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Abstract: In order to realize the sustainable development of energy, the combination of new energy
power generation technology and the traditional offshore platform has excellent research prospects.
The access to new energy sources can provide a powerful supplement to the power grid of the
offshore platform, but will also create new challenges for the planning, operation, and control of the
power grid of the platform; hence, it is very important to optimize the reactive power of the offshore
platform with new study, a mathematical model was first built for the reactive power optimization of
offshore platform power systems with new energy sources, and the Taguchi method was then used to
optimize the parameters and population of particle swarm optimization, thereby addressing a defect
in particle swarm optimization, namely, that it can easily fall into local optimal solutions. Finally, the
algorithm proposed in this paper was applied to solve the reactive power optimization problem of
the offshore platform power system with new energy sources. The experimental results show that
the proposed algorithm has stronger optimization ability, reduces the system active power loss to
the greatest extent, and improves the voltage quality. These results provide theoretical support for
the practical application and optimization of the deep-water semi-submersible production platform
integrated with new energy sources.

Keywords: particle swarm optimization; Taguchi method; new energy sources; deep-water
semi-submersible production platform; reactive power optimization

1. Introduction

As a result of the continual improvement in new energy power generation technology
represented by wind and photovoltaic power generation, this technology has been widely
applied to various island power generation systems. The power generation equipment
of traditional offshore platforms comprises mainly diesel generator sets or gas turbine
generator sets. The application of new energy power generation technology in the power
system of offshore platforms can save fuel, and improve power supply reliability and
energy efficiency. However, new energy power generation also has greater requirements
regarding the stability and safety of the power system of the offshore platform. For a deep-
water semi-submersible platform power system with new energy sources, the reactive
power balance is a very important research topic. A reasonable distribution of the reactive
power of the platform power system can ensure the platform power system operates under
safe and stable operating conditions. Therefore, the reactive power optimization of the
power system of the deep-water semi-submersible platform with new energy sources, as
examined in this study, can reduce the platform’s active power loss and operating cost,
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and improve the quality and safety of power supply. This has very important research
significance for offshore platforms integrating new energy sources.

The reactive power optimization algorithm is an important part of power system reac-
tive power optimization, and the performance of the algorithm determines the optimization
results. As a result of the rapid development of computer technology and mathematical
theory, many kinds of reactive power optimization algorithms have emerged, which can be
roughly divided into traditional algorithms and artificial intelligence algorithms. However,
traditional methods have a number of problems, such as: dependence on an accurate model;
strict initial value; and “dimensional disaster” [1,2]. In order to address the disadvantages
of traditional methods, various artificial intelligence algorithms have been applied to solve
the reactive power optimization problem of power systems. In [3], the author undertook a
comprehensive review in combination with previous studies on the reactive power opti-
mization of power systems, and noted the advantages and limitations of various artificial
intelligence algorithms in solving reactive power optimization problems of power systems.
Various artificial intelligence algorithms, such as elephant herding optimization (EHO) [4],
slime mold algorithm (SMA) [5], tabu search (TS) [6], earthworm optimization algorithm
(EWA) [7], Harris hawks optimization (HHO) [8], enhancement of the general DE algorithm
(NSODE and C-DEEPSO) [9,10], and particle swarm optimization (PSO) [11–13].

