocarbon
gas-assisted steam flooding methods were carried out, and the effect on oil displacement character-
istics under high temperature and pressure conditions was studied. Moreover, the differences in
N2, CO2, and flue gas in energy supplementation, heat transfer, and oil recovery efficiency were also
analyzed. The results showed that the three nonhydrocarbon gas-assisted steam flooding methods
could significantly improve the oil displacement efficiency, which was specifically embodied as a
faster oil production rate and longer production period. Compared with pure steam flooding, the
recovery was increased by 12.13%, 16.71% and 13.01%, respectively. The effects of N2 in energy
supplementation and heat transfer reinforcement were the greatest among the three nonhydrocarbon
gases, followed by those of flue gas, and the CO2 effects were the worst. The temperature at the end of
the sandpack model increased by 14.3 ◦C, 8.8 ◦C and 13.1 ◦C, respectively. In addition, CO2-assisted
steam flooding had a prominent oil recovery effect, and the oil content of the sands in the front
and middle of the model was significantly lower than that of other displacement methods. Most
importantly, combined with the analysis of the remaining oil in the oil sands after displacement, we
explained the contrasting contradictions of the three non-hydrocarbon gases in terms of recovery and
energy supply/heat transfer, and further confirmed the gas properties and reservoir adaptability
of the three non-hydrocarbon gases. The results may provide a theoretical basis for the selection of
nonhydrocarbon gases for heavy oil reservoirs with different production requirements.

Keywords: heavy oil; nonhydrocarbon gas; steam flooding; reservoir adaptability

1. Introduction

With the development of conventional oil and gas resources entering the middle and
late stages, many tricky problems have arisen at the sites, such as the high moisture content
of the export liquid and depletion of natural energy in the formation, inducing higher
development difficulty and reducing economic benefits at the same time. However, the
demand for energy is increasing daily, and conventional oil resources obviously cannot
meet the requirements of the current fast-developing industry. To ensure national energy
security and the sustainable development of society, it is urgent to intensify the exploration
of unconventional oil and gas resources and new energy. As one of the representatives,
heavy oil is widely distributed in the world and has abundant reserves, accounting for more
than 70% of the world’s total oil reserves, and approximately 17% is recoverable, showing
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promising value and prospects for development [1,2]. Compared with conventional oil, the
most notable features of heavy oil are high viscosity, high specific gravity, and the existence
of many heavy components, such as sulfur, heavy metals, and asphaltenes, giving rise to
its large flowing resistance in the formation, so the recoverable reserves through water
flooding are extremely low, which is the fundamental reason for its limited production.
Heavy oil has evident thermal expansion and temperature sensitivity; that is, when the
temperature increases, the viscosity decreases, and the fluidity increases [3,4]. Therefore,
thermal technologies have become an effective means of heavy oil development. Multiple
conventional thermal methods of enhancing oil recovery, such as in situ combustion,
hot water flooding and steam injection, which include steam huff and puff [5–7], steam
flooding [8,9] and chemical assisted steam flooding [10], are being used by the oil and gas
industry [11]. In addition, new measures, such as electromagnetic heating [12–14] and
catalytic modification [15], also have significant potential exploration value.

