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Abstract: In the context of smart electricity consumption, demand response is an important way to
solve the problem of power supply and demand balance. Users participate in grid dispatching to
obtain additional benefits, which realises a win-win situation between the grid and users. However,
in actual dispatching, community users’ strong willingness to use energy leads to low enthusiasm of
users to participate in demand response. Psychological research shows a direct connection between
users’ herd mentality (HM) and their decision-making behavior. An optimal dispatching strategy
based on user herd mentality is proposed to give full play to the active response-ability of community
flexible load to participate in power grid dispatching. Considering that herd mentality is generated
by the information interaction between users, by calling on some users to share the experience of
successfully participating in demand response in the community information center and using the
Nash social welfare function to model herd mentality to explore the impact of the user. The analysis
of an example shows that the proposed strategy gives full play to the potential of community flexible
loads to participate in demand response. When users have similar electricity consumption behavior,
the herd mentality can effectively improve users’ enthusiasm to participate in demand response, and
the user response effect meets managers’ expectations.

Keywords: demand response; herd mentality; social welfare function; user psychology; flexible load

1. Introduction

With the acceleration of urbanisation, the widespread penetration of clean energy
and the increasing demand for loads have brought new challenges to the power system’s
balance of supply and demand [1]. The user’s flexible load as a dispatchable resource
to participate in demand response is considered an essential way to solve the power
supply and demand balance problem. Demand response refers to the use of a series of
measures to stimulate end-users to change their electricity consumption patterns for the
purpose of peak load shifting, mostly in the form of incentives or dynamic pricing [2].
The implementation of demand response projects can reduce customers’ electricity costs
and increase grid dispatch flexibility; thus, flexible load in smart communities as a means
to flexibly participate in demand response has received widespread attention. However,
due to the general improvement of people’s living standards and the increase of users’
awareness of independent energy use, the attractiveness of economic compensation to users’
participation in response is gradually weakening, and relying on economic compensation
alone can no longer effectively stimulate the enthusiasm of enhancing users’ participation
in demand response. In order to give full play to the regulation potential of community
load participation in demand response, it is necessary to further explore its influencing
factors.

Uncertain electricity consumption behavior caused by users’ autonomous energy
consumption intention is an important factor limiting the development of community
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demand response [3]. Studies have shown that users’ electricity consumption behavior is
usually affected by family information such as age, income, education level, environmental
factors, comfort preferences, conformity psychology and other psychological factors [4,5].
For this reason, most of the existing studies incorporate factors such as user education,
income, and average age into the problem of uncertainty of demand response [6], or use
fuzzy methods and flexible load probability distribution forms to describe the uncertainty
of response behavior [7,8]. Such processes take the uncertainty of the overall characteristics
of users into account, suitable for dispatching scenarios of large power grids. However,
for the community-level load scheduling system, the user’s actual response often does
not match the planned expectations due to the strong randomness of the user’s energy
consumption behavior. Therefore, from the perspective of community users, some studies
have used theories related to consumer psychology to describe the response behavior of
users [9–11]. The peak and valley difference electricity price guides users to participate in
the response behavior to maximize the active response-ability of community flexible load
to participate in grid dispatching, which has practical reference significance. However, the
above studies only consider the influence of external factors on users’ energy use behavior
but ignore the irrational phenomenon that demand response behavior is influenced by
mentality, which further increases the uncertainty of community load participation in
demand response.

