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Abstract: When the thickness of the solar cell wafer and the amount of Ag to be used decreases,
it is the best method to recover the power of the module after use at a minimum cost and reuse
the module itself. Economic recovery technology can be applied to the power degradation, caused
by the resistive solder bond (RSB) hotspot by poor soldering, because the recovery process can be
simplified compared to the power loss that is often greater than 30%. This study demonstrated a
quick recovery of the RSB hotspot with on-site recovery technology applied with resin and verified
the performance and long-term reliability of on-site recovery technology, compared to the factory
recovery method, where the back sheet is removed and laminated to recover the module. Both the
factory and field recovery methods confirmed recovery results closer to the initial rated power output
of the samples. Each sample was degraded by the RSB hotspot to ~62–65% of the initial power output,
and the recovery process successfully recovered it to ~96–99%. In on-site recovery, verification of the
possible EVA solvothermal swelling, which is the effect of organic solvents contained in the resin on
EVA, is essential for verifying the long-term reliability of the recovered module. In this study, the
power degradations of the on-site recovered samples after a TC 200 cycle test are−2.14% and−0.95%,
respectively, which are within the certification test standard of the new manufacturing module.
Existing factory recovery costs not only in the recovery process, but also in a total of 22 stages, such
as the transfer of the target module. The largest advantage is that the on-site recovery process can be
restarted in the field after only eight stages.

Keywords: power degradation; poor soldering; module recovery; RSB hotspot; EVA swelling;
on-site recovery

1. Introduction

The expansion of the energy market has been highly uncertain owing to the continuing
pandemic over the past few years, resulting in city blockades, a reduced trade volume, and
continued work from home routines. However, the nationwide blockade and decline in
trade volumes have resulted in higher prices owing to increased transportation costs and
the reduced shipments of fossil fuels, a locally biased resource. Therefore, photovoltaic
(PV) energy, a distributed power generation without regional bias, promises to be one of
the most competitive means of power generation in the energy market [1–5]. Along with
the expansion of the PV market, the inevitable problem is the disposal of the expired PV
module waste. Naturally, the amount of waste in PV modules increases in proportion to the
amount of installed PV and is expected to increase rapidly from less than 100 tons by 2018 to
over 140,000 tons by 2054 [6–8]. The PV module consists of recyclable metals, such as Si, Al,
Ag, Cu, and Sn, which are valuable materials, and low-iron glass with a high purity [9–13];
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therefore, recognizing PV modules as industrial waste and burying them in landfills is not
an ideal option. This paper analyzes the tendency of RSB hotspots that frequently occur
in PV power plants and compares the power after recovery with the rated power of the
module to focus on a method of reusing the module [14–18]. When a recovered module is
restored to 70% or more of its rated output, long-term degradation is crucial to the economic
feasibility and long-term reliability of the recovery technology. The simplification of the
recovery process is also a factor that has the greatest impact on the economics of technology.
Poor soldering occurs intensively at specific sites and models; beginning from 2 to 3 years
after a commercial operation, it occurs steadily, and if left unattended, it develops into a
hotspot and causes significant power loss; therefore, it is very important to respond quickly
with recovery technology rather than replacing modules. However, when recovering the
RSB hotspot using the factory recovery process, if the back sheet is removed to reinforce
the defective soldering part, and the EVA sheet and the new back sheet are consumed
again with the existing technology for the reload layer, an excessive number of parts may
be reworked. For commercial power plants, a large amount of power generation loss is
expected if all modules with power degradation are stored in the factory to be re-laminated
and recovered. This study also verified the long-term reliability of the recovered module
by applying on-site recovery technology without removing the back sheet in the field and
applying sealing and insulation materials as alternative materials.