Nevertheless, almost all thermal measures exhibit certain faults in technological as-
pects. In the process of steam flooding, the injected steam is prone to gas channeling
along the high-permeability layer formed by the heterogeneity of the formation. The water
breakthrough time of the oil well is greatly shortened, and the heat cannot comprehensively
spread to the vast formation, so the ultimate recovery is located at a relatively low degree.
On the other hand, when continuously injecting steam into the rock-oil-water system, a
phase change (from liquid to steam phase) usually occurs, ultimately inducing unfavorable
wettability and directly affecting the extent of heavy oil recovery [16–18]. Therefore, a series
of measures to improve heat utilization, such as suppressing steam channeling, expanding
the scope of heat spread, and reducing heat loss during the process, have been key to
solving this problem. Flue gas, as a kind of non-condensable gas, is mainly formed in the
process of producing steam. Because of its low thermal conductivity, it is widely used in
thermal recovery processes to achieve the efficient development of crude oil and simultane-
ously reduce carbon emissions. Zhoujie Wang et al. [19] conducted steam condensation
heat transfer experiments with the addition of flue gas and steam flooding experiments in a
one-dimensional sandpack model. They believed that the flue gas can inhibit the condensa-
tion and heat release of steam in the front and middle parts of the reservoir and hinder the
formation of condensing droplets, thereby promoting the expansion of the steam chamber
into the deep reservoir. The adsorption and retention of nanoparticles in the reservoir can
result in a significant plugging effect, forcing the direction of liquid flow to change and
increasing the sweep coefficient. Osamah A. and Abdullah F. [20] synergized the recovery
mechanisms of both EOR agents by injecting a hot hydrophilic nanofluid (HNF) slug,
followed by superheated steam (SHS) in a second slug. The thermophysical properties of
hydrophilic nanoparticles improve the thermal performance of SHS injection and increase
oil mobility, which can substantially reduce steam consumption by up to 50% and reduce
the costs of producing steam while also improving oil recovery through the utilization of
nanotechnology. When passing through a narrow rock pore throat, the foam expands and
deforms, generating additional flow resistance. With the continuous accumulation of foam,
the resistance effect becomes increasingly obvious. Moreover, foam has the characteristics
of blocking water but not oil and is often called an intelligent fluid. Yongqing Bai et al. [21]
foamed a physically crosslinked clayey hydrogel Bent/PAM with low thermal conductance,
high thermal stability and good mobility, which was synthesized by a one-pot process,
enabling remarkable blockage of steam channeling. Zhanxi Pang et al. [22] selected a kind
of foaming agent for thermal foam flooding and carried out many displacements in a sand-
pack, and the results showed that foam can effectively increase the displacement efficiency
of steam flooding from 43.30% to 81.24% and that thermal foams can effectively improve
the injection profile to restrain steam injection from gravity override and steam channeling
in reservoirs. Changfeng Xi et al. [23] conducted 3D physical modeling experiments of
steam flooding, CO2-foam-assisted steam flooding, and CO2-assisted steam flooding under
different perforation conditions. The experimental results show that after the adjustment of
perforation holes in the later stage of CO2-assisted steam flooding, the steam chamber in the
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middle and lower part of the water injection well expand laterally, and the production and
development mode of gravity drainage is formed in the top chamber of the production well.

In this paper, from the perspective of increasing the heat transfer range of steam and
promoting the expansion of the steam chamber to the deep reservoir, the effects of different
types of gases on the oil production rate, temperature field change, displacement pressure,
etc., were researched based on a one-dimensional steam flooding experiment assisted
by nonhydrocarbon gas. The oil displacement characteristics and the distribution of the
remaining oil after displacement were also analyzed, yielding a certain guiding significance
for the development of enhanced heavy oil recovery by injecting gas/steam.

2. Experimental Section
2.1. Materials

Removal of brine and gases from crude oil samples. The crude oil used in the exper-
iment came from China’s Shengli Oilfield. The viscosity of the crude oil was tested by a
rheometer (Model MCR 302, Anton Paar, Austria). The relationship between viscosity and
temperature is shown in Figure 1. The flue gas used in the experiment was a 1:4 mixture
of CO2 and N2, which was similar to actual flue gas produced by steam generators in
oil fields. The purity of CO2 and N2 were both 99.9 mol%, provided by China Tianyuan
Company. Two types of silica sands were used to fill the sandbags: 80 mesh and 120 mesh,
respectively. The water used in the laboratory to generate steam was distilled water. The
parameters of the sand bag used in the oil displacement experiment are shown in Table 1.
The physical properties of the sand bag were the same, which was consistent with actual
field conditions.
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Figure 1. The relationship between the viscosity and temperature of the heavy oil used in the exper-
iment. 
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Table 1. Parameters of the sandpack used in the flooding experiment.