Particle swarm optimization (PSO) is widely used because of its small number of
parameter settings and simple structure. However, the particle swarm optimization (PSO)
algorithm also has the problem of being easily trapped in a local optimum. Based on this,
many researchers have improved the particle swarm optimization (PSO) algorithm [10–14].
Jiang et al. [14] proposed an improved adaptive particle swarm algorithm with guiding
strategy (GSAPSO), which was applied to reactive power optimization (RPO). In [15,16],
the author proposed a hybrid technique of grey wolf optimization and particle swarm
optimization (GMO-PSO) to improve the performance of the algorithm by effectively
controlling the local search and pushing the algorithm towards the direction of global
optimization, and applied it to the solution of optimal reactive power scheduling (ORPD)
problems within the grid. Liu et al. [17] studied the reactive power optimization problem of
photovoltaic power generation penetration distribution networks, and used the improved
PSO to reduce the inertia weight factor at linear speed in the iterative process. The Taguchi
method is a low-cost and high-efficiency quality engineering method, which uses an
orthogonal array and the signal-to-noise ratio (SNR) to determine the optimal parameter
setting of the system with the least number of tests, thereby improving the performance of
the system [18–20]. Chen et al. [21] used the Taguchi method to identify the three parameters
of the particle swarm optimization (PSO), namely, inertia weight ω, and acceleration
coefficients c1 and c2. Based on particle swarm optimization with nonlinear time-varying
evolution (PSO-NTVE) [22], Tsai et al. [23] further executed Taguchi-based crossover to
find the best particles. Chen et al. [24] proposed a Taguchi particle swarm optimization
(TPSO) to solve optimal reactive power flow problems.

For this reason, this study first took the power system of the actual deep-water semi-
submersible oil production platform as the research object, added the wind power and
photovoltaic power generation systems to the platform power system, took the active
power network loss and voltage deviation as the objective function, and established the
mathematical model of reactive power optimization. In this paper, the basic principle of the
Taguchi method is also briefly introduced. The parameters and populations of the particle
swarm optimization algorithm were optimized and improved using the Taguchi method.
Finally, the algorithm was applied to the reactive power optimization of the deep-water
semi-submersible platform power system with new energy sources, and the results were
compared with those of other existing algorithms. The experimental results demonstrate
the effectiveness and superiority of the proposed algorithm.
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2. Problem Formulation

Reactive power optimization of the power system of a deep-water semi-submersible
production platform with new energy sources involves the adjustment of the key parame-
ters of the system to reduce the system’s power loss and improve the voltage quality to the
maximum extent under various constraints. The operation performance of the platform
power system is optimized by adjusting the terminal voltage of the synchronous generator,
the tap position of the on-load voltage regulating transformer, and the reactive power out-
put of the new energy power generation system. Therefore, it is necessary to establish the
corresponding mathematical model of reactive power optimization, which can be divided
into two aspects: objective function and constraint conditions.

2.1. Objective Function

According to the different emphasis of the reactive power optimization calculation,
the objective function differs. Considering the economy and security of the platform power
system, in this study, the minimum active power loss and voltage deviation were chosen as
the objective function.

2.1.1. Minimum Active Power Losses

The active power loss of the power system is often regarded as one of the important
indexes of the system operation’s economy. Therefore, the expression with the minimum
active power loss as the objective function is as follows:

minPloss = min ∑
i,j∈NB

Gij

(
V2

i + V2
j − 2ViVj cos θij

)
(1)

where Vi and Vj are the voltage magnitude at buses i and j, respectively; Gij and θij are the
conductance and voltage angle difference between bus i and j; and NB is the total number
of buses.

2.1.2. Minimum Voltage Deviation

Voltage is one of the most basic and important safety and service quality indicators
affecting power quality. The smaller the voltage deviation, the more stable the system and
the better the power quality. Therefore, the expression with the minimum voltage deviation
as the objective function is as follows:

min ∆V = min
NL

∑
i=1
|Vi −V∗i | (2)

where V∗i is the desired voltage magnitude, and usually V∗i = 1; NL is the number of
load buses.

For different objective functions, the optimal solution is different, and comprehensive
consideration is needed to obtain a compromise solution. In order to reduce the active
power loss to the greatest extent on the premise of improving the voltage quality, this paper
uses the weight factor to realize the transformation from multiple objectives to a single
objective. Due to the large dimensional difference in the value of the objective function,
it is necessary to transform it into a standard value for processing. The expression of the
converted objective function is shown as follows:

minF = min
{

ω1
Ploss

Ploss,0
+ ω2

∆V
∆V0

}
(3)

where ω represents the weight coefficients; ∆V0 is the voltage deviation before reactive power
optimization; Ploss,0 represents the line active power loss before reactive power optimization.
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For the reactive power optimization problem in this paper, the priority is to minimize
the active power loss and the minimum voltage deviation, so the weight coefficients are
selected as ω1 = 0.8, ω2 = 0.2.