Energy recovery, recycling, reuse and minimization, and waste prevention through
efficient design are preferred for a sustainable environment [19,20]. For the previous
examples of recycling, several studies have been conducted on melting organic materials
such as ethylene-vinyl acetate (EVA) and the back sheet of the PV module using a furnace or
an organic solvent and then collecting silicon wafers [21–23], and recycling of ribbon metal
and low iron glass as raw materials [24–27]. Figure 1 is a schematic of the recycling system
of the PV waste module of the Foundation for Advancement of International Science (FAIS)
and the procedure for recycling the PV module as raw materials [28].
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However, the recycling technology presented above is not generally activated because
the return on investment (ROI) is not economical at approximately −0.25 as of 2022 [29,30].
Moreover, with the continuous development of solar cell manufacturing technology, the
thickness of wafers is decreasing, and the quantity of precious metals used in the technology,
such as silver, is gradually decreasing [31–33]. Paradoxically, advances in technology
will gradually reduce the amount and value of raw materials that can be collected from
module recycling. As solar cell technology advances, the thickness of wafers is getting
thinner [34–36]. According to the data, the thickness of the wafer in the single-crystal
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silicon solar cell M6 grade in 2021 was approximately 165 µm, and it is expected to decrease
by more than 15% to 140 µm by 2029. The amount of silver used in the cells has also
decreased significantly owing to recent advances in inkjet and screen-printing technology.
Additionally, it is expected that the amount of silver used, which was approximately 10 µg
per cell in 2021, will be reduced by almost half by 2032 [37]. Therefore, the most desirable
method of recycling a PV module is to recover the performance of the module at the end
of its commercial life and use it again [38–40]. In particular, a technology to normalize
the system by recovering defects in PV modules with severe power degradation in PV
power plants, currently operating under the renewable portfolio standard (RPS) subsidy
system, is essential. Earlier reports suggest that the performance standard be set to 70% of
the initial rated power of the PV module to ensure that the recovered PV module can be
reused without being legally classified as waste; it can be also resold as a used module at a
discount of about 70% compared with new modules [41].

In general, a crystalline photovoltaic module consists of a string in which each individ-
ual solar cell is connected in series, and between each string, there are bypass diodes that
can be bypassed when power degradation occurs in individual cells. Accordingly, when the
cause analysis of the decrease in output is accurately performed, the recovery of the output
may be relatively easy. Several cases with abnormal electrical power degradation in a
system-linked photovoltaic power plant were tracked, promoting a considerable rise in the
investigations of hotspots. One of the two external causes of hotspots is the occurrence of
continuous and repetitive shading caused by structures or foreign substances, which causes
power degradation, heat generation at cells or ribbon–bus bar soldering sites at certain
locations, and eventually leads to a bypass diode failure [42–46]. The PV module internal
factors that cause the second hotspot are cell breakage, internal insulation breakdown of
the cell, P–N isolation destruction, poor soldering between the cell and ribbon, and poor
soldering in the circuit between the interconnector ribbon and the upper and lower bus
bars of the PV module [47–50]. External factors, including shading and burnout of the
bypass diodes, will not be addressed in this paper because even if the PV module recovers,
it will continue to recur in the same pattern if the cause is not removed. Figure 2 shows an
image of forward and reverse biases that occur in the equivalent circuit of the PV module
protected by the bypass diode.
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Figure 2. Forward and reverse biases occurring in equivalent circuits in PV modules with bypass
diodes. (a) An equivalent circuit in the normal power generation of a photovoltaic module protected
by a bypass diode; (b) a circuit where a reverse current occurs if the resistance increases.

Figure 2a shows a typical equivalent circuit in the normal power generation of a
photovoltaic module protected by a bypass diode. However, if the resistance increases
owing to scenarios such as shading, cell cracks, and pore soldering between the string and
module bus bar, a reverse bias is applied to the module, which is shown in Figure 2b. In the
figure below, Iph represents the solar irradiance and Ipv represents the output current. Rsh
is the shunt resistance and Rs is the series resistance. The photogenerated electric current
is, the current at the diode is ID, the leakage current is Ish, the output voltage is Vpv, and
the voltage at the diode terminals is VD. Although studies have shown that hotspots can
be caused by the internal factors of the cell and poor soldering of the ribbon attached to the
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cell, the number of these hotspots is small, and the power degradation rate is relatively low.
The most significant problem with power degradation is the hotspot caused by the resistive
solder bond (RSB) between the interconnector ribbon and the lower bus bar on the module.
As a result of investigating a plant, hotspots due to RSB appeared in approximately 4% of
all installed solar modules, which was defined as “RSB hotspots.” This term is also used
in this paper. The RSB hotspot has different characteristics depending on the production
model, even though it can be produced by the same manufacturer, and the power loss
is severe. Hotspots in the connection area above the string often cause damage to the
bypass diode, causing a large electrical loss of more than 30% of the total module power
output [51,52]. The current produced in the cell is connected to the junction box through
the interconnector ribbon and the upper and lower bus bars of the module and is connected
in series to the next PV module through a cable and connector, which are components of
the junction box. Therefore, poor soldering that occurs when manufacturing a module
increases its resistance owing to the thermal cycle, etc., eventually develops into an RSB
hotspot where the temperature is abnormally high, thereby damaging the bypass diode.
Figure 3 shows the current flow diagram of a normally operating cell and module. The
PV module is composed of cells suitably in series and parallel to implement the desired
electrical performance. As illustrated in Figure 3, a bypass diode is connected between
the cell strings optimized to group properly, thereby protecting a part of the module from
abnormal operation [53].
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Theoretically, the Rsh of a solar cell in a normal state is a very large value, and the
current cannot flow elsewhere. In addition, Rs such as a cell that transmits electricity, an
interconnector, and a silicon wafer that forms the cell, operates in an infinitely small state.
The current equation for the PV module in the normal state is given by Equation (1). IRsh is
the current at shunt resistance.

