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Abstract: With the rapid development of China’s economy, China has become the world’s largest
carbon emitter. China not only has an obvious growth rate of industrial carbon emissions but
also the intensity of agricultural carbon emissions is hovering at a high level. The development
of China’s agricultural economy has largely come at the expense of high emissions. Currently,
under the background of global warming and difficulty in controlling greenhouse gas emissions, the
development of low-carbon agriculture is an important way to realize the harmonious development
of the ecological environment and economic growth and to promote the sustainable development
of agriculture. The agricultural production efficiency is the main factor affecting the intensity of
agricultural carbon emissions. Based on provincial panel data of China from 2010 to 2019, this paper
establishes an indicator system and uses the super-efficiency SBM model to measure agricultural
production efficiency. The regional agricultural carbon emissions were estimated using carbon-
emission-related agricultural production activities. In order to study the nonlinear relationship
between agricultural production efficiency and agricultural carbon emission intensity in the narrow
sense, this paper uses a threshold regression model with agricultural carbon emissions as the threshold
variable. Based on the analysis of China’s agricultural production efficiency and agricultural carbon
emissions from 2010 to 2019, an empirical test is conducted through a threshold regression model.
The results show an “inverted U-shaped” relationship between agricultural production efficiency
and agricultural carbon emission intensity. In areas with high agricultural production efficiency, the
improvement of production efficiency can suppress the intensity of agricultural carbon emissions; in
areas with low agricultural production efficiency, the improvement of production efficiency increases
the intensity of agricultural carbon emissions. Finally, based on the research conclusions, this paper
provides feasible suggestions and countermeasures for China’s agricultural carbon emission reduction
and improvement of agricultural production efficiency.

Keywords: agricultural production efficiency; agricultural carbon emission; super-efficiency SBM
model; threshold effect; carbon emission reduction

1. Introduction

With the rapid economic development, China has become a world leader in carbon
emission. The World Resources Institute (WRI) published data on carbon dioxide emissions
worldwide for the past 30 years. The top five economies regarding carbon dioxide emissions
from 1990 to 2018 were China, the United States, the European Union, India, and Brazil.
China surpassed the United States to become the world’s largest carbon emitter around 2004.
China tops the list with 7778 million tons of carbon dioxide emissions in 30 years. After
entering the 21st century, the growth rate of carbon emissions in developed countries has
been controlled, but the growth rate in China is obvious. Considering China’s population
size and economic development level, China’s per capita carbon emission level is still lower
than that of developed countries. However, global warming affects everyone’s life. In 2015,
governments worldwide held the 21st United Nations Climate Change Conference. Almost
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simultaneously, northern China experienced one of the worst air pollution in a decade.
Sandstorms and smog caused a rapid shift in the attitude of Chinese residents towards the
concept of environmental protection: from passive understanding and concern to active
appeal and seeking solutions. In 2020, the Chinese government proposed at the 75th United
Nations General Assembly: “China will increase its nationally determined contribution,
adopt more powerful policies and measures, strive to peak carbon dioxide emissions by
2030, and achieve carbon neutrality by 2060”.

