Analysis of Floating Offshore Wind Platform Hydrodynamics Using Underwater SPIV: A Review
Abstract
:1. Introduction
2. Underwater SPIV Measurements for FOWT Tank Tests
2.1. State of the Art of Particle Image Velocimetry in Tank Tests
2.2. Challenges of Underwater SPIV Measurements for FOWT Tank Tests
2.2.1. Particle Seeds
2.2.2. Illumination
2.2.3. CCD Cameras and Image Processing
2.2.4. Scale Issues in Model Testing
2.2.5. Instrument Setup and FOWT Degrees of Freedom
2.2.6. Sampling Frequency
2.2.7. Effect of the SPIV Apparatus’s Presence in FOWT Tank Testing
3. Application of Underwater SPIV to Mitigate Current Research Gaps in FOWTs Tank Tests
3.1. VortexInduced Vibration and Motion
3.2. Nonlinear Wave Loads
3.3. ShortCrested Waves
3.4. Marine Growth’s Influence on Loads
3.5. Breaking/Steep Wave Loads
3.6. Wave–Current–Body Interaction
3.7. Viscous Load Model
3.8. Multibody Flow Interaction
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
 Wind Europe. Floating Offshore Wind Is Gearing up for TakeOff; Wind Europe: Brussels, Belgium, 2020. [Google Scholar]
 DNV GL. Floating Wind: The Power to Commercialize; DNV GL: Bærum, Norway, 2020. [Google Scholar]
 Cordle, A.; Jonkman, J. State of the Art in Floating Wind Turbine Design Tools. In Proceedings of the TwentyFirst International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011. [Google Scholar]
 Otter, A.; Pakrashi, V.; Robertson, A.; Murphy, J.; Desmond, C. Review of Modelling Techniques for Floating Offshore Wind Turbines. Wind Energy 2021, 1, 831–857. [Google Scholar] [CrossRef]
 Rahimi, H.; Dose, B.; Stoevesandt, B.; Peinke, J. Investigation of the Validity of BEM for Simulation of Wind Turbines in Complex Load Cases and Comparison with Experiment and CFD. J. Phys. Conf. Ser. 2016, 749, 012015. [Google Scholar] [CrossRef] [Green Version]
 Morison, J.R.; Johnson, J.W.; Schaaf, S.A. The Force Exerted by Surface Waves on Piles. J. Pet. Technol. 1950, 2, 149–154. [Google Scholar] [CrossRef]
 Ren, C.; Lu, L.; Cheng, L.; Chen, T. Hydrodynamic Damping of an Oscillating Cylinder at Small Keulegan–Carpenter Numbers. J. Fluid Mech. 2021, 913. [Google Scholar] [CrossRef]
 Liu, Y.; Xiao, Q.; Incecik, A.; Peyrard, C.; Wan, D. Establishing a Fully Coupled CFD Analysis Tool for Floating Offshore Wind Turbines. Renew. Energy 2017, 112, 280–301. [Google Scholar] [CrossRef] [Green Version]
 Rezaeiha, A.; Montazeri, H.; Blocken, B. On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines. Energy 2019, 180, 838–857. [Google Scholar] [CrossRef]
 FuentesPérez, J.F.; Meurer, C.; Tuhtan, J.A.; Kruusmaa, M. Differential Pressure Sensors for Underwater Speedometry in Variable Velocity and Acceleration Conditions. IEEE J. Ocean. Eng. 2018, 43, 418–426. [Google Scholar] [CrossRef]
 Bayati, I.; Bernini, L.; Zanotti, A.; Belloli, M.; Zasso, A. Experimental Investigation of the Unsteady Aerodynamics of FOWT through PIV and HotWire Wake Measurements. J. Phys. Conf. Ser. 2018, 1037, 052024. [Google Scholar] [CrossRef]
 Xiao, J.P.; Wu, J.; Chen, L.; Shi, Z.Y. Particle Image Velocimetry (PIV) Measurements of Tip Vortex Wake Structure of Wind Turbine. Appl. Math. Mech. 2011, 32, 729–738. [Google Scholar] [CrossRef]
