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Abstract: Fault probability rises with an increase in the number of current sensors in multi-phase
permanent synchronous motor (PMSM) drives. This paper proposes an improved axis rotation
method for fault diagnosis and tolerant control to make the multi-phase PMSM drives against current
sensor loss signal and gain faults. This method can effectively diagnose and distinguish faults without
selecting a threshold value, and the degree of fault can be further estimated. The proposed method
makes current sensor fault diagnosis and tolerant control become an integrated module. The validity
and accuracy of the proposed method is verified by different fault diagnoses and tolerant control
experiments of a 9 kw nine-phase PMSM drive.

Keywords: multi-phase motor drives; improved axis rotation; current sensor faults; fault tolerant
control; faults degree estimation

1. Introduction

Multi-phase motor drives have strong application requirements in the high-reliability
of multi-electric aircraft, ships and EVs due to their higher power density, lower torque
ripple and superior fault tolerant capability [1–3]. However, the fault probability rises with
an increase in the number of current sensors. In the operation process of multi-phase motor
drives, over-voltage, over-current, aging and other harsh working environments may cause
the current sensor output signal to be inaccurate [4,5]. The current sensor faults should
be diagnosed and tolerated rapidly and effectively in applications with high-reliability
requirements. The different current sensor faults will cause a different degree of distortion
in the current feedback signals. It is necessary to accurately detect different types of faults
in order to design corresponding fault tolerant control strategies. Therefore, it is significant
to study the diagnosis and tolerant control of current sensor faults in multi-phase PMSM
drives [6–8].

Current sensor faults have been effectively diagnosed and located in many existing
literatures. The extended Kalman filter is suggested to detect the loss signal fault in [9].
The Kalman filter is merged with a system reconfiguration under the faults of the current
sensor methods in [10] to diagnose the faults. A valid sliding mode observer (SMO) is
adopted in [11] to diagnose the current sensor loss signal fault in PMSM sensorless control
systems. The current error module is built based on the estimated signal error of the
other health current sensors. Three reliable observers are suggested in [12] to observe the
real-time state of three current sensors, therefore the loss signal fault can be located by the
observers. Ref. [13] proposes an observer-based strategy relying on the adaptive threshold
for fault location and tolerance. However, these observer models are easily affected by
the motor parameters and operating environments. The signal-based methods need no
complex calculation; only by signal processing can accurate sensor fault detection and
tolerant control be obtained. Current signal analysis is combined with an SMO in [14], and
the sensor loss signal fault is diagnosed through the space vector error-projection algorithm.
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The phase and line voltage signal deviations strategy are presented in [15]. The loss signal
faults can be diagnosed and isolated rapidly in both rectifier and inverter mode.

The above methods are only for current sensor loss signal fault detection and tolerant
control. In addition to loss signal faults, the gain faults should also be detected and tolerated
effectively. Fortunately, many efforts have been devoted to the research of loss signal and
gain fault diagnosis. The state-observer-based algorithm shows its positive performance in
current sensor loss signal and gain fault detection in [16,17]. In [18], the current estimations
from an improved open-loop observer are adopted to obtain the fault detection and tolerant
control. An algorithm programmed into the FPGA as a general controller is considered
in [19]. For the three-phase PMSM systems, the fault diagnosis range in [19] is extended to
loss signal and gain faults. The signal-based detection method with normalization in [20,21]
has been widely used to achieve fault detection and tolerant control. The AC component of
current analysis error is extracted by an improved filter in [22], and gain fault of the linear
motor system is distinguished with other faults by the different frequency components. A
modified algorithm combining a delay function and the current space vector is addressed
in [23], which can detect and isolate loss signal and gain faults. Axis rotation is adopted
in [24] for deciding the correct estimated value of the fault current sensor, and it shows
good characteristics in the field of electric vehicle sensor fault detection and fault tolerance.