Achieving carbon peaking and carbon neutrality requires the efforts of all aspects
of China’s society, economy, and residents. It also needs the coordinated development
of agriculture, industry, manufacturing, and other industries, especially agricultural de-
velopment. According to the “Initial National Communication on Climate Change of
the People’s Republic of China”, the total emission of greenhouse gases in China in 1994
was 36.50 × 108 t CO2 equivalent, of which carbon dioxide, methane, and nitrous oxide
accounted for 73.05%, 19.73%, and 7.22%, respectively. Agricultural sources of greenhouse
gas emissions account for 17% of China’s total greenhouse gas emissions. According to the
World Bank’s WDI database, China’s CH4 and N emissions in 2005 reached 538 million t
CO2 equivalent and 567 million t CO2 equivalent, of which agricultural sources accounted
for 50% and 92.7% [1]. The research shows that, from 1991 to 2008, the CH4 emission from
the planting industry decreased from 999.50× 104 t to 931.44× 104 t, and the N2O emission
increased from 34.67 × 104 t to 48.74 × 104 t (Min J.S. and Hu H., 2012) [2]. From an
international comparison point of view, China’s CH4 emissions are relatively close to those
of the United States, and the trend of change is basically similar, but China’s N2O emissions
are much larger than those of the United States (EPA, 2011) [3]. In 2019, China’s carbon
emissions were about 9.83 billion tons, and in 2020, China’s carbon emissions were about
9.9 billion tons, a year-on-year increase of 0.71%. From the perspective of the main sources
of carbon emissions in China, by 2020, China’s carbon emissions will mainly come from
thermal power generation, accounting for about 78%. Followed by industrial emissions
(steel, cement, electrolytic aluminum), accounting for about 14%; agricultural emissions
accounted for about 7% [4]. Before the 21st century, China’s economic development was
more dependent on agriculture, the industrial structure was extremely unreasonable, and
the output value of the primary industry accounted for a relatively high proportion of
the total output value. In addition, the low level of industrial development leads to low
agricultural production efficiency, resulting in agricultural carbon emissions accounting for
nearly 20% of China’s total carbon emissions. With the Chinese government’s emphasis
on environmental quality and the upgrading of industrial structure, the level of green
technology has improved, and the proportion of China’s agricultural carbon emissions
has gradually decreased. China is still in the process of industrialization and urbanization.
China is still an unstable spatial structure of the population, and the contradiction between
people and land is quite prominent. Agriculture is a disadvantaged sector with relatively
low returns, and the phenomenon of agricultural economic development at the expense of
high emissions has existed for a long time. Furthermore, food security is the top priority
of a country. Food is an essential public good, and it is objectively necessary to ensure
agricultural output. Based on the improvement of agricultural production efficiency, the
ecological environment change in Chinese agricultural production has not been given
due attention.

China is a big country producing and using chemical fertilizers and pesticides. Data
from the National Bureau of Statistics of China show that in 2013, China’s chemical fertilizer
production volume was 70.37 million tons, and agricultural chemical fertilizer application
volume was 59.12 million tons. In 2019, China’s agricultural fertilizer input amounted to
57.2 million tons, and the application intensity reached 325 kg/hm2. In 2020, the pure
amount of agricultural chemical fertilizers in China reached 52.5065 million tons. The
amount and intensity of agricultural chemical fertilizer application in China have declined
in the last decade. Although chemical fertilizers have made a significant contribution to the
increase in grain production, according to the “Action Plan for Zero Growth of Fertilizer
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Use by 2020” issued by the Ministry of Agriculture of China, there are still four problems
with applying chemical fertilizers in China. First, the average application amount per mu
is high. The average amount of chemical fertilizer per mu of crops in China is much higher
than the world average, 2.4 times that of the United States and 2.3 times that of the European
Union. Second, the phenomenon of unbalanced fertilization is prominent. The economically
developed areas in the east, the lower reaches of the Yangtze River, and the suburbs of cities
have high fertilizer applications. Excessive fertilization of economic horticultural crops with
high added value, such as vegetables and fruit trees, is more common. Third, the utilization
rate of organic fertilizer resources is low. Fourth, the fertilization structure is unbalanced.
Heavy chemical fertilizers, light organic fertilizers, heavy macronutrient fertilizers, light
medium and trace element fertilizers, heavy nitrogen fertilizers, light phosphorus and
potassium fertilizers, and “three heavy three light” problems are prominent. Although
chemical fertilizers, pesticides, and agricultural film in China have decreased, it is still
excessively applied compared to the international level. As a major agricultural producer,
China needs to consider the negative impact of agricultural carbon emissions on the global
climate while ensuring the output of farm products. The Ministry of Agriculture and
Rural Affairs of China will strengthen initiatives to increase the utilization rate of chemical
fertilizers and pesticides by another three percentage points by 2025 and promote the
comprehensive green transformation of agricultural production methods. Therefore, it is of
great significance to study the impact of agricultural production efficiency on agricultural
carbon emissions in China. This is also conducive to the Chinese government optimizing
fertilization and drug application patterns and integrating and promoting green prevention
and control mode. It is also essential to build a green planting system and reduce the
intensity of agricultural carbon emissions.