 Wang, Z.; Ozbay, A.; Tian, W.; Sharma, A.; Hu, H. An Experimental Investigation on the Wake Characteristics behind a Novel TwinRotor Wind Turbine. In Proceedings of the 33rd Wind Energy Symposium, Kissimmee, FL, USA, 5 January 2015. [Google Scholar]
 Desmond, C.J.; Watson, S.J.; Aubrun, S.; Ávila, S.; Hancock, P.; Sayer, A. A Study on the Inclusion of Forest Canopy Morphology Data in Numerical Simulations for the Purpose of Wind Resource Assessment. J. Wind Eng. Ind. Aerodyn. 2014, 126, 24–37. [Google Scholar] [CrossRef] [Green Version]
 Day, A.H.; Babarit, A.; Fontaine, A.; He, Y.P.; Kraskowski, M.; Murai, M.; Penesis, I.; Salvatore, F.; Shin, H.K. Hydrodynamic Modelling of Marine Renewable Energy Devices: A State of the Art Review. Ocean Eng. 2015, 108, 46–69. [Google Scholar] [CrossRef] [Green Version]
 AngladaRevenga, E.; BezunarteaBarrio, A.; MaronLoureiro, A.; MolinelliFernandez, E.; OriaEscudero, J.; SaavedraYnocente, L.; SorianoGomez, C.; DuqueCampayo, D.; GomezGoni, J.; SoutoIglesias, A. Scale Effects in Heave Plates: PIV Investigation. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Online, 3–7 August 2020. [Google Scholar]
 Chen, P.; Chen, J.; Hu, Z. Review of ExperimentalNumerical Methodologies and Challenges for Floating Offshore Wind Turbines. J. Mar. Sci. Appl. 2020, 19, 339–361. [Google Scholar] [CrossRef]
 Wu, T.; Deng, R.; Luo, W.; Sun, P.; Dai, S.; Li, Y. 3D3C Wake Field Measurement, Reconstruction and Spatial Distribution of a Panamax Bulk Using Towed Underwater 2D3C SPIV. Appl. Ocean Res. 2020, 105, 102437. [Google Scholar] [CrossRef]
 Premaratne, P.; Tian, W.; Hu, H. A ProperOrthogonalDecomposition (POD) Study of the Wake Characteristics behind a Wind Turbine Model. Energies 2022, 15, 3596. [Google Scholar] [CrossRef]
 Konstantinidis, E.; Bouris, D. Drag and Inertia Coefficients for a Circular Cylinder in Steady plus LowAmplitude Oscillatory Flows. Appl. Ocean Res. 2017, 65, 219–228. [Google Scholar] [CrossRef]
 Tan, L.; Ikoma, T.; Aida, Y.; Masuda, K. Mean Wave Drift Forces on a BargeType Floating Wind Turbine Platform with Moonpools. J. Mar. Sci. Eng. 2021, 9, 709. [Google Scholar] [CrossRef]
 Tran, T.T.; Kim, D.H. A CFD Study of Coupled AerodynamicHydrodynamic Loads on a Semisubmersible Floating Offshore Wind Turbine. Wind Energy 2018, 21, 70–85. [Google Scholar] [CrossRef]
 Putri, R.M.; Obhrai, C.; Jakobsen, J.B.; Ong, M.C. Numerical Analysis of the Effect of Offshore Turbulent Wind Inflow on the Response of a Spar Wind Turbine. Energies 2020, 13, 2506. [Google Scholar] [CrossRef]
 Kosasih, K.M.; Suzuki, H.; Niizato, H.; Okubo, S. Demonstration Experiment and Numerical Simulation Analysis of FullScale BargeType Floating Offshore Wind Turbine. J. Mar. Sci. Eng. 2020, 8, 880. [Google Scholar] [CrossRef]
 Walia, D.; Schünemann, P.; Hartmann, H.; Adam, F.; Großmann, J. Numerical and Physical Modeling of a TensionLeg Platform for Offshore Wind Turbines. Energies 2021, 14, 3554. [Google Scholar] [CrossRef]
 Abdulwahab, M.; Ali, Y.; Habeeb, F.; Borhana, A.; Abdelrhman, A.; AlObaidi, S. A Review in Particle Image Velocimetry Techniques (Developments and Applications). J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 65, 213–229. [Google Scholar]
 Westerweel, J.; Elsinga, G.E.; Adrian, R.J. Particle image velocimetry for complex and turbulent flows. Annu. Rev. Fluid Mech. 2013, 45, 409–436. [Google Scholar] [CrossRef]