Considering different current sensor fault diagnosis and tolerant control for multi-phase
PMSM drives, this paper proposes a method to diagnose both loss signal faults and gain
faults based on improved axis rotation. Different from the existing literature, this signal-based
method can accurately diagnose and effectively distinguish the loss signal and gain faults
without additional hardware. By eliminating the selection of threshold value, the adaptability
of this method to different operating conditions is also enhanced. Moreover, the degree of gain
faults can be estimated quantitatively and it can be used to further tolerant control. Different
types of current sensor faults are matched with corresponding fault tolerant control strategies.
The method makes current sensor fault diagnosis and tolerant control become an integrated
module. This article is structured as follows: The topology of nine-phase PMSM drives is
introduced in Section 2. The influence on currents of current sensor loss signal faults and
gain faults are analyzed in Section 3. The proposed diagnosis and tolerant control method
are illustrated in Sections 4 and 5, respectively. The corresponding experiments of a 9 kw
nine-phase PMSM are carried out to verify the effectiveness and accuracy of the proposed
method in Section 6. A conclusion is drawn in Section 7.

2. Influence of Current Sensor Faults on Drive Systems

The nine-phase PMSM in this article is composed of three sets of three-phase open-
end windings which are spatially shifted π/9 degrees. Each phase is equipped with an
independent current sensor. An H-bridge inverter circuit drives nine-phase effectively
with more control, reliability, and independence. Figure 1a shows the nine-phase PMSM
windings structure, and Figure 1b shows the nine-phase H-bridge drive topology.
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The probability of faults increases with the number of current sensors required for the
nine-phase PMSM drives. The fault diagnosis and tolerant control of nine-phase PMSM
drives are shown in Figure 2.
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3. Influence of Current Sensor Faults on Motor Drives

Based on the frequency of faults and the degree of negative impact on the motor drives,
the typical current sensor faults distinguished by output characteristics can be classified as
gain fault and loss signal fault. Taking phase-A1 current sensor faults as an example, the
measured phase currents of each sensor can be expressed as:

iA1 = λi∗A1 = λIam cos(ωt + θori)
iA2 = i∗A2
...
iC3 = i∗C3

(1)

where, i*A1, i*A2 . . . i*C3 are the real phase currents, iA1, iA2 . . . iC3 are the measured values
by nine-phase current sensors, λ is the gain coefficient of fault current sensor, Iam is the
phase current amplitude, θori is the initial phase angle and ω is the electrical angular
frequency respectively.

In normal conditions, λ = 1; when loss signal faults occur, λ = 0; when gain faults
occur, λ > 1. The expression of id1 and iq1 in the d-q coordinate is in Equation (2).

[
id1
iq1

]
=

2
9
∗
[

cos θe . . . cos(θ e − 14π/9)
− sin θe . . . − sin(θ e − 14π/9)

]iA1
. . .
iC3

 (2)

Assuming that the fault of the phase-A1 current sensor in the multi-phase motor drives
has little effect on the normal phase current amplitude, Equation (1) is substituted into
Equation (2), then the measured value of iq1_m can be expressed.

iq1_m = iq1 − 2
9 ∗ (λ− 1)∗iA1 ∗ sin θe − 2

9 ∗ sin θe

= iq1−
(λ−1)Iam sin(2ωt + θori)

9︸ ︷︷ ︸
AC

+
(λ− 1)Iam sin(θori)

9︸ ︷︷ ︸
DC

(3)

1. In normal conditions, λ = 1, DC component is zero, so iq1 is equal to iq1_m with no
bias.

2. When loss signal faults occur, the real phase currents are not measured by current
sensors. The AC component are zero-mean pulsations; DC component is a bias less
than zero due to λ = 0.

3. When gain faults occur, the AC component is still zero-mean pulsations, but the DC
component is a bias greater than zero due to λ > 1.
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Therefore, the iq1_m impacted by the DC component can be used as the characteristic
quantity to distinguish normal conditions, loss signal faults and gain faults. In addition to
the fault type, the location of the fault point is also essential, so it is necessary to further
propose a perfect diagnosis strategy combined with iq1_m.