Displacement Length/cm Diameter/cm Porosity/% Permeability/mD Back Pressure/MPa

Steam flooding 60 2.54 33.1 1184 1
N2-assisted steam flooding 60 2.54 34.17 1230 1

CO2-assisted steam flooding 60 2.54 33.18 1152 1
Flue gas-assisted steam flooding 60 2.54 33.84 1203 1

2.2. Apparatus

The flow chart of the nonhydrocarbon gas-assisted steam flooding experiment is
shown in Figure 2 and the involved experimental devices are listed in Table 2. A specific
flow of flue gas was injected into the experimental model through a gas flow controller.
Distilled water pressurized by a high-precision syringe pump was heated into steam by a
steam generator. Water or heavy oil was injected from the intermediate vessel into the sand
bag with three temperature test points. The temperature was measured by thermocouples.
The schematic diagram and real picture of the sandpack model are shown in Figure 3.
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Table 2. Relevant parameters of experimental equipment.

Device Type

Gas flow controller Model Sla58550, Brooks, United States, flow rate range of 0–30 mL/min under standard conditions

High-precision syringe pump Model 100DX, Teledyne ISCO Company, Teledyne Co., Ltd., USA, flow accuracy of ± 0.25 µL/min
and pressure accuracy of ± 0.5%

Steam generator Model GL-1, Haian Petroleum Equipment Company, temperature range of 100–350 ◦C and
pressure range of 0.1–25 MPa

Thermocouples Model K, Haian Petroleum Equipment Company, temperature accuracy of ± 0.1 ◦C
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2.3. Experimental Procedures

(1) Fill the sandpack with sand of different diameters, and then test the air tightness of
the sandpack.

(2) Measure the dry weight of the sandpack. Then, test the wet weight of the sandpack
saturated with salt water. The porosity is calculated from the weight difference, and the
permeability is calculated from the Darcy equation.

(3) Place the sandpack in a 100 ◦C oven for 2 h until the temperature of the sandpack
stabilizes. Then, crude oil is injected into the sandpack at a flow rate of 0.5 mL/min to
achieve oil saturation.

(4) The steam generator is pre-heated at a temperature of 250 ◦C. When the temperature
of the sandpack and the steam generator stabilize, steam or steam with flue gas is injected
into the sandpack according to the designed experimental parameters. The steam injection
flow rate is set to the equivalent of condensate water.

(5) During the experiment, the temperature of each temperature measurement point in
the sandpack is monitored and recorded in real time, and the water production and crude
oil production are recorded.

(6) When the temperature of the sandpack is stable and the proportion of water in the
produced fluid reaches 98%, the oil displacement experiment is stopped.

(7) The oil sand samples located in different positions of the model after the end of
the displacement are selected to analyze the distribution of the remaining oil and evaluate
the oil displacement effect of different displacement methods. The injection parameters of
various displacement experiments are shown in Table 3.

Table 3. Injection parameters of various displacement experiments.

Steam Flow Rate/(mL·min−1) Steam Dryness Gas Flow Rate/(mL·min−1) Back Pressure/MPa

1 0.7 1 1

3. Results and Discussion
3.1. Variation in the Oil Displacement Parameters

In the experiments, temperature changes at three locations within the sandpack were
used to determine the heat transfer performance of steam flow in porous media. The
temperature changes of the three thermocouples in the sandpack under different injec-
tion parameters were obtained. After the temperature of the sandpack was stable in the
experiment, the data of each temperature measurement point were recorded. Taking the
one-dimensional pure steam flooding as the standard control group, a total of 4 experiments
were carried out with the addition of N2, CO2 and flue gas-assisted steam flooding. The oil
characteristics of gas-assisted steam flooding and their mechanisms for enhancing heavy
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oil production were explored through the curves of apparent oil displacement parameters
changing with time.

The liquid production characteristic curve included three parameters: recovery, water
cut and oil production rate. For sandstone, the surface of the formation rock was mostly
hydrophilic, and the seepage resistance of steam in the formation mainly came from the
capillary force generated by the two-phase flow. In Figure 4, when the steam injection
volume was approximately 0.3 PV, water started to appear at the outlet, and at this moment,
the oil production rate reached a peak value of 0.81 mL/min. After that, due to the gradual
formation of the dominant flow channel, the steam began to channel, and the water cut
curve rose rapidly, corresponding to the rapid decrease in the oil production rate. During
the subsequent displacement process, the flow of steam in the sandpack reached a steady
state, the oil production rate fluctuated around the equilibrium value of 0.1 mL/min, and
the recovery and water cut increased steadily as the remaining oil in the reservoir decreased.
The ultimate recovery was near 48%, which was relatively low in terms of the thermal
recovery of heavy oil.