2.2. Constraints

In the reactive power optimization problem of the power system of the deep-water
semi-submersible production platform with new energy sources, the feasible solution of
the optimization problem must be within the range of various constraints, which can be
divided into the following two kinds.

2.2.1. Equality Constrains

The equality constraints are typical load flow equations, including the active power
constraint equation and the reactive power constraint equation. These can be formulated
as follows: 

PGi + PDGi − PLi −Vi ∑
j∈Ni

Vj
(
Gij cos θij + Bij sin θij

)
= 0

QGi + QDGi −QLi −Vi ∑
j∈Ni

Vj
(
Gij sin θij − Bij cos θij

)
= 0

(4)

where PGi and QGi are the active power and reactive power of the generator at bus i; PDi
and QDi are the active power and reactive power of the load demand at bus i; Bij is the
susceptance between bus i and j; and Ni is the set of buses connected with the bus i.

2.2.2. Inequality Constraints

Inequality constraints can be divided into control variable constraints and state vari-
able constraints. Control variables include generator bus voltage, transformer tap position,
and reactive power compensation capacity of the shunt capacitor. State variables include
load bus voltage and generator reactive power.

Control variable constraints:
VGimin ≤ VGi ≤ VGimax , i ∈ NG
Tkimin ≤ Tki ≤ Tkimax , i ∈ NT
QCimin ≤ QCi ≤ QCimax , i ∈ NC

(5)

State variable constraints:{
VLimin ≤ VLi ≤ VLimax , i ∈ NL

QGimin ≤ QGi ≤ QGimax , i ∈ NG
(6)

where VGi is the voltage magnitude of the generator; QCi is the compensation capacity of
the shunt capacitor; Tki is the tap position of the transformer; VLi is the voltage magnitude
of the load bus; QGi is the reactive power of the generator; NG, NT , and NC are the number
of generators, transformers, and capacitor banks, respectively.

3. Proposed Method

The particle swarm optimization (PSO) algorithm is widely used in many optimization
problems because of its fast convergence speed, simple rules, and easy implementation.
However, particle swarm optimization (PSO) is also prone to being trapped in a local
optimum in later periods. Through the Taguchi method, particle swarm optimization (PSO)
was improved to avoid premature convergence.

3.1. Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computation technique that
was first proposed in 1995 by Kennedy and Eberhart. Its basic principle is to randomly
generate a swarm of particles, which are regarded as a potential solution to the problem
to be optimized. Each particle moves at a different velocity, and then the fitness function
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value is used to judge the quality of each particle. By tracking the optimal particles in
the population (one is the best position of the current particle itself, the other is the best
position of the entire population), the particles update their velocity and position, and
obtain the optimal solution of the optimization problem through multiple iterations. The
velocity and position of particle i are updated by the following equations:

Vk+1
i = ωVk

i + c1r1

(
pbestk

i − xk
i

)
+ c2r2

(
gbestk − xk

i

)
. (7)

xk+1
i = xk

i + Vk+1
i (8)

where Vk
i is the current velocity of particle i at iteration k; ω is the inertia weight; c1, c2

are the acceleration coefficients; r1, r2 are random numbers within [0, 1]; pbestk
i is the best

individual position of particle i at iteration k; gbestk is the best global position of the entire
population at iteration k; xk

i is the current position of particle i at iteration k.

3.2. Taguchi Method

The Taguchi method was developed by Dr. Genichi Taguchi in 1985 and applied
to quality engineering. This method uses the concept of the SNR, and effectively uses it
as an experimental index in orthogonal experimental design to select the optimal level
combination of parameters. The Taguchi method has the advantages of fewer experiments,
reliable conclusions, good reproducibility, and simple calculation. As a result, it has been
widely used.