 Kähler, C.J.; Astarita, T.; Vlachos, P.P.; Sakakibara, J.; Hain, R.; Discetti, S.; La Foy, R.; Cierpka, C. Main Results of the 4th International PIV Challenge. Exp. Fluids 2016, 57, 97. [Google Scholar] [CrossRef] [Green Version]
 Ismadi, M.Z.; Higgins, S.; Samarage, C.R.; Paganin, D.; Hourigan, K.; Fouras, A. Optimisation of a Stirred Bioreactor through the Use of a Novel Holographic Correlation Velocimetry Flow Measurement Technique. PLoS ONE 2013, 8, e65714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Markus, R.; Willert, C.E.; Scarano, F. Particle Image Velocimetry: A Practical Guide, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
 Keane, R.D.; Adrian, R.J. Theory of CrossCorrelation Analysis of PIV Images. Appl. Sci. Res. 1992, 49, 191–215. [Google Scholar] [CrossRef]
 Dong, R.R.; Katz, J.; Huang, T.T. On the Structure of Bow Waves on a Ship Model. J. Fluid Mech. 1997, 346, 77–115. [Google Scholar] [CrossRef]
 Tukker, J.; Blok, J.J.; Kuiper, G.; Huijsmans, R.H.M. Wake Flow Measurements in Towing Tanks with PIV. In Proceedings of the Ninth International Symposium on Flow Visualization, Edinburgh, UK, 22–25 August 2000; pp. 1–6. [Google Scholar]
 Baghaie, A. Robust Principal Component Analysis for Background Estimation of Particle Image Velocimetry Data. In Proceedings of the 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT), New York, NY, USA, 3 May 2019; pp. 1–6. [Google Scholar]
 Jux, C.; Sciacchitano, A.; Schneiders, J.; Scarano, F. Robotic Volumetric PIV of a FullScale Cyclist. Exp. Fluids 2018, 59, 74. [Google Scholar] [CrossRef] [Green Version]
 Lee, S.K.; Giacobello, M.; Manovski, P.; Kumar, C. Optimising Camera Arrangement for Stereoscopic Particle Image Velocimetry. In Proceedings of the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 8 December 2104. [Google Scholar]
 Egeberg, T.F.; Yoon, H.; Stern, F.; Pettersen, B.; Bhushan, S. Vortex Shedding from a Ship Hull by Means of Tomographic PIV. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, San Francisco, CA, USA, 8 June 2014. [Google Scholar]
 Wang, B.; Liao, Q.; Xiao, J.; Bootsma, H.A. A FreeFloating PIV System: Measurements of SmallScale Turbulence under the Wind Wave Surface. J. Atmos. Ocean. Technol. 2013, 30, 1494–1510. [Google Scholar] [CrossRef]
 Galani, K.A.; Dimas, A.A. Experimental Study of the Influence of Wave Breaking Over a Sloping Beach on the Flow Upstream of the Surf Zone. In Proceedings of the 27th International Ocean and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017. [Google Scholar]
 Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000; ISBN 9780521598866. [Google Scholar]
 Seo, J.; Han, B.; Rhee, S.H. Towed Underwater SPIV Measurement of Flow Fields Around a SurfacePiercing Cylinder with Free Surface Effects. In Proceedings of the Fluids Engineering Division Summer Meeting, Seoul, Korea, 26–31 July 2015. [Google Scholar]
 Muthanna, C.; Visscher, J.; Pettersen, B. Investigating Fluid Flow Phenomena behind Intersecting and Tapered Cylinders Using Submerged Stereoscopic PIV. In Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisboa, Portugal, 7–10 July 2008. [Google Scholar]
 Yoon, H.; Longo, J.; Toda, Y.; Stern, F. Benchmark CFD Validation Data for Surface Combatant 5415 in PMM Maneuvers—Part II: PhaseAveraged Stereoscopic PIV Flow Field Measurements. Ocean Eng. 2015, 109, 735–750. [Google Scholar] [CrossRef] [Green Version]