4. Diagnosis for Current Sensors Faults
4.1. Improved Axis Rotation

From the transformation matrix of the semi-symmetric nine-phase PMSM natural
coordinate system to the synchronous stationary coordinate system (Clark), it can be seen
that in the standard transformation shown in Figure 3, A1-axis and α1-axis are in the same
direction. The component of phase current iA1 on β1-axis is zero and the component on
α1-axis is 100% iA1.
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Therefore, from the iα1 and iβ1 in Equation (4), only the current sensor fault of phase-A1
has the least influence on iβ1 and the largest influence on iα1 among all nine phases.

[
iα1_1
iβ1_1

]
=

2
9
∗
[

1 cos π
9 . . . cos 14π

9
0 sin π

9 . . . sin 14π
9

]
iA1
iA2
. . .
iC3

 (4)

where, iα1_1 and iβ1_1 are fundamental wave currents of α and β when phase-A1 is used as
reference axis.

In general, regarding the other phases, when different phase-N is selected as the
reference axis, the Clark matrix will shift different angles θN, and current sensor faults
of reference phase-N has the least influence on the corresponding iβ1_N, and the largest
influence on iα1_N. The general formula of iα1_N and iβ1_N can be obtained in Equation (5).

[
iα1−N
iβ1−N

]
=

[
cos(0− θN) cos(π

9 − θN) . . . cos( 14π
9 − θN)

sin(0− θN) sin(π
9 − θN) . . . sin( 14π

9 − θN)

]
iA1
iA2
. . .
iC3

 (5)

where, the θN of stator windings of semi-symmetric nine-phase motor system can be
expressed as:

θN ∈ [0 2π
9

4π
9

6π
9

7π
9

8π
9

12π
9

13π
9

14π
9 ] (6)

When different phases are selected as reference axes, the expressions of iα1_N and iβ1_N
can be obtained in Equation (7).
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Therefore, the above formula shows that the iα1_1 changes the most in all iα1_N when
loss signal fault (iA1 = 0) occurs in phase-A1, which is equivalent to the iα1_1 losing 100%
of iA1 and iα1_1 has the lowest mean value in all iα1_N. Also, iβ1_1 has the smallest change
in all iβ1_N, and the other eight iβ1_N have lost sinπ/9, sin2π/9 . . . sin14π/9 times of iA1,
respectively.

1. In normal conditions, nine iα1_N have the same mean value, and so do nine iβ1_N.
2. When loss signal fault (iA1 = 0) occurs in phase-A1, the above formula shows that the

iα1_1 changes the most in all iα1_N, which is the equivalent to the iα1_1 losing 100%
of iA1, and iα1_1 has the lowest mean value in all iα1_N. Also, iβ1_1 has the smallest
change in all iβ1_N, and the other eight iβ1_N have lost sinπ/9, sin2π/9...sin14π/9
times of iα1_1, respectively.

3. When gain fault (iA1 =λi*A1) occurs in phase-A1, iα1_1 has the largest change in all
iα1_N, equivalent to iα1_1 increased by 100% “(λ − 1)iA1”, which has the largest mean
of all iα1_N. Additionally, iβ1_1 has the smallest change in all iβ1_N. The other phases
have gained sinπ/9, sin2π/9 . . . sin14π/9 times of (λ − 1)iA1, respectively. iβ1_1 has
the smallest mean in all iβ1_N.

Therefore, if the mean value difference of each iα1_N and iβ1_N is selected for compari-
son, the difference corresponding to the fault phase is the largest, which can be used as the
characteristic quantity for locating the fault phase. Taking phase-A1 faults as an example, in
combination with Equation (7), the reference vectors of iα1_N and iβ1_N in each axis rotation
coordinate system are shown in Figure 4.
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The proposed method is based on the principle of axis rotation; iα1_N and iβ1_N always
change in reverse direction after a fault, so the diagnosis variables can be designed by
combining them.