From Figure 4b–d, it could be found that after adding nonhydrocarbon gas, the
variation law of oil displacement parameters was similar to that of pure steam flooding; that
is, there were two stages: a high-producing period and a low-producing period. The high-
producing period appeared in the early stage of displacement, and the oil production rate
increased sharply at first and then decreased rapidly. The low-producing period appeared
in the middle and late displacement stages, and the production rate decreased slowly and
gradually stabilized. The maximum oil production rates of N2-assisted steam flooding,
flue gas-assisted steam flooding, and CO2-assisted steam flooding were 1.2 mL/min,
1.17 mL/min (since the main component of flue gas was N2 and only a small amount of
CO2 existed, the maximum oil production rate of flue gas-assisted steam flooding was very
close to the former), and 1.06 mL/min, respectively, which were higher than that of pure
steam flooding. In Figure 5, the steam mixed with the nonhydrocarbon gas flowed faster
than pure steam in the formation, and the peak value was higher due to the lower seepage
resistance of the gas, thereby improving the oil displacement efficiency.

Figure 5 shows that after adding nonhydrocarbon gas, the ultimate recovery was
improved to different degrees. It is not difficult to understand that since the main compo-
sition of flue gas was also N2, the recovery of N2-assisted steam flooding was very close
to that of flue gas-assisted steam flooding. Although the maximum oil production rate of
CO2-assisted steam flooding was relatively lower, the high production period lasted for a
longer time, so the final recovery degree was the highest.
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Figure 4. Cont.
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3.2. Variation in the Pressure Difference during Displacement

In Figure 6, the variation in the pressure difference of pure steam flooding and non-
hydrocarbon gas-assisted steam flooding was similar, and the curve trends were basically
the same. For a period of time when the steam was injected, the fluid flowed among
the sand grains to open up the dominant channel for seepage. At this stage, no water
was seen at the outlet, and the injection pressure increased rapidly, providing momentum
for the flow of heavy oil. As the heavy oil along the dominant steam channel was con-
tinuously removed, high-permeability channels formed. After that, the flow resistance
of steam/nonhydrocarbon gas dropped greatly, and a large amount of injected gas was
channeled. Therefore, the displacement pressure suddenly dropped and finally remained
stable with a small fluctuation. The heavy oil lying in the corners gradually expanded
under the action of heat, occupying the large pores of fluid seepage, or the unstably filled
sand particles formed displacement under the scouring of the steam/nonhydrocarbon gas,
which slightly plugged the high-permeability channels. The pressure difference curves
fluctuated in waves under this dynamic balance mechanism.

Further interpretation of the curves showed that the maximum displacement pressure
difference of steam flooding was 2.28 MPa, and the maximum displacement pressure
differences of N2-assisted steam flooding, flue gas-assisted steam flooding and CO2-assisted
steam flooding were 3.16 MPa, 3.11 MPa and 2.86 MPa, respectively (Figure 7). After adding
gas, the reasons why the maximum displacement pressure difference of each displacement
mode was more than that of pure steam were as follows: First, in the high temperature
and pressure conditions, the thermal motion of gas molecules was intensified, and the
mixing degree of the two was higher. The dryness of the steam decreased, and the flow
resistance of the mixed steam increased. Second, the non-condensate gas could form an
insulating gas film on the surface of the rock particles, which prevented the direct contact
between the steam and rock for heat exchange, and the viscosity of the heavy oil in the
formation decreased slightly, resulting in a reduction in the flow capacity. In the later
stage of displacement, due to the high gas mobility, the flow resistance of the mixed steam
was reduced, so the stable pressure difference was lower than that of pure steam flooding.
Compared with CO2, N2 was not easy to compress and had poor solubility in crude oil.
Therefore, the maximum displacement pressure difference of N2-assisted steam flooding
was significantly greater than that of the other two gases, which also showed that N2
possessed more ascendancies in supplementing the formation energy.
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Figure 6. Variation in the displacement pressure difference under different displacement modes: (a) pure
steam flooding, (b) N2 + steam flooding, (c) CO2 + steam flooding, and (d) flue gas + steam flooding.
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Figure 7. Maximum pressure difference and stable pressure difference under different displacement methods.
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3.3. Variation in the Temperature Field