 Han, B.W.; Seo, J.; Lee, S.J.; Seol, D.M.; Rhee, S.H. Uncertainty Assessment for a Towed Underwater Stereo PIV System by Uniform Flow Measurement. Int. J. Nav. Archit. Ocean Eng. 2018, 10, 596–608. [Google Scholar] [CrossRef]
 ITTC. Uncertainty Analysis Particle Imaging Velocimetry; ITTC: Zürich, Switzerland, 2008. [Google Scholar]
 Go, S.C.; Seo, J.; Park, J.; Rhee, S.H. Towed Underwater PIV Measurement of Propeller Wake in SelfPropelled Condition. Exp. Fluids 2019, 60, 184. [Google Scholar] [CrossRef]
 Seo, J.; Lee, S.J.; Choi, W.S.; Park, S.T.; Rhee, S.H. Experimental Study on Kinetic Energy Conversion of Horizontal Axis Tidal Stream Turbine. Renew. Energy 2016, 97, 784–797. [Google Scholar] [CrossRef]
 Jacobi, G.; Thill, C.; Huijsmans, R. The Application of Particle Image Velocimetry for the Analysis of HighSpeed Craft Hydrodynamics. In Proceedings of the Conference on HydrodynamicsICHD, Egmond aan Zee, The Netherlands, 18–23 September 2016. [Google Scholar]
 Ashworth Briggs, A.; Fleming, A.; Duffy, J.; Binns, J.R. Tracking the Vortex Core from a SurfacePiercing Flat Plate by Particle Image Velocimetry and Numerical Simulation. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2019, 233, 793–808. [Google Scholar] [CrossRef]
 Yagmur, S.; Dogan, S.; Aksoy, M.H.; Goktepeli, I.; Ozgoren, M. Comparison of Flow Characteristics around an Equilateral Triangular Cylinder via PIV and Large Eddy Simulation Methods. Flow Meas. Instrum. 2017, 55, 23–36. [Google Scholar] [CrossRef]
 EU Funded Project Hiprwind. Available online: http://hiprwind.eu/ (accessed on 1 January 2020).
 Olsen, M.G.; Adrian, R.J. Brownian Motion and Correlation in Particle Image Velocimetry. Opt. Laser Technol. 2000, 32, 621–627. [Google Scholar] [CrossRef]
 Catipovic, M.A.; Tyler, P.M.; Trapani, J.G.; Carter, A.R. Improving the Quantification of Brownian Motion. Am. J. Phys. 2013, 81, 485–491. [Google Scholar] [CrossRef]
 AlMuhammad, J.; Tomas, S.; AitMouheb, N.; Amielh, M.; Anselmet, F. MicroPIV Characterization of the Flow in a MilliLabyrinthChannel Used in Drip Irrigation. Exp. Fluids 2018, 59, 181. [Google Scholar] [CrossRef]
 Desmond, C.; Murphy, J.; Blonk, L.; Haans, W. Description of an 8 MW Reference Wind Turbine. J. Phys. Conf. Ser. 2016, 753, 092013. [Google Scholar] [CrossRef] [Green Version]
 Schröder, A.; Willert, C.; Schanz, D.; Geisler, R.; Jahn, T.; Gallas, Q.; Leclaire, B. The Flow around a Surface Mounted Cube: A Characterization by TimeResolved PIV, 3D ShakeTheBox and LBM Simulation. Exp. Fluids 2020, 61, 189. [Google Scholar] [CrossRef]
 Desmond, C.; Buret, B.; Shanley, M.; Murphy, J.; Pakrashi, V. The Assessment of Water Surface Elevation Uncertainty in a Hydraulics Laboratory. In Proceedings of the 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13), Seoul, Korea, 26–30 May 2019. [Google Scholar]
 Chong, K.L.; Shi, J.Q.; Ding, G.Y.; Ding, S.S.; Lu, H.Y.; Zhong, J.Q.; Xia, K.Q. Vortices as Brownian Particles in Turbulent Flows. Sci. Adv. 2020, 6, eaaz1110. [Google Scholar] [CrossRef]
 Smith, C. Guidance on the Safe Use of Lasers; Trinity College Dublin: Dublin, Ireland, 2015. [Google Scholar]