The SNR is used to find the appropriate level for each factor to improve the quality of
the solution. The greater the SNR, the more important the corresponding factor level. The
greater the range of the SNR, the greater the influence of the corresponding factor on the
system. According to the different application requirements, the SNR can be divided into
nominal-the-best characteristics, smaller-the-better characteristics, and larger-the-better
characteristics. In this paper, the active power losses and voltage deviation should be as
small as possible, that is, smaller-the-better characteristics. The SNR of smaller-the-better
characteristics is defined as follows:

S/N = −10lg
1
n

n

∑
i=1

y2
i (9)

where y is the output characteristic of the system.

3.3. Proposed Hybrid Algorithm

In order to enhance the global search ability and prevent a premature solution, the
Taguchi method was applied to optimize the parameters and population of the particle
swarm optimization (PSO).

3.3.1. Strategy for Parameter Tunning

Compared with other optimization algorithms, particle swarm optimization (PSO)
has the advantage of fewer adjustment parameters. These parameters directly affect the
performance and convergence of the particle swarm optimization (PSO), so the parameter
setting is very important. At present, many methods are available to improve the parame-
ters of the particle swarm optimization (PSO). For different optimization problems, various
improvement methods have their own advantages. In addition, for a specific optimization
problem, the improvement method to be adopted to obtain the best result is an issue that
needs to be considered.

(a) Inertia weight ω
The inertia weight keeps the particle inertia in motion, so that the particle has a

tendency to expand the search space and has the ability to explore new areas. A large
inertial weight has strong global search capability, but the search efficiency is low. A small
inertial weight has strong local search capability, but is easily trapped in a local optimum.
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Setting a reasonable inertia weight is the key to improving the performance of the particle
swarm optimization (PSO). In this paper, the linearly decreasing inertia weight (LDIW) is
applied, as shown in Equation (9):

ω = ωmax − (ωmax −ωmin)
iter

Itermax
(10)

where ωmax and ωmin are the maximum and minimum inertia weights, respectively. iter is
the current iteration number, and Itermax is the maximum number of iterations.

(b) Acceleration coefficient c
The acceleration coefficients c1 and c2 are used to adjust the maximum step length of

particles flying towards the best individual position and the best global position, respec-
tively. They determine the influence of particles’ own experience and group experience on
the trajectory of particles, reflecting the information exchange between particles. If c1 = 0,
the particles lack self-cognition ability and only have group experience. The convergence
speed is fast. For complex problems, particle swarm optimization (PSO) is easily trapped
in a local optimum. If c2 = 0, the particles only have their own experience, and there is no
information exchange between individuals. The possibility of particle swarm optimization
(PSO) obtaining the optimal solution is very small. In [18], sine cosine acceleration coef-
ficients (SCAC) were introduced to efficiently control the local search ability and global
search ability. c1 = ∂ ∗ sin

((
1− iter

Itermax

)
∗ π

2

)
+ δ

c2 = ∂ ∗ cos
((

1− iter
Itermax

)
∗ π

2

)
+ δ

(11)

where ∂ and δ are constant.
(c) Population size NP
When the population size is too small, the running time is short, but the global search

capability is weak. As the population size increases, the search space becomes larger, and
particle swarm optimization (PSO) can more easily find the global optimal solution. At
the same time, the running time is longer. Therefore, it is necessary to comprehensively
consider the optimization effect and running time.

The Taguchi method is a powerful tool for parameter design, which determines the
best parameter setting with the least number of experiments. Therefore, an improved
particle swarm optimization (PSO) based on the Taguchi method was developed, which
selects the parameters of inertia weight, acceleration coefficients, and population size. In
this paper, the L16

(
45) orthogonal array is chosen to optimize the parameters, as shown in

Table 1.

Table 1. L16
(
45) orthogonal array.