This paper selects the provincial-level data in China from 2010 to 2019 to measure
agricultural production efficiency and agricultural carbon emissions and uses the threshold
regression model to test the relationship between the two empirically. The rest of this article
is organized as follows: Section 2 is a literature review of related topics; Section 3 measures
the efficiency of agricultural production in Chinese regions using the super-efficiency SBM
model and analyzes the time-evolution characteristics of agricultural production efficiency
using kernel density estimation. Section 4 estimates the carbon emissions from agriculture
in different regions of China. Its evolution characteristics were analyzed using Theil index
and kernel density estimation, and its spatial distribution characteristics were analyzed
using ArcMap software. Section 5 empirically tests the nonlinear relationship between
agricultural production efficiency and agricultural carbon emission intensity in China using
a threshold model. Section 6 presents the conclusions, policy recommendations, and future
research directions of this paper.

2. Literature Review
2.1. Research on Agricultural Carbon Emissions
2.1.1. Calculation of Agricultural Carbon Emissions

Agricultural carbon emissions refer to the carbon dioxide emissions caused by the
agricultural production process. Keith Paustian (Paustian et al., 1998) [5] believes that gen-
eralized agricultural carbon emissions are the main reason for the rise of carbon emissions
in the economy. It is also estimated that agricultural carbon emissions account for about
one-fifth of total carbon emissions. There are various sources of agricultural carbon emis-
sions, different measurement methods, different research objects, and different estimation
results. According to the origins of agricultural carbon emissions, there are three main ways
to measure agricultural carbon emissions in current academic circles. First, agricultural
carbon emissions are estimated from agricultural material consumption and waste disposal.
Jane M.F. Johnson (2007) [6] believes that agricultural carbon emissions mainly come from
the use and waste of input elements such as chemical fertilizers, pesticides, energy in
agricultural production, the planting of rice fields in various periods, and the inappropriate
burning and burial of crop straws. Tian W. et al. (2017) [7] used data on chemical fertilizers,
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pesticides, agricultural plastics, irrigation, and agricultural machinery to measure that
carbon emissions from China’s planting industry showed an inverted N-shaped pattern.
Agricultural carbon emissions mainly come from central grain-producing provinces. Sec-
ond, it is calculated based on methane, soil carbon dioxide, and nitrous oxide emissions
from rice fields. The research of Leod (2010) [8] shows that the carbon emission of the crop
industry mainly comes from changes in soil use and soil structure. Vleeshouwers and Ver-
hagen (2002) [9] measured agricultural carbon emissions in a narrow sense based on factors
such as crop characteristics, climatic conditions, and soil. Third, carbon emissions from
animal husbandry and fishery production (Liu Lihui, 2015) [10]. Few scholars conducted
the measurement of agricultural carbon emissions from this perspective. The object of this
paper is the carbon emissions of the planting industry, which is not repeated here.

2.1.2. Influencing Factors of Agricultural Carbon Emissions

The primary purpose of measuring agricultural carbon emissions is to explore the in-
fluencing factors and find the agricultural carbon emission reduction pathway. Agricultural
production activities have a long cycle, high dependence on natural climate, and many
factors. The reasons for the formation of agricultural carbon emissions are complex, and the
influencing factors are diverse. The academic community mainly studies the influencing
factors of agricultural carbon emissions from two aspects. First, external factors such as
carbon tax, innovation capacity, employment policy, etc., affect agricultural carbon emis-
sions. Peter (2001) [11] concluded that carbon taxes had a negative impact on agricultural
carbon emissions based on U.S. agricultural data in 1990 and 2020. Gerlagh (2007) [12]
used an endogenous growth model to establish that technological progress can curb agri-
cultural carbon emissions. Pamuk et al. (2014) [13] found that agricultural innovation
capacity is also the primary influence on agricultural carbon emissions using the survey
data from eight African countries. In addition, multiple policies such as employment
policy, agricultural investment, and agricultural structural adjustment combine to influence
agricultural carbon emissions (Lei, 2017) [14]. Second, internal factors, such as the impact
of agricultural production methods on agricultural carbon emissions. The way of land
production is the main factor leading to agricultural carbon emissions. Agricultural carbon
emissions from less tillage, intensive tillage, and conventional tillage increased sequentially
(Lal, 2004; Baumann, 2017) [15,16]. Gamboa and Galicia (2011) [17] also found that changes
in land use can lead to changes in agricultural carbon emissions. Ji X.C. et al. (2019) [18]
concluded that different intercropping methods produce additional crop carbon emissions
by investigating the intercropping ways of corn and other crops.