IPV = Iph − ID1 − ID2 − ID3 − IRsh (1)

In a normal state, no leakage current occurs in the cell, and the series resistance is
infinitely small; thus, no current flows in the bypass diode direction, and thus the power
generation current is maximized. ID1, ID2, and ID3 are diode characterization currents, q is
the electron charge, n1, n2, and n3 are ideality factors, kB is Boltzmann’s constant, and T is
the temperature. The effect of the diode can be expressed in more detail in Equation (2).



Energies 2022, 15, 4623 5 of 19

IPV = Iph − ID1

[
exp

q(V + IRs)

n1kBT
− 1

]
− ID2

[
exp

q(V + IRs)

n1kBT
− 1

]
− ID3

[
exp

q(V + IRs)

n3kBT
− 1

]
− V + IRs

Rsh
(2)

Pmax is the maximum power output, Isc is the short-circuit current, Voc stands for
open-circuit voltage, Imp is the current at the maximum output, Vmp stands for voltage at
the maximum output, and the fill factor (FF) is the filling coefficient. If a failure occurs due
to a short circuit in the bypass diode of the module, Isc does not change significantly, but
Voc decreases, and the most decreases occur in Vmp and Pmax. If the bypass diode fails, a
short circuit is configured with other cells, and even when there is no shade in the cell, the
current flows to the faulty bypass diode, as shown in Equation (3).

ID = Isc − I (3)

The voltage of the solar cells connected to the failed bypass diode is the sum of the
current and resistance flowing to the diode. If the bypass diode fails, the power output
of the PV module decreases. The current of the PV module, including the failed bypass
diode, is shown in Equation (4). The reverse current induced by the mathematical model is
proportional to the power degradation of the PV module.

I = Isc − I0bexp
V

2N + IRs −
(

ID RD
2N

)
nVth

− 1c −
V

2N + IRs −
(
(Isc−I)RD

2N

)
Rsh

(4)

2. Experiments

Figure 4 shows a factory recovery process diagram of a 6-inch 54-cell 2BB polycrys-
talline silicon solar cell product, whose power was degraded by poor soldering and was
a sample of power degradation caused by the RSB hotspot collected from a commercial
power plant. We name 205A the 205-Wp grade sample whose output has been degraded
due to poor soldering. The figure below shows the conventional process of removing
the EVA and busbar, replacing it with a new busbar, and recovering the output of the
205A sample through a re-soldering process. First, before removing the back sheet of the
module, (a) separate the frame and remove adhesive materials such as tape or sealant
between the frame and laminated module. After (b) heating and softening the EVA using a
hot plate, (c) the back sheet is slowly peeled off from the corner. When the back sheet is
completely peeled off, (d) remove the EVA and bus bar in the area damaged by the hotspot
and organize the EVA along the interface of the upper and lower cells of the string. The tab
of the cell to be connected to the new bus bar is fluxed to re-solder the bus bar, removed
from the hot plate, and cooled to room temperature. In a previous study, a study found
that there was no damage to the cell and 1st EVA when the back sheet was peeled off from
the back using a laser [54].