Experiment
ωmax ωmin ∂ δ NP

A B C D E

1 1 0.2 2.5 0 10
2 1 0.3 2 0.5 20
3 1 0.4 1.5 1 30
4 1 0.5 1 1.5 40
5 0.9 0.2 2 1 40
6 0.9 0.3 2.5 1.5 30
7 0.9 0.4 1 0 20
8 0.9 0.5 1.5 0.5 10
9 0.8 0.2 1.5 1.5 20
10 0.8 0.3 1 1 10
11 0.8 0.4 2.5 0.5 40
12 0.8 0.5 2 0 30
13 0.7 0.2 1 0.5 30
14 0.7 0.3 1.5 0 40
15 0.7 0.4 2 1.5 10
16 0.7 0.5 2.5 1 20
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The orthogonal array has 5 factors, namely the maximum inertia weight ωmax, the
minimum inertia weight ωmin, the two constants ∂ and δ of the acceleration coefficient,
and the population size NP. Each factor has 4 levels. If the Full-Factorial Experiment is
performed, 1024 experiments are required to determine the optimal parameter combination.
The Taguchi orthogonal array only needs 16 experiments to obtain the optimal parameter
combination. According to the parameters of each group of experiments mentioned above,
the particle swarm optimization algorithm was run independently several times, and the
experimental results, namely, the fitness function values of the particle swarm optimization
algorithm, were recorded. The SNR of each group of experiments was obtained according
to the SNR calculation in Formula (9), of the desired small characteristic, and the factor
reaction table/graph was drawn, so as to obtain the best parameter combination scheme.

3.3.2. Strategy for Population Optimization

As the number of iterations increases, the population of the particle swarm optimiza-
tion algorithm (PSO) tends to be similar. As a result, the algorithm searches repeatedly in
the solution space of the local optimal solution of the optimization problem, and cannot
fully search other solution spaces. In order to improve the diversity of the population of a
random sample after the completion of two particles, the Taguchi method is used to extract
the best factors in the extraction of the particle and to generate new particles. New particles
and extracted particles are compared, and, if a better alternative to the extracted particles is
found, the individual extremum and global extremum are updated for the next iteration.
In order to obtain better optimization results, particles can also be randomly selected from
individual extreme values after each population update. The other steps are the same.
This paper uses several common mathematical functions, including Sphere, Rosenbrock,
Rastrigin, and Griewank functions, to verify the two population optimization strategies
mentioned above.

For these four common mathematical functions, the optimal target value is 0, and
their respective function expressions and search ranges are shown in Table 2. Parameters
of the particle swarm optimization (PSO) are set as follows: the maximum number of
iterations is set to 2000, the population size is set to 60, the inertia weight is set to 0.729, the
learning factor is set to 2, the dimension of each function is set to 20, and each function
runs independently for 50 times.

Table 2. Information about each function.

Function Functional Expression Search Scope

Sphere f1 =
n
∑

i=1
x2

i [−100, 100]n

Rosenbrock f2 =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30]n

Rastrigin f3 =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n

Griewank f4 = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600]n

Therefore, the experiments were carried out according to the above parameters, and the
convergence precision of each function under different population optimization strategies
is shown in Table 3.

The above table shows that the algorithm of extracting particles from individual
extreme values under the same conditions has better performance; thus, this paper adopts
this population optimization strategy. In order to more clearly demonstrate the optimization
process of the Taguchi method on the particle swarm optimization algorithm population, an
L8
(
27) orthogonal table was selected for a simple demonstration, as shown in Table 4. The
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rows in the orthogonal table represent the experimental order (1–8), which represent the
newly generated particles, and the columns represent the factors (A–G), which represent
the dimension of the particles. Each factor has two levels: 1, representing the dimensions of
the corresponding particle from the extracted particle; and 2, representing the dimensions
of the corresponding particle from the extracted particle.

Table 3. Convergence accuracy.