In recent years, some scholars have observed the irrational phenomenon of user
participation in demand response and found that the conventional economic influences
cannot explain such behavior of users. For this reason, many scholars have turned their
attention to psychology to provide a rational explanation for the phenomenon of irrational
economics from the perspective of psychological research. Ref. [12] found that user
attitudes have a significant impact on user participation in demand response programs, and
the stronger the users’ awareness of environmental pollution and energy shortage problems,
the more likely they are to accept demand response programs, but further research is still
needed on how to change users’ attitudes; Ref. [13] states that interpersonal relationships
influence user participation in demand response programs but does not examine the
irrational phenomenon of user participation in demand response in terms of psychological
interactions between users. Ref. [14] tries to explain the irrational phenomenon of user
participation in demand response by considering the endowment effect of users and the
time discounting problem; the endowment phenomenon indicates that operators need to
invest more money to change the original energy consumption habits of users [15], and
the endowment effect can only explain the reasons for the irrational phenomenon of users,
and cannot solve the problem of the low initiative of flexible load dispatching. Ref. [16]
investigated the cognitive biases and irrational behavior of users participating in demand
response projects and found that users often care about the performance of others or tend
to follow others’ decisions when making decisions, which is known as herding psychology
in psychology. The phenomenon of herding can change the decisions of other users, which
makes it possible to increase the initiative of flexible load scheduling. Ref. [17] investigates
the influence of user psychology on the implementation of the photovoltaic (PV) projects
and confirms that herd mentality and different forms of interpersonal communication
influence the willingness of residents to participate in PV projects; research shows that,
based on the herd mental, users are easily influenced by others’ decisions when making
energy use decisions, resulting in herd behavior. Especially during peak electricity price
periods, users are often praised for subsidising high electricity prices by imitating others
to participate in demand response to obtain additional revenue. Ref. [18] established an
electric vehicle charging model of user interaction to achieve demand In response to the
purpose of shaving peaks and filling valleys, the user’s information security is guaranteed
by the administrator; Ref. [19] conducted research and survey on users’ willingness to
share, and the survey results showed that, on the premise of ensuring information security,
users showed a positive attitude towards the behavior of sharing their energy use to achieve
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community development; Ref. [20] realises the information interaction between users with
the intervention of intermediary agencies.

There is a mature theoretical basis for the study of social psychology on electricity
energy saving [21], but the analysis of the impact of user psychology on demand response
in existing studies is not yet clear. On the one hand, influenced by their psychological
factors, the community flexible load (FL) participation in demand response has greater
uncertainty, which further aggravates the operational risk of regional dispatch; on the
other hand, the existing dispatching strategy fails to fully consider the influence of users’
psychological factors and cannot fully play its demand response potential.

Based on existing research, this paper proposes a community flexible load demand
response and its optimal scheduling strategy guided by herd mentality to solve the above
problems. The main innovations of the article are as follows:

(1) A flexible load optimisation scheduling strategy based on user herd mentality
is proposed. The proposed method can improve the initiative and flexibility of users in
the community to participate in demand response and give full play to the potential of
community flexible load to participate in demand response.

(2) This paper uses the Nash social welfare function to model the herd mentality of the
uncertainty of user demand response and realises the quantitative analysis of the impact of
user herd mentality on community flexible load scheduling.

2. The Herd Mentality of Community Users

Much literature has confirmed that people’s decision-making behavior will be affected
by information transmission. When the received information is similar, it often produces
a herd mentality and changes its decision-making. However, it is still unknown whether
community users will be influenced by herd mentality and change their willingness to
participate in demand response. So, this paper sets up the Likert scale according to [22–24]
for the two dimensions of user information influence and HM, and proposes two hypotheses
for this:

Hypothesis 1 (H1). Users are influenced by other information when making decisions.

Hypothesis 2 (H2). Follow-up behavior occurs when users receive similar information
from neighbours.

250 questionnaires were distributed in total, and 210 effective questionnaires after
deducting incomplete answers were obtained. The number of questionnaires is 19 times
different from the number of questionnaire questions, which initially meets the statistical
requirements. The specific information and data of the Likert scale are given in Appendix A.
The rationality of the Likert scale data can be obtained by analysing the basic information of
the Likert scale (age, gender, education), and the content of the Likert scale conforms to the
laws of demography [22]. According to the SPSS software statistical the Likert scale data,
the Cronbach’s Alpha coefficient of the reliability information of two influencing factors can
be obtained, as shown in Table 1. If Cronbach’s Alpha is greater than 0.6 and CITC is greater
0.5, the assumption is valid, users are easily affected by other information in the community,
and when users receive similar information, they will produce follow behavior.
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Table 1. Information of the Likert scale.