Figure 8 shows the temperature change process of the sandpack model under different
displacement methods. The commonality was that as the steam front continued to advance
into the deep reservoir, each temperature measurement point started to heat in sequence.
The inlet first sensed the temperature change, and the curve increased nearly vertically
and quickly reached a stable temperature. The temperature of the measurement points
closer to the outlet end had a slower temperature rise, a longer heating time, and a lower
stable temperature. It was determined that without changing the environmental conditions
and injection parameters, the steam continuously exchanged heat with the formation rocks
and fluids during the flow process, and with liquefaction and heat dissipation, its own
temperature was lowered, inducing the heat it carried to be gradually reduced. Under
the same displacement mode, the difference between the stable temperatures of adjacent
temperature measurement points increased, indicating that the heat loss of the steam was
severe along the way.
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The stable temperature of each temperature measurement point under different dis-
placement modes is shown in Figure 9 and Table 4. In pure steam flooding, the end
temperature of the model was 135.9 ◦C, while it increased by 14.3 ◦C, 8.8 ◦C, and 13.1 ◦C in
the steam flooding model assisted by N2, CO2, and flue gas, respectively. On the one hand,
the addition of nonhydrocarbon gases improved the flow rate of the mixed thermal fluid.
On the other hand, nonhydrocarbon gas would be enriched in the front edge of the flow,
prompting heat exchange resistance between steam and rocks. Under the combined action
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of the two, the nonhydrocarbon gas spurred the steam to flow rapidly and reduced the heat
loss in the low oil saturation region, thereby bringing more heat into the deep reservoir.
The best effect of preventing the heat transfer mode was obtained with N2-assisted steam
flooding, followed by flue gas, and CO2 was the worst because N2 was not easily com-
pressed with a low thermal conductivity, and the energy-providing effect was outstanding,
while CO2 had better dissolution and compressibility.
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Table 4. The stable temperature of the measurement points under different displacement modes.

Displacement Mode Inlet/◦C Measurement Point 1/◦C Measurement Point 2/◦C Measurement Point 3/◦C

Steam 205.1 189.4 162.9 135.9
N2 + steam 198.8 190.2 182.5 150.2

CO2 + steam 201 192.3 173.4 144.7
Flue gas + steam 200.8 190.8 181.3 149

3.4. Distribution of the Remaining Oil

After flooding, samples were taken at different positions of the sandpack model to
observe the distribution of the remaining oil, as shown in Figure 10. From the inlet to the
outlet, the color of the oil sand became darker, and the oil content gradually increased. Due
to the limited heat of the injected steam, the heavy oil near the inlet had the most obvious
effect of heating up and reducing viscosity and had the highest recovery degree with an oil
content of 5.15% (Table 5). Then, as the steam gradually liquefied and released heat, the heat
brought to the rear of the reservoir dropped, and the oil content at the outlet was 12.88%.
At the inlet and the middle position, the oil content of CO2-assisted steam flooding was
lower than that of N2-assisted steam flooding, indicating that although CO2-assisted steam
flooding was not as good as N2-assisted steam flooding in promoting the development
of steam chambers, the oil recovery efficiency in the affected range was higher than that
of N2-assisted steam flooding (Figure 11). Compared with steam flooding assisted by
nonhydrocarbon gas, it was found that the color of the oil sand was obviously lighter, and
the remaining oil content was reduced, indicating that the addition of nonhydrocarbon gas
significantly improved the overall oil displacement efficiency. In the area affected by steam
heat, the result of multiple mechanisms, such as temperature rise and viscosity reduction,
thermal expansion, and CO2 extraction to light components, was that the oil recovery
efficiency was greatly enhanced.
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Table 5. The oil content of oil sands at different positions after displacement.