Function
TPSO (Population) TPSO (Individual Extremum)

Best Average Worst Best Average Worst

Sphere 6.19 × 10−52 3.97 × 10−49 3.01 × 10−48 3.82 × 10−65 1.19 × 10−61 1.63 × 10−60

Rosenbrock 3.48 × 10−14 9.59 × 10−1 3.99 5.1 × 10−22 1.28 3.99
Rastrigin 9.95 24.14 42.78 9.95 × 10−1 7.12 14.92
Griewank 0 2.27 × 10−2 0.1 0 1.18 × 10−2 8.09 × 10−2

Table 4. L8
(
27) orthogonal array.

Experiment

Factor
Fitness
Value

A B C D E F G

1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 f1

2 1 1 1 2 2 2 2 f2

3 1 2 2 1 1 2 2 f3

4 1 2 2 2 2 1 1 f4

5 2 1 2 1 2 1 2 f5

6 2 1 2 2 1 2 1 f6

7 2 2 1 1 2 2 1 f7

8 2 2 1 2 1 1 2 f8

The Taguchi method is implemented after each population update. The specific steps
are as follows:

(1) Two particles are randomly selected from the individual extremum of the current
population and denoted P1 and P2;

(2) The relevant dimensions of the extracted particles P1 and P2 are allocated according
to the above orthogonal table, so as to generate 8 new particles. The value 1 means from P1,
2 means from P2;

(3) The fitness value of each new particle in the orthogonal table is calculated, denoted fi;
(4) Each factor is evaluated according to the formula below:

E( f actor, level) =
D

∑
i∈(level=1)
or(level=2)

f 2
i (12)

For example, for level 1 of factor B, there is E(B, 1) = f 2
1 + f 2

2 + f 2
5 + f 2

6 . For level 2 of
factor B, there is E(B, 2) = f 2

3 + f 2
4 + f 2

7 + f 2
8 ;

(5) The factors are horizontally assigned to the optimal particle P0 according to the
following rules. For example: E(B, 1) < E(B, 2), the level value (dimension value) corre-
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sponding to the B factor (dimension value) of the P1 particle is assigned to the optimal
particle P0. This continues, to generate an optimal particle P0 and calculate its fitness value;

(6) If the optimal particle P0 is better than the two selected particles P1 and P2, the
poorer particle is replaced and the global optimal value of the population is updated;

(7) The next iteration is continued until the maximum number of iterations is met.
The selection of the orthogonal table should be chosen according to the actual opti-

mization problem. For example, for the deep-water semi-submersible production platform
with new energy sources, there are 13 control variables; that is, the particle dimension is 13,
and the first 13 columns of the orthogonal table L16

(
213) can be selected.

3.3.3. Algorithm Flowchart

The proposed Taguchi particle swarm optimization (HTPSO) algorithm was ap-
plied to solve the reactive power optimization (RPO) problem, Figure 1 is HTPSO al-
gorithm flowchart:
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4. Simulation Results
4.1. Power System Structure of Deep-Water Semi-Submersible Production Platform

The deep-water semi-submersible production platform is composed of four power
station subsystems and one emergency subsystem, in which the active power of each power
station subsystem is 25 MW, and the total power is 100 MW. Under normal operation, each
power station subsystem operates independently. In order to facilitate the research, this
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paper only analyzes a single power station. Its power system structure is shown in Figure 2.
Each power station subsystem is composed of three independent diesel generator sets in
parallel, the output voltage of each diesel generator set is 13.8 kV, and the active power of
each diesel engine is 8.6 MW. The photovoltaic power generation system adopts the form
of a series–parallel combination of photovoltaic cells, with a rated power of 200 kW, and a
double-fed wind turbine with a rated power of 2 MW. The main loads in the production
platform are four 20 MW dry gas compressors, four 20 MW wet gas compressors, typical
motor loads, and other household electrical equipment.
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4.2. Basic System Data