2.2. Research on Agricultural Production Efficiency

Agriculture is the basis of national economic development, and accurate measurement
of agricultural production efficiency is the basis for the study of sustainable agricultural
development. The DEA model is mainly used to measure agricultural production efficiency
in academia (Armagan, 2010) [19]. Battese (1995) [20] measured the productivity of 38 farms
in India using a DEA model. Li Hangfei (2020) [21] also used the DEA model to calculate the
agricultural production efficiency in different regions of China and found that the growth
rates were ranked from high to low in the eastern region, the western region, and the central
area. The measurement of agricultural production efficiency is mainly from two levels.
First, the efficiency of agricultural production is measured from the national macro level.
Farrell (1957) [22] was one of the first scholars to study agricultural production efficiency; he
used the traditional DEA model to measure the efficiency of agricultural production in the
U.K. Broekel and Boschma (2012) [23] studied the efficiency of the farm output in Germany.
Second, the farm production efficiency is measured at the regional or inter-provincial level.
Yu Yumin et al. (2018) [24] measured the agricultural production efficiency and found that
it fluctuated around 0.84 using the data of Henan Province in China from 2001 to 2015. Pan.
D et al. (2013) [25] used the SBM model to measure the agricultural production efficiency
of 30 provinces in China and proposed improving agricultural production efficiency.



Energies 2022, 15, 4464 5 of 22

According to United Nations projections, there will be 4300 megacities with a pop-
ulation of more than 10 million by 2030, most of them in developing regions. In 2050,
68% of the world’s population will live in urban areas. As the world urbanizes more
rapidly, sustainable development increasingly depends on the successful management of
urban growth. Comprehensive policies are needed not only to improve the lives of urban
and rural residents but also to strengthen linkages between urban and rural areas. In this
context, digital technology plays an important role in the field of precision agriculture
(Trivelli et al., 2019) [26]. In addition, the distance-based hybrid localization algorithm has
higher reliability and scalability in the agricultural field (Swain et al., 2021) [27], providing
more paths for promoting agricultural productivity and reducing agricultural carbon emis-
sions. The current academic research on the effect of agricultural production focuses on
its measurement and influencing factors. Some scholars have also begun to consider the
role of agricultural production efficiency in green agricultural production. The research
of Li Bo (2011) [28] concluded that the labor force’s scale, structure, and agricultural pro-
duction efficiency have a suppressive effect on agricultural carbon emissions. However,
there is still a lack of systematic research on the nonlinear relationship between agricultural
production efficiency and agricultural carbon emissions. Therefore, the contributions of
this paper are as follows: Based on previous research, the narrow agricultural production
efficiency and agricultural carbon emission intensity were taken as the research objects. The
super-efficiency SBM method was used to measure agricultural production efficiency, and
carbon sources were used to estimate the carbon emissions of crop farming. Finally, this
paper used the threshold regression model to empirically test the nonlinear relationship
between the narrowly defined agricultural production efficiency and the carbon emission
intensity of the planting sector.

3. Measurement and Dynamic Evolution of Agricultural Production Efficiency
3.1. Measurement Methodology (SBM) and Index System
3.1.1. Measurement Methodology

Accurate measurement of agricultural production efficiency in China is the basis for
studying its relationship with agricultural carbon emission intensity. The measurement
of agricultural production efficiency in the existing literature mainly focused on broad
agriculture as the subject of study. However, the measurement of agricultural carbon
emissions is based on the production activities of agriculture in a narrow sense. The broad
sense of agricultural carbon emissions is dominated by the narrow sense of agricultural
carbon emissions, so this paper takes the narrow sense of agriculture as the research object
to measure production efficiency.