4.2. Diagnosis Strategy

Based on the above derivation, this paper proposes a fault diagnosis method of current
sensor based on improved axis rotation. The fault diagnosis of a multi-phase motor can
be realized by analyzing the sampled current information of the system. Its diagnosis
principle is shown in Figure 5.
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Step 1: The rotation angle θN of different phases in the multi-phase motor should
be determined, and the expressions of iα1_N and iβ1_N with different reference phases as
α1-axis should be established according to θN. Nine-phase motors correspond to 2 × 9
expressions.

Step 2: iα1_N and iβ1_N are respectively defined as iα1_N = Iam1cos(ωt − θN), iβ1_N
= Iam2sin(ωt − θN), where Iam1 and Iam2 are the current amplitude. M[|iα1_N|] and
M[|iβ1_N|] are respectively obtained by the absolute-mean processor in Equation (8).

M[|iα1_N |] = ω
2π

∫ 2π
ω

0 |Iam1 cos(ωt− θN)|dt = 2
π Iam1

M[|iβ1_N |] = ω
2π

∫ 2π
ω

0 |Iam2 cos(ωt− θN)|dt = 2
π Iam2

(8)

When current sensor fault occurs, the absolute-mean difference between iα1_N and
iβ1_N is the largest in the axis rotation coordinate system corresponding to the fault phase.
Therefore, the difference of M[|iα1_N|] and M[|iβ1_N|] can distinguish between fault and
health phases.

Step 3: The fault phase of the current sensor can be located by diagnosis variables
“DN = Max(|M[|iβ1_N|]-M[|iα1_N|])” after screened by the maximum calculator. The
proposed method eliminates the selection of threshold value, and the phase with the
strictest maximum in the all DN corresponding to the nine-phase currents is the fault phase,
which greatly reduces the probability of misdiagnosis.

Step 4: The above algorithm realizes the location of the fault current sensor. However,
to distinguish between gain faults and loss signal faults, the q1-axis current iq1_m is used.
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After processed by a mean processor and combined with Equation (3), the expression of
M[iq1_m] can be obtained:

M[iq1_m] = ω
2π

∫ 2π
ω

0 iq1_mdt

= M[iq1]−M[
(λ− 1)Iam sin(2ωt + θori)

9
]︸ ︷︷ ︸

M[AC]

+ M[
(λ− 1)Iam sin(θori)

9
]︸ ︷︷ ︸

M[DC]

= iq1 +
(λ−1)Iam sin(θori)

9

(9)

1. In normal conditions, λ = 1, DC = 0, M[iq1_m] = iq1_m. There was no change in iq1_m.
2. When loss signal fault occurs, λ = 0, M[AC] is a zero-mean value. So, M[iq1_m] =

iq1-Iamsin(θori)/9.
3. When gain faults occurs, λ > 1, M[AC] is still a zero-mean value, but M[iq1_m] = iq1 +

(λ − 1)Iamsin(θori)/9.

Therefore, M[iq1_m] will be biased with different properties when the current sensor
fault occurs, and the bias caused by loss signal faults and gain faults must be opposite.
Therefore, the next key is to determine the DC component “Iamsin(θori)/9”.

Since iq1_m can be considered to be derived from the nine-phase current through Park
transformation in Equation (5), M[iq1_m] is equivalent to the mean action of the nine-phase
currents, that is, M[iq1_m] = M[cosθe × iA1] + . . . + M[cos(θe − 14π/9) × iC3]. Therefore,
M[iq1_m] will become “8/9” of its original value after a phase current sensor fault. The
expression of M[iq1_m] after faults can be obtained:

1. In normal conditions, iq1_m has no DC component, iq1_m = iq1.
2. When loss signal fault occurs, the DC component causes iq1_m to be 1/9 less than the

iq1_m in normal conditions, that is, Iamsin(θori)/9 = iq1/9.

M[iq1_m] = iq1 −
Iam sin(θori)

9
=

8
9

iq1 < iq1 (10)

3. When gain fault occurs, the DC component causes iq1_m more (λ − 1)Iamsin(θori)/9
than iq1_m in normal operation.

M[iq1_m] = iq1 +
(λ− 1)Iam sin(θori)

9
= iq1 +

(λ− 1)iq1

9
> iq1 (11)

Therefore, the loss signal faults and gain faults can be distinguished by comparing the
bias direction of M[iq1_m] after the faults occur.