After cooling the sample module to room temperature, (e) apply flux to the new bus
bar to be replaced, (f) add additional soldering to connect the new bus bar, and (g) insert
the first EVA between the glass and bus bar. At this time, the error between the EVA and
the existing cell should be almost accurate to less than 1 mm, such that the sharp-shaped
bubble does not remain after the module is recovered and is perfectly connected to the first
EVA of the existing module. (h) The second EVA overlaps with a margin of approximately
5 mm larger than the restored area. Subsequently, (i) fix it using an iron tip so that the
EVA is not pushed during the lamination process. (j) If the overlapping width exceeds
5 mm in this process, be careful as signs of repair may occur after lamination. Finally,
(k) lay up the EVA and the new back sheet that covers the entire module, (l) check the
electrical connection, and place it into the lamination process to finish. As mentioned in the
introduction, when the RSB hotspot is recovered owing to poor soldering with the existing
technology, an excessive rework is performed compared with the damaged area, thereby
reducing the economic feasibility of the recovery process, and recovered module.
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Figure 5 schematically shows an electroluminescence (EL) image and a current flow of
a module of a 6-inch 54-cell 2BB polycrystalline silicon solar cell product, whose power
was degraded by poor soldering and was a sample of power degradation caused by the
RSB hotspot collected from a commercial power plant. The rated power of this module was
205 Wp grade; therefore, for convenience, this sample will be denoted as 205A.
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Because strings 1 and 2 are shaded from the left side, the bypass diode was damaged,
and the upper and lower interconnectors and bus bars of the other strings were also
observed to appear as typical RSB hotspots in the EL image. Table 1 shows the results of
measuring the electrical data of the 205A sample that failed owing to the RSB hotspot. In
this study, the electrical value before recovery of the recovered sample was experimentally
measured using a simulator, but the initial data at the time of module manufacturing
were not accurate. Therefore, the electrical value indicated on the rating label attached to
the sample was assumed to be an initial value, and Pmax was calculated from Vmp and
Imp. In addition, the current–voltage (I–V) curve should be measured after replacing the
short-circuited damaged diode with a normally operated diode, because measuring the
I–V curve with a small resistance due to diode damage recognizes the six-string module as
if it were a four-string module. A detailed explanation will be added later in the results
and discussion section.

Table 1. Electrical data deviations of the initial and failed module (205A).

Item Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) Fill Factor Tolerance

205A 54 cells initial 205.39 8.39 33.10 7.78 26.40 0.74 ±3%
failed 130.05 8.40 32.98 7.81 16.65 0.47 -

Rate of decline −36.68% - −0.36% - −36.93% −36.67%

As confirmed in the EL image, approximately 33% of the total six strings were dark
areas, resulting in a power loss of 36.56% of the EL image by adding a hotspot loss from the
bottom of the 3rd and 5th strings and the top of the 4th and 6th strings. As confirmed in the
EL image, two strings, which were approximately 33% of the total of six strings, are shown
as dark areas. In the basic power loss of 33%, the hotspot loss from the poor soldering part
of the bottom of strings 3, 5, 4, and 6 from the left side of the EL image was added, resulting
in a power loss of 36.56%. As expected, the main power loss occurred at −36.93% at Vmp,
and as a result, the fill factor also decreased by −36.67%.

Therefore, in the second experiment, the RSB hotspot module was recovered via field
recovery technology using resin material and sealant to replace the lamination process
after approaching the hotspot position through punching, without removing the back sheet.
Figure 6 shows a process diagram of recovering the hotspot sample with on-site recovery
technology without back sheet removal and lamination process. Equipment such as a hot
plate or laminator are not required, whereas work lamps, electrical irons for punching and
soldering, silicone varnish resin for insulation, and tape fabricated from the back sheet
for finishing are used. First, (a) accurately mark the punch location by shining a light
source from the bottom of the RSB hotspot part, and then (b) remove the back sheet and
EVA of the part with specially manufactured iron. (c) Remove the carbonized EVA around
the bus bar and the interconnector ribbon using tweezers and dry it sufficiently at room
temperature. Thereafter, (d) apply flux and re-solder using an additional solder and remove
the solder smoke cleanly. Instead of the lamination process, (e) a silicon resin that insulates
the soldering part was used to fill the re-soldering part and the part from which EVA was
removed, and then it was quickly dried at room temperature in a well-ventilated place to
remove the organic solvent. Subsequently, a sealant for the PV module, which is widely
applied to the junction box of the PV module and insulation inside the box, was applied,
and (f) finished with tape made of the same material as the back sheet.
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Figure 6. RSB hotspot module recovery process diagram by on-site recovery technology. (a) punching
position indication, (b) removing the back sheet and EVA in the repair area, (c) removing the EVA
around the busbar and ribbon, (d) re-soldering after application of flux, (e) applying silicone resin
and sealant, (f) finishing with back sheet tape.