Data Envelope Analysis (DEA) is the most commonly used nonparametric fron-
tier analysis method proposed by Charnel (1978) [29]. DEA methods mainly include
CCR, BCC, and SBM models. Traditional DEA models cannot handle undesired outputs.
Chung (1997) [30] proposed the Malmquist–Luenberger (ML) index based on the conven-
tional DEA model to solve this problem. However, this radial-based ML index can only
handle models where the desired output changes as much as the undesired output. When
there is a non-zero slack between input and output, there is an overestimation error in
the results measured by the ML index. In addition, the ML index must also choose a
measurement perspective. Whether selecting the view of input or output, there will be a
neglect of the other angle. SBM-DEA was proposed by Tone Kaoru (2001) [31]. Compared
with the ML index, the SBM-DEA model also measures production efficiency from input
and output. However, its results also include slack variables for the inefficiency measure
with more minor errors. In order to more accurately measure the efficiency of agricultural
production in each region of China, it is necessary to consider both output and input slack.
Therefore, this paper took the province as the decision-making unit and used the Super
Slacks-Based Measure (SBM) model to measure agricultural production efficiency.

There are 30 decision-making units (DMUs) in the super-efficiency SBM model.
By considering the availability of data, four regions—Tibet, Hong Kong, Macau, and
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Taiwan—were excluded from measuring agricultural productivity efficiency in Chinese
provinces. There are seven types of inputs exit for agricultural production in each region,
Xn = {X1, X2, · · ·X7} ∈ RN , and two types of output can be produced, Ym = {Y1, Y2} ∈ RM.
The resulting non-radial SBM model, including input and output, is constructed as in
Equation (1).

ρ∗ = min
1−

[
1
N

N
∑

n=1

Sx
n

Xi
n

]
1 + 1

M

M
∑

m=1

Sy
m

Yt
m

(1)

In Equation (1), Sx
n and Sy

m are input slack variables and output slack variables, re-
spectively. The numerator and denominator of the objective function ρ∗ calculated as the
average distance between the actual input and output of the decision-making unit from the
production frontier surface, respectively, which is the degree of inefficiency of input and
output. The weight vector constraint of the decision unit is shown in Equation (2).

I

∑
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Zt
i = 1, Zt

i ≥ 0, Sx
n ≥ 0, Sy

m ≥ 0, i = 1, 2 · · · I (2)

The input and output constraint functions are s.t
I

∑
i=1

Zt
i yt

i,m − Sy
m = yt

i,m, m = 1, 2

I
∑

i=1
Zt

i xt
i,n − Sx

n = xt
i,n, n = 1, 2 · · · 7

(3)

Some results of super-efficiency SBM measurement exceed 1. When the objective
function is ρ ≥ 1, it means that the decision-making unit is effective. When the objective
function is 0 ≤ ρ < 1, it means that there is an efficiency loss in the production of decision-
making units, and the input and output need to be improved. The higher the value, the
more efficient the agricultural production.

3.1.2. Indicator System and Data Sources

The measurement method of agricultural production efficiency is given above. The
agricultural production efficiency in the narrow sense measures the utilization efficiency
of the input resources by the planting industry. On the whole, the basis of production
efficiency measurement is factor input and output. This paper takes the province as the
decision-making unit to establish the agricultural production efficiency index system, as
shown in Table 1.

Table 1. Index system of agricultural production efficiency.

Indicator Direction Indicator Type Specific Indicators (Units) Calculation Method

input

Land Agricultural sown area (thousand hectares) Gross planted area of crops

Finance Financial support for agriculture expenditure
(billion yuan)

Financial expenditure on agriculture, forestry,
and water

labor force Number of agricultural laborers (10,000 people) Number of people in primary industry × A

Chemical fertilizer Agricultural chemical fertilizer application amount
(million tons) Agricultural fertilizer input

Mechanical Agricultural mechanization (million kilowatts) Total power of agricultural machinery
Pesticides Pesticide usage (million tons) total agricultural use

Agricultural film Amount of Plastic film used (million tons) Total use of agricultural plastic film

output Output value Agricultural output value (billion yuan) Agricultural output value in agriculture, forestry,
animal husbandry, and fishery sub-products

Revenue Per capita net income of agricultural production (yuan) Per capita net income of rural households × A

Note: A = agricultural output value/total output value of agriculture, forestry, animal husbandry, and fishery.