Different from the loss signal faults, if the gain coefficient λ can be obtained when
the gain fault occurs, the fault tolerant operation can be realized only by adjusting the
factor of current sampling. From Equation (11), it can be concluded that the gain fault
causes the fault iq1_m to be (λ − 1)iq1/9 larger than normal iq1_m. So λ can be obtained by
Equation (12).

λ =
9(M[iq1_m]− iq1)

iq1
+ 1 (12)

Combining with the diagnosis variables DN and M[iq1_m], the current sensor gain and
loss signal faults can be distinguished and located, the gain coefficient λ of fault degree
is obtained, which is prepared for fault tolerant in the next stage. The diagnosis method
proposed in this paper is shown in Figure 6.
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5. Tolerant Control of Current Sensors Faults

According to Section 2, iq1_m will produce different forms of pulsation and bias when
the current sensor faults occur, thus affecting the stable operation of the control system.
Therefore, the key to fault tolerant of current sensor depends on the correct estimation of
feedback current i*d1 and i*q1. id1 and iq1 are derived from iβ1_N and iα1_N, so as long as
the correct i*β1_N and i*α1_N is estimated by the appropriate algorithm, the fault tolerant
operation of current sensors can be realized.

The fault diagnosis in Section 3 can locate the corresponding phase of the fault current
sensor, and then determine the corresponding θA1 of axis rotation system. Taking phase-A1
as a fault example, in its corresponding rotation system, the phase current iβ1_1 remains
unchanged before and after the fault, so iβ1_1 can be used as the β1-axis fault tolerant
current i*β1 after the fault. The calculation of α1-axis fault tolerant current i*α1 is discussed
as follows. According to Equation (10), the M[iq1_m] after loss signal fault and its value in
normal conditions meet Equation (13):

iq1 =
9
8

M[iq1_m] (13)

So α1-axis fault tolerant current i*α1 can be obtained by the anti-Park matrix in Equation (13).

i∗
α1

=
[
cos(θe − θA1) − sin(θe − θA1)

][ 9
8 M[iq1_m]

i∗d1

]
(14)

Among them, the rotation angle θA1 of the transformation matrix in Equation (14)
should be selected in accordance with the θA1 determined by the fault diagnosis module.

After i*α1 and i*β1 are determined, the feedback current i*d1 and i*q1 can be obtained
from the rotation matrix corresponding to θA1.[

i∗d1
i∗q1

]
=

[
cos(θe − θA1) sin(θe − θA1)
− sin(θe − θA1) cos(θe − θA1)

][
i∗α1
i∗β1

]
(15)

i*d1 and i*q1 are incorporated into the control system as fault tolerant feedback to
realize fault tolerant operation of current sensor fault. Thus, i*α1, i*β1, i*d1 and i*q1 are
obtained by rotation transformation with the same angle θA1. The θA1 corresponding to
the fault can be determined only by the fault detection module, that is, fault diagnosis and
fault tolerant operate in the same rotation transformation system, realizing the integration
of diagnosis and fault tolerant. It is worth noting that the combination of fault diagnosis
and fault-tolerant control module needs to consider the correspondence of θN. As a bridge
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connecting diagnosis and tolerance, the selection of θN determines the accuracy of fault
tolerance current i*q1. Moreover, for gain faults, fault-tolerant control can be realized
directly and accurately only by compensating a calculated gain coefficient λ (Equation (12))
for the fault phase current.

The proposed method used stator currents to diagnosis current sensor faults and
obtained tolerant control by estimating and switching the iq1. Therefore, is strongly adapt-
able to a different controller. Additionally, the discussion and verification of the proposed
method in this paper are operated under a vector control system (Figure 7).
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6. Experimental Verification
6.1. Experimental Setup

In order to verify the validity of the fault diagnosis and fault tolerant method proposed
in this paper, an experimental platform of nine-phase PMSM was built. The platform
consists of a DC power, a controller, a 9 kw nine-phase PMSM, a DC motor, a speed-torque
measuring instrument, and a voltage source inverter (VSI). The 9 kw nine-phase PMSM
is powered by VSI; H-bridge inverter circuits drive each phase respectively, and the load
shaft is connected with a DC generator. The block diagram of the motor control principle is
shown Figure 7. The parameters of nine-phase PMSM are shown in Table 1.