 Sciacchitano, A. Uncertainty Quantification in Particle Image Velocimetry. Meas. Sci. Technol. 2019, 30, 092001. [Google Scholar] [CrossRef] [Green Version]
 Adrian, R.J.; Westerweel, J. Particle Image Velocimetry; Cambridge Aerospace Series; Cambridge University Press: Cambridge, UK, 2011; ISBN 9780521440080. [Google Scholar]
 Grizzi, S.; Pereira, F.; Di Felice, F. A Simplified, FlowBased Calibration Method for Stereoscopic PIV. Exp. Fluids 2010, 48, 473–486. [Google Scholar] [CrossRef]
 Prasad, A.K. Particle Image Velocimetry. Curr. Sci. 2000, 79, 51–60. [Google Scholar]
 Wieneke, B. PIV Uncertainty Quantification and Beyond. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
 Jurgens, A. Experimental Investigation into the Flow around a Manoeuvring LNG carrier on Shallow Water. In Proceedings of the NAV International Conference on Ship and Shipping Research, Cetena, Genova, 21–23 June 2006. [Google Scholar]
 Garcia, D. A Fast AllinOne Method for Automated PostProcessing of PIV Data. Exp. Fluids 2011, 50, 1247–1259. [Google Scholar] [CrossRef]
 Liu, Z.; Jia, L.; Zheng, Y.; Zhang, Q. FlowAdaptive Data Validation Scheme in PIV. Chem. Eng. Sci. 2008, 63, 1–11. [Google Scholar] [CrossRef]
 Pun, C.S.; Susanto, A.; Dabiri, D. ModeRatio Bootstrapping Method for PIV Outlier Correction. Meas. Sci. Technol. 2007, 18, 3511. [Google Scholar] [CrossRef] [Green Version]
 Timmins, B.; Wilson, B.; Smith, B.; Vlachos, P. A Method for Automatic Estimation of Instantaneous Local Uncertainty in Particle Image Velocimetry Measurements. Exp. Fluids 2012, 53, 1133–1147. [Google Scholar] [CrossRef]
 Charonko, J.J.; Vlachos, P.P. Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements from CrossCorrelation Peak Ratio. Meas. Sci. Technol. 2013, 24, 65301. [Google Scholar] [CrossRef]
 Scharnowski, S.; Kähler, C. On the Lossofcorrelation Due to PIV Image Noise. Exp. Fluids 2016, 57, 119. [Google Scholar] [CrossRef]
 Kähler, C.; Cierpka, C.; Scharnowski, S. On the Uncertainty of Digital PIV and PTV near Walls. Exp. Fluids 2012, 52, 1641–1656. [Google Scholar] [CrossRef] [Green Version]
 Bhattacharya, S.; Charonko, J.; Vlachos, P. Particle Image Velocimetry (PIV) Uncertainty Quantification Using Moment of Correlation (MC) Plane. Meas. Sci. Technol. 2018, 29, 115301. [Google Scholar] [CrossRef] [Green Version]
 Neal, D.; Sciacchitano, A.; Smith, B.; Scarano, F. Collaborative Framework for PIV Uncertainty Quantification: The Experimental Database. Meas. Sci. Technol. 2015, 26, 074003. [Google Scholar] [CrossRef]
 Song, K.; Guo, C.; Wang, C.; Gong, J.; Li, P. Investigation of the Influence of an Interceptor on the Inlet Velocity Distribution of a WaterjetPropelled Ship Using SPIV Technology and RANS Simulation. Ships Offshore Struct. 2020, 15, 138–152. [Google Scholar] [CrossRef]
 Murfet, T.; Abdussamie, N. Loads and Response of a Tension Leg Platform Wind Turbine with NonRotating Blades: An Experimental Study. J. Mar. Sci. Eng. 2019, 7, 54. [Google Scholar] [CrossRef] [Green Version]
 Det Norske Veritas (DNV). DNVRPC205 Environmental Conditions and Environmental Loads; Det Norske Veritas (DNV): Bærum, Norway, 2010. [Google Scholar]
 Robertson, A.; Jonkman, J.; Masciola, M.; Song, H.; Goupee, A.; Coulling, A.; Luan, C. Definition of the Semisubmersible Floating System for Phase II of OC4; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2014.