Constructs Items CITC Cronbach’s α

Herd mentality [22] Q4 0.652 0.816
Q5 0.682 0.808
Q6 0.669 0.811
Q7 0.666 0.812
Q8 0.604 0.828

Information impact [23,24] Q9 0.539 0.666
Q10 0.590 0.608
Q11 0.550 0.644

The above research shows that under the premise that the data meets the requirements
of statistics and reliability, it can be concluded that users often have a herd mentality after
receiving similar information, which affects their decision-making behavior. However, due
to the limited data dimension, the statistical analysis method cannot further quantify the
influence of the user’s decision-making behavior by the herd mentality, and the field of
finance can provide an effective solution. The behavioral motivations for learning and
imitating people are usually classified into two types. One is based on the consideration of
strategy benefits, whether the behavior subject chooses a certain strategy that can bring
considerable rewards and benefits; the other is based on the psychology of conformity. That
is, behavior subjects determine their strategy by observing and imitating the preferences of
most people in the group [25].

Based on the quantitative method of conformity psychology in finance, this paper
proposes a quantitative conformity model based on social welfare function. Currently, in
finance, three typical social welfare functions represented by the Utilitarian, the Rawlsian,
and the Nash types are widely recognized. Different social welfare functions have different
application scenarios, and the Utilitarian social welfare functions usually emphasize overall
benefit maximization. The Rawlsian social welfare function emphasizes safeguarding the
social welfare of the poor. The Nash-type social welfare function places more emphasis
on the fairness of the overall society, and the more similar the social welfare among the
members of the society, the greater the social benefits generated, which is more compatible
with the description of the scenario based on herding psychology in this study, therefore,
this paper adopts the Nash-type social welfare function to quantify the utility of herding
psychology generated by users. The specific modeling is as follows:

When the user’s psychology tends to follow others, the psychological utility obtained
by it is shown in (1) [26]:

Uuser = U1 + M× ComfomsitValue (1)

where Uuser is the total utility obtained by user n, U1 represents Utility gained by user
n engaged in other activities, ComfomsitValue(CV) represents the psychological utility
obtained when herd mentality occurs, and M is the weight coefficient. The utility CV
generated by HM is expressed as:

CV =
N

∏
i=1

bi × d (2)

where
N
∏
i=1

bi is the Nash social welfare function. The meaning of the representation is that

when the welfare values of individuals in the community are more similar, the total welfare
of the community is more significant at this time [27]. bi is the value of personal benefits. d
is the action taken by the user.



Energies 2022, 15, 4546 5 of 18

When the above research is applied to the community flexible load scheduling scenario.
pi is the utility coefficient of the herd mentality by the user. d is the user’s flexible load
usage changed due to herd mentality. N is the number of users in the community. To
verify the rationality of the Nash social welfare function, it is assumed that there are two
users A and B in the community, and the total benefits obtained by the two users in the
community are constant K. Usum is the total welfare within the community. Ua and Ub
distributions represent the user’s personal welfare. The total welfare within the community
is Usum = Ua ·Ub. According to the assumption, the user’s total welfare is a constant value
K. So the total welfare within the community is Ua · (K −Ua). When Ua = Ub = −K

2 ,
social welfare is the largest. Therefore, this paper adopts the Nash social welfare function
to describe the user’s behavior.

Next, the information community and user model are further elaborated.

3. Community Structure Guided by Herd Mentality

The information community structure is shown in Figure 1. PV, energy storage (ES),
shiftable load and fixed load are comprehensively considered. To encourage herding among
users, CM set up the information exchange center.

ES

Shiftable 

Load

ES

User 1

CEMS

Information
Interchange

Electrictiy flow

Information flow

PV PV

Fixed Load Fixed Load

Shiftable

Load

User N

Figure 1. Structure and information exchange model of community.

Community manager (CM) releases electricity price information, guidance information
and energy-saving information in the information exchange center. On the one hand, CM
improve the frequency of community users entering the information exchange center. On
the other hand, CM hope to potentially use the information center to affect and improve
users’ energy consumption habits. In addition, CM calls on some users to share some
successful experiences in the information center and promote such users as community
models, hoping to use their influence to improve the response behavior of other users in
the community.