Table 1. Nine-phase PMSM parameters.

Parameters Value

Power 9 kw
Voltage 234 V
Current 4.6 A
Speed 900 rpm
Torque 95.5 Nm

d-axis inductance 41.2 mH
q-axis inductance 41.2 mH

Armature resistance 2.47 Ω
Magnet flux linkage 0.8524 Wb

pole-pairs 4
Rotational inertia/kg·m2 0.03128

6.2. Loss Signal Fault Diagnosis

Some literature on axis rotation uses the difference between iα1_1 and i*α1_1 as diagnosis
variables [24]. Thresholds are introduced to distinguish normal conditions from current
sensor faults. Because this threshold is so similar in gain and loss signal faults (Figure 8),
the algorithm presented in [24] cannot distinguish them effectively.
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Figure 9. (a) iα1_N in loss signal fault; (b) iβ1_N in loss signal fault. 
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Figure 8. iα1_1 and i*α1_1 in different faults.

In this paper, the mean value difference of each iα1_N and iβ1_N is selected for compar-
ison, the “DN = Max(|M[|iβ1_N|] −M[|iα1_N|])” corresponding to the fault phase is the
largest, which can be used to locate the fault without the selection of a threshold.

First, the motor operates stably with 25 Nm load. Then, the output of the phase-A1
current sensor is set to zero through simulation in DSP. The corresponding i*α1_N and i*β1_N
are shown in Figure 9.
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When iA1 = 0, the loss signal fault occurs in phase-A1. According to the Equation (7),
among the nine iα1_N and iβ1_N obtained by the axis rotation system, iα1_1 is most affected
and iβ1_1 keeps the amplitude almost constant. Thus, it can be seen in the Figure 8 that
iα1_1 becomes the current with the lowest amplitude, and conversely, iβ1_1 becomes the one
with the highest amplitude.

Figure 10 shows the M[|iα1_N|] and M[|iβ1_N|] calculated by absolute-mean proces-
sors. Due to the linear relationship between amplitude and absolute-mean in Equation (8),
the value of M[|iα1_1|] is the smallest of the nine M[|iα1_N|]. Similarly, M[|iβ1_1|] is the
largest one of the nine M[|iβ1_N|].

Figure 11 shows the diagnosis variables DN and M[iq1_m]. In normal conditions, each
DN are almost equal and approximately zero. When a current sensor fault occurs, the
difference between M[|iα1_N|] and M[|iβ1_N|] of the fault phase is strictly maximum in
Figure 10. Therefore, D1 is the max value of nine DN, so the fault phase can be located.
Moreover, iq1_m has a negative DC bias “−Iamsin(θori)/9”, a zero-mean pulse. Thus, M[iq1_m]
in a loss signal fault is less than it is in normal conditions, so the loss signal fault of phase-A1
current sensor can be diagnosed.
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6.3. Gain Fault Diagnosis

This fault diagnosis experiment is to verify the validity of the proposed method for
current sensor gain fault. When a 2.5 times gain fault of phase-A1 current sensor is set
through simulation in DSP. The corresponding i*α1_N and i*β1_N are shown in Figure 12.
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When the loss signal fault occurs in phase-A1 (iA1 = 2.5i*A1), iα1_1 is most affected
while iβ1_1 keeps the constant amplitude. According to Equation (7), iα1_1 becomes the
current with the largest amplitude and iβ1_1 becomes the one with the smallest amplitude.
The M[|iα1_N|] and M[|iβ1_N|] calculated by absolute-mean processors are shown in
Figure 12. Therefore, the value of M[|iα1_1|] is the largest of the nine M[|iα1_N|], and
M[|iβ1_1|] is the smallest one of the nine M[|iβ1_N|].