Figure 7 shows the EL image and current flow of a module of a 6-inch 60-cell 2BB
polycrystalline silicon solar cell 240-Wp grade product, whose power was degraded owing
to defective soldering. For convenience, this sample was called 240B to distinguish it from
the previous 205A sample of 54 cells. Similar to the 205A sample, the third bypass diode
from the left was damaged, as strings #5 and #6 were observed in the shade from the left.
Assuming that the first cell is #1-1 on the top of the leftmost string and the lowest rightmost
cell was #6-10, the upper interconnector–bus bar portion of cells #3-1 and #4-10 was also
observed to be an RSB hotspot in the EL image.
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In Table 2, an additional sample of the same model with symptoms, such as the 240B
sample, is called the 240C sample. The table summarizes the values for measuring the
electrical data of the 240B and 240C samples, whose power was degraded by RSB hotspots.

Table 2. Electrical data deviations of initial and failed modules. (240B, 240C).

Item Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) Fill Factor Tolerance

60 cells initial 240.78 8.63 37.40 8.08 29.80 0.75 ±3%
240B failed 149.25 8.67 37.24 8.07 18.51 0.46 -

Rate of decline −38.01% - −0.44% −0.17% −37.90% −37.94%
240C failed 157.25 8.64 37.26 8.11 19.39 0.49 -

Rate of decline −34.69% - −0.374% - −34.95% −34.45%

Similarly, in the before-recovery output indicated by the failure above, the damaged
diode of the 240B sample was replaced with a normal product and experimentally measured
using a simulator. Even if the short-circuit bypass diode is replaced and the power is
measured, a reverse current occurs owing to the RSB hotspot, and power degradation
occurs equally. Rather, if the diode is short-circuited, Voc and the fill factor can be distorted;
therefore, the diode should be replaced, and electrical data should be measured to determine
the exact damage state of the module. The details will be covered in the results and
discussion section. The initial data described the values in the specification data were
provided by the manufacturer, and Pmax was calculated from Imp and Vmp of the initial
data. The difference from the previous process is the application of resin, which is widely
used in building integrated photovoltaic (BIPV) modules instead of lamination [55]. Resin
possesses similar properties as that of EVA or PVB, such as adhesion, strength, transparency,
and insulation; thus, it has been widely used as a filler for glass-to-glass modules. However,
EVA and resin mixtures are not used together, because organic solvent materials such as
toluene, xylene, and ethylbenzene, may partially dissolve or cause swelling of EVA through
a chemical reaction with EVA [56].

Table 3 lists the components of the silicon resin, and the contents of various organic
solvents in the mixture are roughly indicated. Figure 8 shows the chemical structures of
the organic solvents contained in the resin mixture. (a), (b), and (c) show the structures of
(a) toluene, (b) xylene, and (c) ethylbenzene, respectively.

Table 3. Silicon resin composition table.

Components CAS Number Contest (%) Remarks

Silicone resin
compound - 23–35 Business confidential

Toluene 108-88-3 30–40
Xylene 1330-20-7 10–20

Ethylbenzene 100-41-4 10–20
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Among the components, the silicon resin compound cannot be displayed because the
manufacturer did not disclose the chemical abstract service number (CAS number) or the
specific composition as a trade secret, and the CAS number and chemical structure of the
remaining organic solvents were as above. When the resin is cured, insulation is performed
using sealant, and in a similar case, a technology for recovering insulation resistance by
injecting sealant, synthetic rubber, etc., into a cracked part of the back sheet of a crystalline
PV module has been introduced [57,58].