To improve the community benefit and reduce the uncertain behavior of users in
response, the CM will publish some information in the information exchange center in
Figure 1 to guide users to make energy use decisions. Residents will receive messages
similar to Figure 2. This information potentially affects the electricity behavior of user
through psychological factors [28]. Such messages typically contain three broad categories:
the first is an inducement message from a demand response user, which is usually provided
by a user who has successfully participated in demand response and received additional
benefits; the second type is the guidance information issued by the community manager,
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such as energy coupons. For example, if a customer uses 5% less electricity in a certain
period, the customer can receive an energy coupon to offset the electricity bill. The third
type of information is the comparison information among users, which usually exploits the
comparison psychology among users to improve their energy consumption habits. This
paper attempts to increase user engagement by using the above information in order to
guide the interaction between users. In addition, to ensure users’ privacy, the commu-
nity manager will only distribute information related to the user’s authorization. The
community manager will be responsible for the leakage of the rest of the information.

User X: I saved Y yuan per 
day by changing the time I 
use the washing machine 
following the community's 

arrangement 

CM: If you are willing to 
reduce your load usage 

during a certain period of 
time, you will be given a  

electricity coupon

CM: your demand 
response has exceeded 
30% of  users. If you 
increase your demand 
response, it will 

exceed 50% of users

Figure 2. Community information.

4. Community Energy System Model
4.1. Community User Model

This paper considers the user’s flexible load scheduling problem in the smart commu-
nity, assuming that the user’s actions are determined according to their maximum utility.
The first step is to build the user’s demand response uncertainty model. The second step is
to incorporate the influence of HM into the user’s model to study the effect of HM on users’
electricity consumption behavior.

The utility of users is the sum of the electricity charge paid to the power grid Ut
g and

the utility that the sers achieve from consuming electric power Ut
d. The maximum utility of

user n in a scheduling cycle T is :

max Uuser =
T

∑
t=1

(Ut
g + Ut

d) (3)

Ut
g = −ct

gs ·max(0, Pt
e − Pt

v) · ∆t (4)

Ut
d = E · log(Pt

e + 1) (5)

where Equation (4) is the electricity purchase cost of the user at time t. In practice, the
users’ energy use and satisfaction are in a state of diminishing marginal returns and are
therefore expressed in logarithmic form. In this paper, we use Equation (5) to represent the
utility that the users get from consuming electricity at time t [29]. E represents the user’s
preference coefficient.
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According to the principle of consumer psychology, there is a minimum perceptible
difference for the user’s stimulation. Within the range of this difference threshold, the
user has no response or the response is minimal (dead region); beyond the range of dead
region, the user will respond, which is related to the degree of stimulation (linear region);
users also have a saturation value for incentives. Beyond this value, users will not respond
(saturated region). Different types of users have different response curves. A piecewise
linear function often represents the response process to simplify the problem. The user
responsiveness of different levels will eventually be reflected in the different parameters:
peak-to-valley electricity price difference p, start threshold p f and saturated threshold ps.
λ is the level of user demand response and Maximum demand response of users λmax [8].

Refs. [9–11] establishes users’ response model under time-of-use price as shown in
Figure 3. They assume that the degree of users’ participation in demand response is related
to the peak valley difference price. Users should decide whether to participate in demand
response and how much they participate. Considering the above, this papers need to
assume that users can choose freely the deliverable flexible load Pt

s and the non-deliverable
flexible load Pt

z . Further, the electricity load model of the user is expressed as:

Pt
e = Pt

d + Pt
s (Pt

z) (6)

where when a flexible load transfer occurs when the customer is affected by the tariff, the
customer’s flexible load is the deliverable flexible load and the electrical load is denoted as
Pt

d + Pt
s ; when the user is free to use energy according to his preference, the user’s flexible

load is a non-deliverable flexible load at this time, and the load is expressed as Pt
d + Pt

z .