 Zhou, Y.; Xiao, Q.; Liu, Y.; Incecik, A.; Peyrard, C.; Li, S.; Pan, G. Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves. Energies 2019, 12, 3842. [Google Scholar] [CrossRef] [Green Version]
 Deng, R.; Wang, S.; Luo, W.; Wu, T. Experimental Study on the Influence of Bulbous Bow Form on the Velocity Field around the Bow of a Trimaran Using Towed Underwater 2D3C SPIV. J. Mar. Sci. Eng. 2021, 9, 905. [Google Scholar] [CrossRef]
 Ruesink, W.G. Introduction to Sampling Theory BT—Sampling Methods in Soybean Entomology; Kogan, M., Herzog, D.C., Eds.; Springer: New York, NY, USA, 1980; pp. 61–78. ISBN 9781461299981. [Google Scholar]
 Xu, Q.; Li, Y.; Yu, Y.H.; Ding, B.; Jiang, Z.; Lin, Z.; Cazzolato, B. Experimental and Numerical Investigations of a TwoBody FloatingPoint Absorber Wave Energy Converter in Regular Waves. J. Fluids Struct. 2019, 91, 102613. [Google Scholar] [CrossRef]
 Fuat, K. Multibody Interactions of Floating Bodies with TimeDomain Predictions. J. Waterw. Port Coast. Ocean Eng. 2020, 146, 4020031. [Google Scholar] [CrossRef]
 Robertson, A.N.; Wendt, F.; Jonkman, J.M.; Popko, W.; Dagher, H.; Gueydon, S.; Qvist, J.; Vittori, F.; Azcona, J.; Uzunoglu, E.; et al. OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine. Energy Procedia 2017, 137, 38–57. [Google Scholar] [CrossRef]
 Robertson, A. Integrated Systems Design and Analysis Offshore Wind Project ID #T10; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2019.
 Carlson, D.W.; ModarresSadeghi, Y. VortexInduced Vibration of Spar Platforms for Floating Offshore Wind Turbines. Wind Energy 2018, 21, 1169–1176. [Google Scholar] [CrossRef]
 Pan, J.; Ishihara, T. Nonlinear Wave Effects on Dynamic Responses of a Semisubmersible Floating Offshore Wind Turbine in the Intermediate Water. J. Phys. Conf. Ser. 2018, 1037, 022037. [Google Scholar] [CrossRef]
 Xu, K.; Shao, Y.; Gao, Z.; Moan, T. A Study on Fully Nonlinear Wave Load Effects on Floating Wind Turbine. J. Fluids Struct. 2019, 88, 216–240. [Google Scholar] [CrossRef]
 Hedges, T.S.; Tickell, R.G.; Akrigg, J. Interaction of ShortCrested Random Waves and LargeScale Currents. Coast. Eng. 1993, 19, 207–221. [Google Scholar] [CrossRef]
 Wang, P.; Zhao, M.; Du, X. ShortCrested WaveCurrent Forces on Composite Bucket Foundation for an Offshore Wind Turbine. Math. Probl. Eng. 2019, 2019, 5932742. [Google Scholar] [CrossRef]
 Wei, Z.; Dalrymple, R.A. SPH Modeling of ShortCrested Waves. arXiv 2017, arXiv:1705.08547. [Google Scholar]
 Vasarmidis, P.; Stratigaki, V.; Troch, P. Accurate and Fast Generation of Irregular Short Crested Waves by Using Periodic Boundaries in a MildSlope Wave Model. Energies 2019, 12, 785. [Google Scholar] [CrossRef] [Green Version]
 Cheng Yee, N.; Tuhaijan, S.N.A.; Fattah, M.Z.A.; John Kurian, V.; Mustaffa, Z. Experimental Investigation of Directional Hydrodynamic Coefficients and the Effects on Wave Force Due to Spreading Angles. Ain Shams Eng. J. 2020, 11, 1021–1034. [Google Scholar] [CrossRef]
 MartinezLuengo, M.; Causon, P.; Gill, A.B.; Kolios, A.J. The Effect of Marine Growth Dynamics in Offshore Wind Turbine Support Structures. In Proceedings of the 6th International Conference on Marine Structures, Lisbon, Portugal, 8–10 May 2017; pp. 889–898. [Google Scholar]
 DNVOSJ101: Design of Offshore Wind Turbine Structures; DNV: Bærum, Norway, 2014.