This recovery method can minimize the waste generated during the recovery process
of the photovoltaic module and reduce the cost and time. First, the recovery process of
the module does not require equipment such as a laminator or hot plate; therefore, on-site
recovery can be performed, particularly for plants in operation. The 240B and 240C samples
recovered using the above method exhibited long-term reliability through a thermal cycle
(TC) 200 test.

3. Result and Discussion

Figure 9 shows an EL image before and after the recovery of the 205A module, where
the RSB hotspot occurred due to poor soldering. (a) Among the six strings of the 205A
sample, a bypass diode (D1) connecting the top of the first and second strings from the
left was short-circuited, and the first and second strings are shaded in the EL image. In
addition, the power was degraded primarily because of RSB hotspots generated between
the upper and lower bus bars and the interconnectors such as #3-9, #4-1, #5-9, and #6-1,
and we inferred that the short circuit of the bypass diode was intensified or caused by RSB
hotspots at the upper or lower ends of the string. (b) As a result of recovering by replacing
all bus bars where RSB hotspots occurred with new busbars, other power degradation
factors such as cell-in-hotspots were not observed, and the EL image was restored.
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Table 4 compares the electrical data in the initial, failed (before recovery), and after
recovery states of the 205A sample. After recovery, the 205A sample recovered close to the
initial rated power at 203.718 Wp, far exceeding the level suggested by previous researchers
at 70% of the initial rated value of the module, to a level within±3% of the normal tolerance
of the new module.
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Table 4. Electrical data deviations of the initial, failed, and recovered module (205A).

Item Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) Fill Factor Tolerance

205A 54 cells initial 205.39 8.39 33.10 7.78 26.40 0.739 ±3%
failed 130.05 8.40 32.98 7.81 16.65 0.468 -

recovery 203.71 8.38 33.01 7.76 26.25 0.736 -
Rate of decline (initial) −0.816% −0.07% −0.26% −2.31% −0.59% −0.41%

Figure 10 shows a comparison of the I–V and voltage–power (V–P) curves before and
after the recovery of the 205A sample.
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Earlier, the experiment indicated that the short-circuited bypass diode of the 205A
sample should be replaced when measuring power, because the diode was damaged and
had a small resistance; the simulator recognized the module as 36 series of four strings,
not 54 series of six strings. As a result, even if the electrical power was almost the same
during the simulation, Voc appeared differently; thus, the fill factor was distorted as if it
were a normal module in the 36 series of four strings. However, it was a module that had a
short-circuited diode with six strings. Therefore, it was necessary to convert it to a normally
operated bypass diode and measure the electrical data. Figure 11 shows the I–V curve of
the 205A sample before and after replacing the short-circuited bypass diode.
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Table 5 shows the electrical data measured when the 205A sample had a short-circuited
diode and changed to a normal diode before the above recovery.

Table 5. Electrical data before and after replacement of short-circuit diode (205A).

Item Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) Fill Factor Tolerance

205A 54 cells initial 205.39 8.39 33.10 7.78 26.40 0.74 ±3%
Normal diode 130.05 8.38 32.98 7.81 16.65 0.47 -

Short circuit diode 131.61 8.28 22.66 7.75 16.98 0.70 -
Deviation (based on normal diode) +1.20% +1.35% −31.29% −0.77% +1.98% +49.79%

The module power output and current values were almost the same as the two data;
however, as mentioned earlier, if the bypass diode is short-circuited, it will not be able to
read the Voc of the shorted string. Therefore, Voc was 22.66 V, which was approximately
31.3% lower than the Voc value of 32.98 V in a normal diode. Thus, the fill factor value
was 0.701, which did not properly reflect the power decrease in the initial module and is
distorted. Therefore, to remove variables outside the module, such as diode failure, and
understand the damage characteristics of the module in the state of the module damaged by
the RSB hotspot, electrical characteristics should be identified after replacing the damaged
diode. This is the same as the #3 diode of the 240B sample, which did not have an EL image
of strings #5 and #6. Table 6 compares the initial, failed (before recovery), and electrical
data for the 240B and 240C samples.

Table 6. Electrical data deviations of the initial, failed, and recovered modules. (240B and 240C).