 

Peak-to-valley Electricity Price Difference

 

 

U
se

r 
D

em
an

d 
R

es
po

ns
e 

D
eg

re
e

dead region

linear region

saturated region

pp
f

max

0 p
s

Figure 3. Demand response degree model of users.

The electricity load consists of fixed load and flexible load. The fixed load is required
to maintain residents’ normal life, which external factors do not affect. The flexible load
is the load that the user decides to use at the period and is easily affected by the price of
electricity and its attitude. When the user preference coefficient is large, the user’s energy
consumption arrangement is not constrained by the electricity price. FL is regulated by
itself, and the community cannot use this part of the flexible load resources. The user
preference coefficient is small, the user’s willingness to use energy independently is not
strong. The relationship between users’ energy consumption preference and flexible load
resources can be calculated from Equations (4) and (5), as shown in Figure 4.

According to Equations (3)–(6), the demand response model considers user wishes,
the deliverable flexible load of the user demand response is Pt

s , the user refuses to respond
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to the non-deliverable flexible load Pt
z , and the user’s response degree is determined by the

user’s energy preference coefficient E, as:

max Uuser =
T

∑
t=1

(−cgs ·max(0, Pt
d + Pt

s − Pt
v) · ∆t + E · log(Pt

d + Pt
z + 1)) (7)

where Equation (7) is a demand response model considering the willingness of users to
participate. In this paper, the relationship between users’ preference and deliverable flexible
load is calculated based on Equation (7), as shown in Figure 4.

� �� ��� ��� ���

�

���

���

���

���

�
�
�


�
�
�
�
�
�
�
�
	
�
�
�


�
�
�
�
�

�
�
�
�
�
�

�

Figure 4. Curves of the preference parameter and deliverable flexible load.

According to Figure 4, the flexible load resources provided by users decrease with
the increase of user energy consumption preference coefficient E. Users with E < 20 can
provide a large amount of FL, and such users do not exist or have less default behavior (the
saturated region). 20 < E < 80 refers to some users who can provide part of the deliverable
FL. Such users have certain breach of contract ( the linear region). E > 80 users cannot
provide FL (the dead region)

Deliverable flexible load and non-deliverable flexible load are the same for users. They
are converted to each other under different preferences of users. They satisfy the following
requirements:

W ≤ Pt
s + Pt

z ≤W (8)

where Equation (8) indicates that the user’s FL has a certain margin. The user’s deliverable
flexible load includes shiftable load and energy storage. The details are as follows:

Pt
s = Pt

ec − Pt
ed + Pt

sl (9)
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In this paper, only shiftable load is considered, and there is no reducible load. Shiftable
load need to satisfy the following constraints:

Pt
sl ≤ Pt

sl ≤ Pt
sl , t ∈ [α, β] (10)

Pt
sl = 0, t /∈ [α, β] (11)

T

∑
t=1

Pt
sl = Q (12)

where [α, β] indicates the electric power of optional time interval; the shiftable load of
the user in [α, β] is Pt

sl . When shiftable load is not in this range [α, β] is 0. The number of
shiftable load of users in a cycle T is constant Q; the ES generic model includes ES state, ES
upper and ES lower limits, and ES capacity changes, as:

Pt
ec · Pt

ed = 0 (13)

0 ≤ Pt
ec ≤ Pt

ec (14)

0 ≤ Pt
ed ≤ Pt

ed (15)

SOC ≤ SOC ≤ SOC (16)

SOCt
n = SOCt

n−1 +
η · Pt

ec − Pt
ed/η

S
(17)

where Equation (13) indicates that the user’s ES can only exist in a state of charging or
discharging in unit time t, constraints (14) and (15) are the maximum and minimum energy
storage charge and discharge limit per unit time. Pt

ec is ES charge maximum. Pt
ed is ES

discharge maximum. Constraints (16) is the upper and lower limits of ES capacity change
per unit time. Equation (17) is the ES capacity per unit time. S is ES capacity. η is the charge
or discharge loss coefficient.

In order to limit the behavior of users’ random response, CM will take punitive
measures for users’ non-deliverable flexible load electricity [30].