Figure 13 shows the diagnosis variables DN and M[iq1_m]. Each DN are approximately
zero in normal conditions. When the fault occurs, the difference between M[|iα1_N|] and
M[|iβ1_N|] of the fault phase is strictly maximum in Figure 13. Therefore, D1 is also the max
value of DN, so the fault phase-A1 can be located. Moreover, iq1_m has a distinct positive DC
bias “1.5Iamsin(θori)/9” and a zero-mean pulse. Thus, M[iq1_m] in loss signal fault is greater
than it is in normal conditions, which can be used to further diagnose tolerant control. So,
the loss signal fault of phase-A1 current sensor can be diagnosed.
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The threshold selection is eliminated in the whole diagnosis process, and the loss
signal faults can be located by selecting the phase with the maximum value of the diagnosis
variables DN. M[iq1_m] has an obvious negative bias feature, which makes the distinction
between loss signal and gain faults more accurate.

6.4. Loss Signal Fault Tolerant

In order to verify the effectiveness of the proposed fault tolerant method, the loss
signal fault-tolerant control experiment is shown as follows: iα1_1 and iβ1_1 are the actual
currents, i*α1_1 and i*β1_1 are the fault tolerant currents. Since iβ1_1 remains almost constant
when fault occurs, iβ1_1 can be directly referred to as i*β1_1. And the conversion between
iq1_m and fault tolerant current i*q1 is realized by the switch designed in DSP.

In Figure 14, iα1_1 and iβ1_1 (i*β1_1) have similar amplitude in normal conditions.
However, due to the existence of a correction factor of 9/8 in Equation (12), the amplitude
of the fault tolerant current i*α1_1 is slightly higher than iα1_1 and i*β1_1. When the loss
signal fault occurs in A1, iα1_1 is most affected and i*β1_1 keeps almost constant but the
tolerant current i*α1_1 has the same amplitude as iα1_1 in normal condition. Before and after
the fault-tolerant control, i*α1_1 can maintain a stable correct amplitude, so that it can be
connected to the system together with i*β1_1 as the fault tolerant current.

Figure 15 shows that iq1_m produces a large pulse due to the DC bias and AC pulsation
when faults occur. At this time, the current iQ1 connected to the feedback system is still
iq1_m. Then, the switch is given a fault tolerant signal and it selects i*q1 to be transferred to
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the output. Therefore, the feedback current iQ1 is restored to iq1_m in normal condition, and
fault-tolerant control is realized.
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6.5. Gain Fault Tolerant

The proposed method can estimate the gain coefficient λ, which can be used as the
correction factor of the fault phase current sensor, and can achieve fault-tolerant control
directly and accurately.

In Figure 16a, when a 2.5 times gain fault of a phase-A1 current sensor is set, the
estimated coefficient λ has good tracking effect in normal and fault conditions. Therefore,
fault-tolerant control can be realized by compensating the gain coefficient of the fault
current sensor in DSP. After compensation, the estimated λ and iq1_m are both restored to
normal values.

Different from the existing algorithms, the proposed method can estimate the gain
coefficient λ, which can be used as the correction factor of the fault sensor. The fault-tolerant
control achieves tolerant accuracy by applying this factor.
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7. Conclusions

In this paper, a fault diagnosis and tolerant control method is proposed to differ-
ent kinds of current sensor faults in multi-phase PMSM drives. It is desirable that the
method utilizes the stator currents signal-processing, making it even simpler and less
computationally demanding. It is also worth noting that the diagnosis variables have
distinct characteristics which eliminate (to some extent) the margin of the design of the
threshold. This method can distinguish between loss signal and gain faults effectively
and lacks operating condition dependence. Moreover, the degree of current sensor gain
fault can be quantitatively described by an estimated coefficient. Finally, fault diagnosis
and tolerant control experiments are presented, which show the effectiveness and rapidity
regarding the method. The optimization of diagnosis variables when multiple faults occur
is the next focus.
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