The topological structure of the power system of the deep-water semi-submersible
production platform with new energy sources and the access location of the wind and solar
power generation system are shown in Figure 3, where the system is simplified and does
not consider the participation of the emergency power generation system. The platform
system includes a total of 19 nodes, of which nodes 1, 2, and 3 are diesel generator nodes,
and the terminal voltage range is set to [0.95, 1.1]; the grid-connected position of the wind
power generation system is node 7, and its active power output is 1 MW; the reactive
power output adjustment range is [−0.4, 0.5 Mvar]; the grid-connected position of the
photovoltaic power generation system is node 15, its active power output is 0.3 MW, and
the reactive power output adjustment range is [−0.1, 0.1 Mvar]. There are 20 branches
in the system, among which branches 4–8, 4–9, 5–10, 5–11, 8–16, 9–17, 10–18, and 11–19
are on-load voltage-regulating transformer branches. The transformer tap has a total of
nine gears, and the step size is 0.025; that is, the transformation ratio is 1 ± 4 × 2.5% [25].
For the power system of the deep-water semi-submersible production platform with new
energy, the control variables include the terminal voltage of the diesel generator set, the tap
position of the on-load voltage-regulating transformer, and the reactive power output of
the wind and solar power generation systems. According to the calculation of the initial
data, the active power loss of the system is 0.774843 MW, and the voltage deviation of the
load node is 0.33845 p.u.
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Due to the poor optimization ability of the standard particle swarm optimization
algorithm, the reactive power optimization of the system is often trapped in the solution
space of a local optimal solution, and the optimization results can be further improved.
Therefore, the Taguchi method was first used to set the parameters of the particle swarm
optimization algorithm according to Table 1. There were 16 groups of experiments, and
each group of experiments was run independently 10 times. The SNR of each group of
experiments was obtained according to Equation (9), as shown in Table 5:
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Based on the SNR results of each group of experiments above, the response ta-
ble/figure of each factor can be drawn, as shown in Table 6/Figure 4:

Table 6. Factor response table.

ωmax ωmin ∂ δ N

A B C D E

Level 1 2.027839 2.089972 1.916757 2.430542 1.40554
Level 2 1.958132 1.89041 2.066498 2.074817 1.772339
Level 3 2.139125 2.102335 2.053914 1.918765 2.370713
Level 4 2.025928 2.068217 2.113855 1.726899 2.510732
Range 0.180993 0.211835 0.197098 0.703643 1.105192
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The larger the signal-to-noise ratio of O, the more important the factor level. Therefore,
the optimal parameter combination of the improved particle swarm optimization algorithm
after parameter tuning can be concluded as A3, B3, C4, D1, and E4; that is, ωmax is 0.8, ωmin
is 0.4, ∂ is 1, δ is 0, and N is 40. In the parameter setting, due to using the Taguchi method
to optimize the species of the particle swarm optimization (PSO) algorithm, the algorithm
has superior performance. For the deep-water semi-submersible platform production with
a new energy power system, and a total of 13 control variables, the first 13 columns of the
L16
(
215) orthogonal table are chosen. The population optimization steps of Section 3.3.2

are used in a rainfall distribution in an analogy to references [11,14].
The algorithm proposed in this paper was compared with several other improved

particle swarm optimization algorithms when applied to the power system of the deep-
water semi-submersible production platform containing new energy sources. Figure 5
shows the adaptability convergence curve of the algorithm proposed in this paper and
several other improved algorithms when applied to the power system of the platform
containing new energy sources.

In the figure, PSO is the standard particle swarm optimization algorithm; PSO-LDIW
is a particle swarm optimization with a linear decrease in inertia weight; PSO-SCAC is
the particle swarm optimization of the learning factor sine and cosine changes; TPSO1 is
an improved particle swarm optimization algorithm that only adopts a parameter tuning
strategy; TPSO2 is an improved particle swarm optimization algorithm using only a
population optimization strategy; and HTPSO is the algorithm proposed in this paper. By
comparing the convergence curves of fitness, it can be seen that the algorithm proposed
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in this paper has better convergence and robustness. The control variable results of each
algorithm after optimization are shown in Table 7.
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Table 7. Control variable results after optimization of different algorithms.