Ut
c = −ct

gc · Pt
z · ∆t (18)

where ct
gc is penalty price. To simplify the calculation, the penalty tariff here is a fixed tariff.

4.2. User Herd Mentality Model

The benefits obtained by community users due to HM are expressed by Equation (1).
This paper studies the availability of FL. At the same time, to avoid excessive utility in
the form of product, the utility coefficient obtained by users is expressed in the form
of normalization:

qt
n =

(Pt
d + Pt

sl)

Pt
d

(19)

where qt
n represents the herd utility coefficient normalized by user n at time t; from

Equations (2) and (19), it can be deduced that the utility obtained by imitating others is:

Ut
h = M×

n

∏
i=1

qt
n × Pt

sl (20)
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when community users have similar FL decisions simultaneously, the utility coefficient qt
n

is more significant. When users receive similar information from other users, herd behavior
is prone. Users are willing to provide more FL resources to the community.

To sum up, the community flexible load scheduling model considering HM is:

 maxUuser =
T
∑

t=1
(Ut

g + Ut
d + Ut

h + Ut
c)

s.t.(8), (10) . . . (17)
(21)

5. Case Study
5.1. Basic Data

In order to further illustrate the influence of herd mentality on the flexible load
scheduling of community users, a community building with 7 commercial and residential
buildings is taken as an example to verify the scheduling strategy proposed in this paper.
Each building is equipped with roof PV, and the installed capacity ranges from 50 kWp
to 100 kWp. The time-of-use electricity price in the community is shown in Figure 5. The
scheduling time period T is 24 h and the time interval ∆t is 1 h. The maximum proportion
of shiftable load of all users is 30%. The value of M is assumed to be a random number
between [0.04, 0.1] based on the herd mentality utility generated by the selected users for
the demand response. ct

gc penalty price is 2 yuan/kWh. The parameters of ES installed by
users are shown in Table 2. The user’s load forecast curve and PV forecasting are shown in
Figure 5.
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Figure 5. Power and price curves of all users in a day.

Table 2. Energy storage parameters.

Parameter Value

Initial ES 20%
Lower limit of ES 10%
upper limit of ES 90%

ES capacity 40 kW
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5.2. Analysis of Flexible Load Scheduling Results Considering Herd Mentality

It is assumed that users 1–4 will share some energy habits in the information center,
and users 5 to 7 are users with a strong awareness of autonomous energy use. Therefore,
the preference coefficients of users 1–4 are set to 10, and the preference coefficients of users
5–7 are set to 80, 90, and 100, respectively. According to Equation (21), the load usage of
each user in the community is calculated, as shown in Figure 6.

As shown in Figure 6, the flexible load usage of users 1–4 is more concentrated in the
morning from 1:00 to 6:00 and from 11:00 to 14:00 noon. According to the electricity price
information in Figure 5, it can be seen that the electricity price is at the lowest value at this
time, and users 1–4, as users who actively respond to the community, are more willing to
shiftable loads such as electric vehicles to this period to obtain additional subsidies. Users’
flexible loads are used more from 11:00 to 14:00 because the PV output is large at noon,
and users can use energy according to their wishes without being restricted by electricity
prices. In addition, it can be seen from Figure 6 that the energy usage habits of users 5–7
are similar to those of users 1–4. This phenomenon can determine that users 5–7 may have
a herd mentality and change their decision-making.
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Figure 6. Power distribution for households in community under herd mentality.

In order to further analyze the influence of herd mentality on user response decision-
making, the flexible load usage of users 5–7 is calculated and compared with the flexible
load usage of users 5–7 without considering herd mentality and the flexible load usage
of users 5–7 under ideal conditions of community managers. A comparative analysis is
carried out, as shown in Figure 7.

Through the analysis, it can be seen that in the actual dispatching, users 5–7 flexible
load use did not reasonably arrange their energy consumption according to the electricity
price guidance information, and the flexible load use is relatively balanced. However, under
the influence of herd mentality, users 5–7 transferred the flexible load from 18:00–24:00 to
1:00–6:00, indicating their energy consumption habits have changed. The electrical behavior
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is more in line with the manager’s scheduling expectations for flexible load, and users’
enthusiasm to participate in demand response is improved.