Item Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) Fill Factor Tolerance

60 cells initial 240.78 8.63 37.4 8.08 29.8 0.746 ±3%

240B
failed 149.25 8.665 37.235 8.065 18.506 0.463 -

recovered 233.70 8.57 37.15 7.99 29.24 0.734 -
Rate of decline (initial) −2.94% −0.7% −0.67% −1.11% −1.88% −1.61%

240C
failed 157.25 8.637 37.26 8.112 19.385 0.489 -

recovered 231.9 8.43 37.38 7.90 29.35 0.736 -
Rate of decline (initial) −3.69% −2.32% −0.05% −2.23% −1.51% −1.34%

The 240B and 240C samples were recovered at 233.7 and 231.9 Wp, respectively, to
97.38% and 96.63% of the rated power, respectively, and recovered to a level slightly
beyond the normal tolerance of ±3% of the new modules. Therefore, we concluded that
the recovery results were not significantly different between factory and on-site recovery.
Figure 12 shows an EL image before and after the recovery of the 240B sample module
where the RSB hotspot occurred owing to poor soldering.

In the recovery process, without removing the back sheet and lamination process,
a process of punching and re-soldering a hotspot part using iron, filling the part with
silicon resin, and finishing it with sealant and back-sheet tape was used. In this process,
the technical difference was that the insulation layer was recovered using punching and
resin of iron without a process such as removing the back sheet or re-lamination used to
recover the power of the 205 A sample.

Figure 13 shows a comparison of the I–V and V–P curves before and after the recovery
of the 240B samples whose output was recovered.
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Figure 14 schematically shows the factory recovery process used to recover the 205A
module. Although the RSB hotspot was recovered close to its rating, approximately
22 processes were consumed from module collection to post-installation inspection, even if
the use of the equipment was reduced as much as possible. The lack of recycling plants
for waste solar modules has location problems and economic problems, but the economic
feasibility caused by the high cost of collecting modules may be the reason [59,60]. The
process indicated in red in the figure is one in which equipment must be used, and the
equipment is used not only for the recovery process of the module, but also for the logistics
transfer, and loading and unloading of the module before and after repair. If RSB hotspots
occur in an operating plant, the economic loss is significant, because of the energy and cost
required in the recovery process as well as the loss of power generation in the recovery
module due to time delay.
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In the process shown in Figure 15, only a slight difference occurs in power recovery,
even if the equipment is not used in the factory and only tools are used in the field. All
processes are performed on-site, and after the module is restored, it can be installed on-site
and inspected immediately, without repacking or transfer processes. Overall, the process
of reinstalling and inspecting through 22 steps in factory restoration is reduced to eight
steps, reducing the time and cost. The greatest advantage of on-site recovery is that the
loss of power generation time of the most important modules mentioned above can be
minimized if they are recovered by rolling them in the field. After re-soldering the upper
and lower bus bars of the 240B module using on-site recovery technology and replacing the
bypass diode, the RSB hot spot was also recovered by poor soldering of strings and cells.
The 240C module was also recovered using the same process. Through a comparison of
the technology completeness owing to the difference between the module factory recovery
and on-site recovery process with recovery data, no significant difference was observed.
Module 205A recovered almost to the rated level (<1%), but 240B and 240C were slightly
different; therefore, we determined that the initial power was assumed to be the rated
power and calculated. Because 240B was recovered within the product tolerance value,
only a slight power degradation occurred, and the exact initial power was not known, but
for 240C, assuming that the actual initial power was 232.8 Wp, which was the lower limit
of tolerance, we observed that it recovered close to −0.04%. None of the three samples
recovered from the stomach were observed to have remarkable long-term degradation.
As a result of the above experiment, no remarkable long-term degradation was observed
in any of the three samples. Finally, compared with the reliability of factory recovery
technology that has already been verified, the long-term reliability of the on-site recovery
process using resin with EVA by punching was verified using a thermal cycle (TC) 200
test. Table 7 presents the results of evaluating the long-term reliability after the TC 200
test. The TC 200 test results after on-site recovery of the 240A and 240B samples indicated
a change in values of −5.0 and −2.2 Wp, respectively, which were reduced by −2.14%
and −0.95% from the values before the TC 200 test, respectively. After the TC 200 test, the
maximum allowable Pmax degradation is −5%, and the experimental results were within
the certification test criteria of the new fabrication module.
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Table 7. Long-term reliability assessment after TC 200 test.