Oil Content/%. Position
Displacement Modes Inlet Middle Outlet

Initial oil sands 25.77 25.77 25.77
Steam 5.15 9.86 12.88

N2 + steam 4.37 6.15 11.05
CO2 + steam 3.76 5.72 11.95

Flue gas + steam 4.05 6.1 11.69
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3.5. Analysis of the Reasons for the Effects Induced by Different Gases

From the above experimental results, some rules were determined. The mixing of the
non-condensate gas with the steam increased the mobility of the displacement medium,
thus prolonging the high production period and increasing the maximum oil recovery rate,
because the gas was unable to liquefy into water when contacting cold objects, emitting
much heat during the flow. The gas had a large molecular distance, and the viscous



Energies 2022, 15, 4805 13 of 15

force between the molecules was mild, and the force generated by mutual shearing was
significantly smaller than that of the liquid, so that it could quickly channel flow in the
tiny pores, opening up the main path for the liquid flow and increasing the range of
thermal spreading.

In terms of suppressing the heat transfer effect of condensation, the advantages of N2
were more obvious than those of CO2. After investigation, N2 had low thermal conductivity
and low compressibility. Because of lower density and better mobility, the injected N2
could form a thermal isolation layer at the top of the reservoir. It not only inhibited steam
override, but also prevented heat loss from the overlying rock, thus increasing thermal
efficiency and sweep efficiency [24]. This was determined by the structure and physical
properties of the gas molecules.

In terms of supplementing formation energy, compared with CO2, N2 was less com-
pressible and insoluble in crude oil. Under the condition of the same injection amount,
it could occupy a larger space, and better supplement formation energy, which provided
higher displacement power and accelerated the advancement of thermal fluid to the deep
formation, then expanding the swept range. This feature also positively affected the
expansion of the heat spread.

In the aspect of enhancing oil recovery, CO2 could dissolve in crude oil under certain
conditions and reduce its viscosity, which not only supplements crude oil energy, but
also increases fluid pressure in porous media. At the same time, the two further formed
a miscible phase, which greatly reduced the interfacial tension, thereby decreasing the
seepage resistance. As a kind of common acid gas, CO2 also possessed a certain acid
etching effect on rock particles that dissolved the cement between particles from the micro
perspective, expanding the fluid flow space, and improving the flow capacity of the heavy
oil originally located in the corner.

The research content of this paper was based only on the one-dimensional sandpack
model of steam flooding. There are certain limitations in the testing and evaluation of oil
production parameters, injection pressure and other indicators that affect the reservoir
development effect, and the dynamic changes in the actual development process cannot be
accurately predicted, but can provide a certain theoretical basis.

4. Conclusions

(1) Steam flooding assisted by three nonhydrocarbon gases, N2, CO2 and flue gas,
could significantly improve the oil displacement efficiency, which was manifested as
accelerated oil recovery and a prolonged high production period. Compared with that
of pure steam flooding, the recovery factor was increased by 12.13%, 16.71% and 13.01%,
respectively.

(2) The effect of enhancing the heat transfer of N2-assisted steam flooding was the best
among the three nonhydrocarbon gases, and the CO2 effect was the worst. Compared with
steam flooding, N2-, flue gas- and CO2-assisted steam flooding increased the temperature
at the end of the sandpack by 14.3 ◦C, 13.1 ◦C and 8.8 ◦C, respectively. That is, N2 could
bring more heat into the deep formation under the same conditions.

(3) N2 showed more evident assets in supplementing the formation energy. The
maximum displacement pressure differences during steam flooding assisted by N2, CO2
and flue gas were 3.16 MPa, 2.86 MPa and 3.11 MPa, respectively.

(4) The oil content of the sands after undergoing CO2-assisted steam flooding was lower
than that of N2-assisted steam flooding for the inlet and middle points of the sandpack, not
the outlet, which indicated that CO2 had a more remarkable effect on oil displacement.
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