 API 2AWSD: Planning, Designing, and Constructing Fixed Offshore Platforms—Working Stress Design; American Petroleum Institute (API): Washington, DC, USA, 2014.
 Pham, H.; Veritas, B.; Arnal, V.; Nantes, E.C. De Effect of Marine Growth on Floating Wind Turbines Mooring Lines Responses Abstract. In Proceedings of the Congrès Français de MécaniqueAt, Lille, France, 1–8 September 2017. [Google Scholar]
 Chuang, T.C.; Yang, W.H.; Yang, R.Y. Experimental and Numerical Study of a BargeType FOWT Platform under Wind and Wave Load. Ocean Eng. 2021, 230, 109015. [Google Scholar] [CrossRef]
 Ticona Rollano, F.; Brown, A.; Ellenson, A.; ÖzkanHaller, H.T.; Thomson, J.; Haller, M.C. Breaking Waves in Deep Water: Measurements and Modeling of Energy Dissipation. Ocean Dyn. 2019, 69, 1165–1179. [Google Scholar] [CrossRef] [Green Version]
 Liu, S.; Ong, M.; Obhrai, C. Numerical Simulations of Breaking Waves and Steep Waves Past a Vertical Cylinder at Different Keulegan–Carpenter Numbers. J. Offshore Mech. Arct. Eng. 2019, 141, 041806. [Google Scholar] [CrossRef]
 Ye, K.; Ji, J. Current, Wave, Wind and Interaction Induced Dynamic Response of a 5 MW SparType Offshore DirectDrive Wind Turbine. Eng. Struct. 2019, 178, 395–409. [Google Scholar] [CrossRef]
 Chen, L.; Basu, B. WaveCurrent Interaction Effects on Structural Responses of Floating Offshore Wind Turbines. Wind Energy 2019, 22, 327–339. [Google Scholar] [CrossRef]
 Clement, C.; Kosleck, S.; Lie, T. Investigation of Viscous Damping Effect on the Coupled Dynamic Response of a Hybrid Floating Platform Concept for Offshore Wind Turbines. Ocean Eng. 2021, 225, 108836. [Google Scholar] [CrossRef]
 Wang, L.; Robertson, A.; Jonkman, J.; Yu, Y.H.; Koop, A.; Borràs Nadal, A.; Li, H.; Shi, W.; Pinguet, R.; Zhou, Y.; et al. Investigation of Nonlinear DifferenceFrequency Wave Excitation on a Semisubmersible OffshoreWind Platform With BichromaticWave CFD Simulations. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 5–10 June 2021. [Google Scholar]
 Tiwari, N.; Tasaka, Y.; Murai, Y. PIVBased Estimation of Viscosity and Pressure Fields for a Steady Pseudoplastic Flow. Flow Meas. Instrum. 2021, 77, 101852. [Google Scholar] [CrossRef]
 Lemmer, F.; Yu, W.; Luhmann, B.; Schlipf, D.; Cheng, P.W. Multibody Modeling for ConceptLevel Floating Offshore Wind Turbine Design. Multibody Syst. Dyn. 2020, 49, 203–336. [Google Scholar] [CrossRef] [Green Version]
 Ma, Z.; Wang, S.; Wang, Y.; Ren, N.; Zhai, G. Experimental and Numerical Study on the MultiBody Coupling Dynamic Response of a Novel SerbuoysTLP Wind Turbine. Ocean Eng. 2019, 192, 106570. [Google Scholar] [CrossRef]
 AlSolihat, M.K.; Nahon, M. Flexible Multibody Dynamic Modeling of a Floating Wind Turbine. Int. J. Mech. Sci. 2018, 142, 518–529. [Google Scholar] [CrossRef]
 Wang, L.; Robertson, A.; Jonkman, J.; Yu, Y.H. Uncertainty Assessment of CFD Investigation of the Nonlinear DifferenceFrequency Wave Loads on a Semisubmersible FOWT Platform. Sustainability 2021, 13, 64. [Google Scholar] [CrossRef]
Floater Type  Example Project  Particulars [m]  Schematic  

Semisubmersible  DeepCwind  Draft  20  
Freeboard  10  
Midcolumn diameter  6.5  
Outercolumn diameter  12  
Column spacing  50  
Cross braces diameter  1.6  
SPAR buoy  OC3SPAR  Draft  120  
Freeboard  10  
Column diameter above taper  6.5  