Control Variables PSO PSO-LDIW PSO-SCAC TPSO1 TPSO2 HTPSO

V1 1.031855 1.012088 1.035452 1.036612 1.036408 1.035973

V2 1.02838 1.013612 1.040682 1.038263 1.039692 1.038323

V3 1.031362 1.013589 1.037039 1.038451 1.037915 1.039065

T1 1.025 1 1.025 1.025 1.025 1.025

T2 1.025 1 1.025 1.025 1.025 1.025

T3 1.025 1 1.025 1.025 1.025 1.025

T4 1.025 1 1.025 1.025 1.025 1.025

T5 1 0.975 1.05 1 0.95 1

T6 0.95 1 1 0.95 1 1

T7 0.95 1.05 1.025 1 1 1

T8 0.95 0.95 0.95 1 1 1.025

QDFIG −0.270877 0.5 −0.234328 0.22026 −0.22958 0.487951

QPV −0.1 0.008962 0.069433 0.059814 0.057649 0.018529

Ploss(MW) 0.671675 0.643938 0.656706 0.626305 0.653211 0.612319

VD(p.u) 0.263015 0.187393 0.20286 0.129481 0.130484 0.101149

Table 7 shows the active power loss and voltage deviation after optimization of various
algorithms. Compared with the initial active power loss of 0.74843 MW, the active power
loss after optimization of other algorithms is reduced by 13.31%, 16.89%, 15.25%, 19.17%,
and 15.70%, respectively, and the active power loss after optimization of the proposed
algorithm is reduced by 20.98%. Similarly, compared with the initial voltage deviation of
0.33845 p.u., the optimized voltage deviation of other algorithms is reduced by 22.29%,
44.63%, 40.06%, 61.74%, and 61.45% respectively. The optimized voltage deviation of the
algorithm proposed in this paper is reduced by 70.11%, which is obviously superior to
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that of other algorithms. The active power network loss of each optimization algorithm is
shown in Figure 6, and the voltage distribution is shown in Figure 7.
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Overall, compared with other improved algorithms, the proposed algorithm can
reduce, to a great extent, the energy loss on platforms with new energy power systems
and improve the power quality, ensure that the electrical equipment has a safe and stable
operation status, and increase the economy and reliability of the platform of the power
system. This provides theoretical support for the practical application and optimization of
integrating new energy sources into deep-water semi-submersible production platforms,
and has certain reference value.
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5. Conclusions

Based on the practical deep-water semi-submersible production platform and com-
bined with the reactive power regulation ability of new energy sources, this study examined
the reactive power optimization problem of the deep-water semi-submersible production
platform with new energy sources. The main research results are as follows:

(1) The mathematical model of reactive power optimization for the power system of
the deep-water semi-submersible production platform with new energy sources was
established. In this model, the minimum active power loss and voltage deviation are
selected as objective functions, and the weight factor is used to realize the transforma-
tion from multiple objectives to a single objective.

(2) To address the defect of particle swarm optimization (PSO), namely, that it can easily
fall into a local optimum, the parameters and population of particle swarm optimiza-
tion are optimized by the Taguchi method, and the optimal parameter combination is
set as ωmax is 0.8, ωmin is 0.4, ∂ is 1, δ is 0, and N is 40. These parameters are used to
improve the iterative optimization ability of the particle swarm optimization (PSO).

(3) According to the established reactive power optimization mathematical model and
the proposed algorithm, the reactive power optimization of the deep-water semi-
submersible production platform integrated with new energy sources was carried out.
The optimized active power loss and voltage deviation were reduced by 20.98% and
70.11%, respectively, compared with the initial situation. The proposed algorithm can
minimize the active power loss of the system and improve the power quality, so that
the system can run safely, economically, and stably.
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