In addition, considering that users 1–4 also intensively use flexible load from 11:00 to
14:00 at noon, the above results cannot prove that users 5–7 produce herd behavior during
this period. Therefore, this paper judges whether there is a herd mentality by calculating
the Euclidean distance of load of users 1–4. The smaller the Euclidean distance is, the more
similar the behavior between users is, and vice versa. The Euclidean distance is shown
in Figure 8. Combined with the analysis of users’ energy use behavior in Figure 6, it can
be seen that the Euclidean distance between users 1–4 is smaller in the morning when
users 1–4 concentrate on using flexible load, and this phenomenon may have a greater
influence on the energy use behavior of users 5–7. Based on the analysis of herd mentality,
it is more likely that users will change their energy use habits if other users have similar
energy use behaviors. In addition, users 1–4 also use flexible load at noon, which does
not necessarily produce the herd mentality; on the one hand, due to the higher tariffs at
this time, customers 1–4 are unlikely to actively use flexible load, which may be due to the
existence of a certain percentage of PV surplus; on the other hand, the possibility of herd
mentality is weakened by the large variation in users’ energy use behavior.
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Figure 7. Curve of flexible load.
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5.3. Analysis of Random Flexible Load Scheduling Results Considering Influence of Herd Mentality

The above example analyses the specific impact of herd behavior on users 5–7. How-
ever, users’ willingness to respond is often uncertain in actual situations, and community
scheduling is uncontrollable. Therefore, in order to further analyse the impact of user
response uncertainty on community scheduling, it is still assumed that users 1–4 actively
participate in demand response, and their preference coefficient is set to 10; users 5–7
respond according to their wishes, and their energy preference coefficient fluctuates ran-
domly in the range of [50, 150], and 100 scenarios are randomly generated to simulate
the situation that users 5–7 respond according to their wishes. Considering the randomly
generated graphs without data pre-processing to get a set of unordered data, which is
not helpful for this paper, for this reason, the data is processed, and the user responses in
100 scenes are arranged from smallest to largest. The results are shown in Figures 9 and 10.
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Figure 9. Relationship between random energy consumption preference and FL under 100 scenarios.

It can be seen from Figure 9 that when users 5–7 have a strong energy use willingness,
they hardly respond to the community’s demand response instructions, indicating that the
herd effect has not changed their energy use habits. Their willingness to function decreases
and their enthusiasm for participating in community demand response gradually increases
due to the influence of herd mentality. The above phenomenon is consistent with the reality;
the stubborn users are less motivated to participate in demand response, while the less
determined users are more likely to follow the trend and increase their enthusiasm to join
in the demand response.
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Figure 10. The number of HM and increased FL under 100 scenarios.
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Figure 10 shows the herd behavior of users 5–7 in 100 random scenarios. The bar
graph represents the number of conformity behaviors, and the line graph represents the
average increased dispatchable flexible load in the community at this time. Figure 10 shows
that users have herd behavior at 1:00–8:00 and 15:00, and herd behavior is not obvious at
other times. The reason is that, on the one hand, due to the low electricity price at this time,
users will consider transferring part of the load to this period in order to obtain additional
income. Compared with other periods, the usage of flexible load is more intuitive at this
moment, which may have a more significant impact on users 5–7. Although users 5–7 also
had the phenomenon of herd mentality at 15:00, the effect was not noticeable. Combining
with the information in Figure 5, it can be preliminarily judged that the herd mentality
effect has limited influence on their behavior at this time.

6. Conclusions and Prospect

This paper regards the herd mentality of community users as an important factor
affecting their participation in demand response behavior. Aiming at the problem that the
response effect is not in line with expectations and the user’s response ability is limited
due to the willingness of community users to use energy independently, a flexible load
optimisation scheduling strategy based on the user’s herd mentality is proposed. The
calculation example results show that:

(1) If the herd mentality strategy is implemented correctly, it will minimize the impact
of the uncertainty of customers’ willingness to use energy on the community’s flexible load
dispatching and positively guide the community’s customers to participate in demand
response behavior.