Item Pmax (Wp) Isc (A) Voc (V) Imp (A) Vmp (V) Fill Factor Tolerance

240B 60 cells
recovery 233.70 8.57 37.15 7.99 29.24 0.73 ±3%

after TC 200 228.70 8.55 37.08 7.91 28.92 0.72 -
Rate of decline −2.14% −0.23% −0.19% −1.11% −1.00% −1.77%

240C 60 cells
recovery 231.90 8.43 37.38 7.90 29.35 0.74 ±3%

after TC 200 229.70 8.47 37.22 7.91 29.04 0.73 -
Rate of decline −0.95% - −0.43% - −1.06% −0.95%

Figure 16 shows a graph of the Pmax change of the RSB hotspot module using the
on-site recovery method. As previously stated, the bypass diode was damaged by the
RSB hotspot, and both samples lost power outputs of −38.01% and −34.69%, respectively,
compared with the rated power before recovery. Subsequently, the power output was
recovered to −2.94% and −3.69% compared with the rated power through re-soldering
using a back-sheet punching and recovery process using resin. To verify the long-term
reliability of the recovery method, we performed a TC 200 test, and the power output
results were measured as −2.14% and −0.95%, which are within –5%.
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Figure 17 shows a graph that summarizes the values measured through step-by-step
experiments from the initial rated power and compares the power output before and after
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recovery and after the TC 200 cycle test with each electrical value. An unusual observation
in the recovery steps of the RSB hotspot module was that the Isc values varied only slightly
step by step, and the Imp and Voc values exhibited only slight changes when hotspots
occurred, after recovery, and after reliability testing, but not to the extent of a power change.
The factor directly correlated with the power change was Vmp, which accurately matched
the power change pattern of the module step by step.
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4. Conclusions

This study analyzed the power loss caused by damage to the bypass diode through
the EL image and the I–V and V–P curves of the module as a result of the RSB hotspot
caused by poor soldering between the bus bar and the interconnector in the module. The
same power as the initial power of the module was recovered. Damage to the bypass
diode caused by RSB hotspots results in a large power loss of more than 30% in the unit
module, which is one of the most economical module recovery methods owing to its simple
recovery technique. The module recovered from the RSB hotspot almost to the rated power
level, although it had been operating in a plant for many years. An important change is
the application of on-site recovery technology using simple tools to improve the factory
recovery technology using various types of equipment. The on-site recovery technology
of the back sheet punching method and insulation with resin instead of the back sheet
removal and lamination process was verified for reliability through the TC 200 cycle test.
Through this process change, a recovered module can be reused after seven steps instead
of the current 22-step recovery process. Note that toluene and xylene contained in silicon
resin may soften EVA that is not crosslinked, even at room temperature; thus, the influence
on EVA should be minimized by removing the organic solvent as quickly as possible under
ventilation conditions. The sample used in this experiment was collected at a plant site
after heat generation was confirmed using an IR camera, and the power loss occurred
in a string of approximately 33%; thus, the power loss was approximately −37% in the
205A sample, −38% in the 240B sample, and approximately −35% in the 240C sample.
The 205A sample was recovered using factory recovery, and the 240B and 240C samples
were recovered using the on-site recovery method, recovering power to −0.82%, −2.94%,
and −3.69%, respectively, compared with the rated power. The 240B and 240C output
degradations after the TC 200 cycle test performed for long-term reliability verification
of on-site recovery methods were measured at −2.14% and −0.95%, respectively. Note
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that Isc exhibited a slight change even when the RSB hotspot occurred and power was
degraded, and Vmp and Imp exhibited slight changes, but the largest changes were Vmp
and the fill factor. The reason Isc and Voc are similar is that in the I–V and V–P curves,
the starting and ending points of a normal curve are almost similar to those of a curve in
which a diode operates owing to the RSB hotspot. Thereafter, the hotspot curve exhibits
a small peak at a position faster than a normal curve, and when reverse current occurs,
current and power decrease rapidly, and then flatly progress along the voltage axis in the
form of a step in the middle and end at a Voc value. Naturally, Vmp and the fill factor
recovered most prominently after the module power was recovered. When the technology
development of photovoltaic modules reduces the valuable resources that can be recycled
from waste modules, considering environmentally and economically, the most desirable
method of recycling a photovoltaic module at the end of its commercial life is a technology
that recovers power to enable the module to be used again.
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