Column diameter below taper  9.4  
Taper height  8  
Barge platform (with rectangular moonpool)  NEDO  Draft  7.5  
Freeboard  2.5  
Length  48  
Breadth  48  
Skirt offset  3  
Tension leg platform (TLP)  GICON TLP  Draft  30.7  
Waterline to tower bottom  37.25  
Length  32  
Breadth  32 
Particulars  Prototype (m)  Scaled Model 1:50 (mm) 

Total draft (SWL)  20  400 
Tower base elevation (above SWL)  10  200 
Offset columns elevation (above SWL)  12  240 
Offset columns spacing  50  1 
Tower base dimeter  6.5  130 
Offset columns dimeter (base)  24  480 
Offset columns dimeter (upper part)  12  240 
Length of offset columns (base)  6  120 
Length of offset columns (upper part)  26  520 
Diameter of pontoons and cross braces  1.6  32 
Row  Phenomena  Importance  Physics Understanding  Validation Needs  Suitability of Underwater SPIV for Providing Validation Data 

1  VIV/VIM substructure  M  L  H  Yes 
2  Nonlinear excitation—diff/sum/mean  H  M  H  Yes 
3  Shortcrested waves  M  H  H  Yes 
4  Marine growth influence on loads  L  H  L  Yes 
5  Breaking/steep wave loads  L  M  H  Yes 
6  Wave–current–body interaction  H  M  M  Yes 
7  Viscous load model  H  M  H  Yes 
8  Multibody flow interaction  H  M  H  Yes 
Row  Challenges  Importance  Already Addressed in Literature on the Underwater SPIV Method 

1  Particle seeds  Seeding of a largevolume tank  Yes 
2  Illumination  Illumination in water  Yes 
3  CCD cameras  Error associated with imaging and postprocessing  Yes 
4  Scale issues  Tradeoff between platform scale and area of investigation for SPIV, since large scale is preferable for FOWT tank testing, while the area of investigation is limited in SPIV  No 
5  SPIV apparatus and platform movement  The apparatus is fixed in place, while the platform is moored in a certain section of the tank and has degrees of freedom  No 
6  Sampling rate of SPIV  Having a 15 Hz sampling rate in practice, limited underwater SPIV to be used for investigating phenomena with a steadystate nature or to review a platform with a timeaveraged perspective  No 
7  Effect of apparatus on hydrodynamical behaviours of the floater  The presence of the SPIV apparatus could influence the floater behaviour; study must be conducted on this interaction  No 
Row  Phenomenon/Research Topic  Current Physics Understanding  Contributions of Underwater SPIV 

1  VIV/VIM of substructure  L 

2  Nonlinear excitation—diff/sum/mean  M 

3  Shortcrested waves  H 

4  Marine growth’s influence on loads  H 

5  Breaking/steep wave loads  M 

6  Wave–current–body interaction  M 

7  Viscous load model  M 

8  Multibody flow interaction  M 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belvasi, N.; Judge, F.; Murphy, J.; Desmond, C. Analysis of Floating Offshore Wind Platform Hydrodynamics Using Underwater SPIV: A Review. Energies 2022, 15, 4641. https://doi.org/10.3390/en15134641
Belvasi N, Judge F, Murphy J, Desmond C. Analysis of Floating Offshore Wind Platform Hydrodynamics Using Underwater SPIV: A Review. Energies. 2022; 15(13):4641. https://doi.org/10.3390/en15134641
Chicago/Turabian StyleBelvasi, Navid, Frances Judge, Jimmy Murphy, and Cian Desmond. 2022. "Analysis of Floating Offshore Wind Platform Hydrodynamics Using Underwater SPIV: A Review" Energies 15, no. 13: 4641. https://doi.org/10.3390/en15134641