(2) Using the Nash social welfare function to model the herd mentality of the un-
certainty of user demand response, under the action of the user’s herd mentality, it can
guide some users with strong autonomy in electricity consumption to change their energy
consumption habits, which can give full play to the community’s flexible load participation
needs potential to respond.

(3) According to the calculation results, it is known that the demand response will
better play the role of peak and valley reduction.

In this paper, only the shiftable flexible load among users is considered in the calcu-
lation, and the user’s reducible load is not taken into account. The authors will jointly
consider the effects of both shiftable and reducible load in the follow-up study. In addition
to the herd mentality, the peer effect within the community may also trigger different
effects, and we will continue to pay attention to the influence of social psychology on users’
demand response behavior.
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Abbreviations
The following abbreviations are used in this manuscript:

DFR Distributed Flexible Resources
CM Community Manager
DR demand Response
HM Herd Mentality
SWF Social Welfare Function
PV Photovoltaic
CV Comfomsit Value
ES Energy Storage
FL Flexible Load
∆t Unit Time
Uuser Total User’s Utility
U1 Utility Gained by Users Engaged in Other Activities
Ut

g Electricity Charges at time t
Ut

d Energy Consumption Utility at time t
Ut

c Community Penalty Utility at time t
Ut

h Community Herd Mentality Utility at time t
ct

gs Time of Use Price at time t
ct

gc Penalty Price at time t
bn User n Personal Benefits
qt

n Herd Mentality Utility Coefficient Normalized at time t
d Flexible Load Changed Due to Herd Mentality
Pt

e Electric Load at time t
Pt

v PV Forecast at time t
Pt

s Deliverable Flexible Load at time t
Pt

z Non-deliverable Flexible Load at time t
Pt

sl Shiftable Load at time t
Pt

ec Charge load at time t
Pt

ed Discharge load at time t
E Preference Coefficient
M Herd Mentality Coefficient
Q Total Shiftable Load in a Period
W Up Limit of Flexible Load
W Lower Limit of Flexible Load
Psl Up Limit of Shiftable Load
Psl Lower Limit of Shiftable Load
η ES Loss
SOC ES State
ComfomsitValue The Utility of User’s Herd Mentality
Deliverable Flexible Load Flexible Load Used under the Influence of

Community Information
Non-deliverable Flexible Load Flexible Load Used by Users according to Preference

Appendix A

The questionnaire is given here. Except for the basic information, the rest of the
information is set with five options according to the Likert scale standard.
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Table A1. This is a questionnaire.

ITEMs

1. age
2. Education
3. gender
4. When I see that most of the neighbors are involved in demand response, what is your choice?
5. The more people in the community who participate in demand response,
the more I want to participate, do you agree?
6. Do you choose to stand your ground when your opinion is contrary to most people’s?
7. When you know that some neighbors are used to charging electric cars in the early morning
but you are used to charging in the afternoon, what is your choice?
8. In daily consumption, I like to be consistent with most of the people around me,
do you agree with this point of view?
9. Are you affected by your neighbour’s energy usage information?
10. When you learned that your neighbors were involved in demand response,
would you consider participating?
11. Do you share information about your energy use with people?

Q4–Q11 Comply with the Likert Scale Statistical Requirements: 1 = strongly disagree (strongly repulsive);
5 = strongly agree (active participation).

Table A2. Basic information of the scale.

Constructs Items Frequency Percentage

gender Male 102 48.6%
Female 108 51.4%

Education Junior high school and below 33 15.7%
High school 71 33.8%

Undergraduate 67 31.9%
Graduate and above 39 18.6%

Age under 20 24 11.4%
20–30 34 16.2%
30–40 48 22.9%
40–50 42 20%
50–60 51 24.3%

over 60 11 5.2%

Energy storage is being used in communities to increase community energy dispatch
flexibility. Users’ energy storage usage is shown in Figure A1.
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Figure A1. Curve of energy storage capacity.
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The statistical information of the community user questionnaire is shown in Figure A2.
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Figure A2. The response information for questions 4–11.
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