In accordance with the existing literature, this paper selected the factors of land, fi-
nance, labor, fertilizer, machinery, pesticide, and agricultural film in agricultural production
activities as input variables. Specifically from Table 1, the input variables mainly included
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the following: (1) Land input: expressed as the total sown area of crops. (2) Financial
input: expressed by the financial expenditure of the regional government on agriculture,
forestry, and water. (3) Labor input: There is no direct statistical data on the number of
the labor force in agricultural production. This paper first calculated the proportion A
of agricultural output value and the total output value of agriculture, forestry, animal
husbandry, and fishery. Then, the labor input of agricultural production was estimated
by multiplying the number of laborers in the primary industry and A. (4) The inputs of
chemical fertilizers, machinery, agriculture, and agricultural film were expressed by the
regional agricultural chemical fertilizer input, the total power of agricultural machinery, the
full agricultural use, and the full use of agricultural plastic films, respectively. The output
variables specifically include the following: (5) Output value: expressed as agricultural
output value in the output value of agriculture, forestry, animal husbandry, and fishery
sub-products. (6) Income output: there is currently no direct statistical caliber of planting
income, so this paper takes the product of the per capita net income of rural households
and A as the per capita net income of agricultural production.

The data of the agricultural production efficiency measurement index system are
obtained from the “China Statistical Yearbook (Calendar Years),” “China Agricultural
Statistical Yearbook (Calendar Years),” and the “Statistical Yearbooks (Calendar Years)” of
each province. Due to the data availability, excluding the data of Tibet, Hong Kong, Macau,
and Taiwan, a total of panel data of 30 areas in China from 2010 to 2019 were obtained. This
paper used this to measure agricultural production efficiency.

3.2. Analysis of the Measurement Results of Agricultural Production Efficiency

This paper gave the measurement method and index system of agricultural production
efficiency. Next, this paper measured the agricultural production efficiency of 30 provinces
in China from 2010 to 2019. The measurement results are shown in Table 2.

It can be seen from Table 1 that there are two main characteristics of China’s agricul-
tural production efficiency from 2010 to 2019. First, the efficiency of agricultural production
has steadily increased in most regions. The vast majority of provinces did not achieve
effective agricultural production efficiency in 2010, except for Tianjin, Fujian, Guangdong,
and other areas. China’s agricultural production efficiency was 0.5345 in 2011. From the
trend of provinces that have achieved effective agricultural production efficiency since then,
agricultural production efficiency is more likely to be achieved due to policy inclination
and environmental protection requirements. In general, Chinese agricultural production
efficiency was low at that time. By 2014, there were five regions with rural production
efficiency exceeding 1, including Beijing, Shanghai, Shaanxi, and other areas. During this
period, Chinese agricultural production efficiency reached a small peak of 0.6024. Since
then, the average value of agricultural productivity in China has declined. However, from
2010 to 2019, the volatility of agricultural production efficiency increased, and the number
of regions that achieved agricultural production efficiency increased from less to more. By
2018 and 2019, the mean reached 0.6542 and 0.7814, respectively.

A total of 11 regions achieved effective agricultural productivity in 2019. The areas
that perform effective production are mainly distributed in the developed areas along the
eastern coast. The agricultural production efficiency of Shandong, Henan, Hunan, and other
major grain-producing provinces is low. It is necessary to pay more attention to improving
production efficiency following agricultural production. Second, there is a significant gap
in agricultural production efficiency between regions. This gap has gradually narrowed
as time has grown. In 2010, a total of 11 areas had agricultural productivity lower than
0.4. In 2016, four regions had agricultural productivity lower than 0.4. In 2019, only three
regions had agricultural productivity below 0.4. Based on a slight increase in the average,
the gaps in agricultural production efficiency between parts continue to narrow with the
economic development of underdeveloped areas. The agricultural production efficiency
in Gansu has been low, hovering around 0.3. Agricultural production efficiency increased
significantly in Guizhou, Qinghai, Xinjiang, and other regions.
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Table 2. The results of the measurement of agricultural production efficiency in different regions of
China from 2010 to 2019.

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Beijing 0.657 0.7304 0.8042 0.8331 1.0062 0.8566 0.8566 0.8708 0.945 1.1366
Tianjin 1.0123 0.5769 0.6202 0.6616 0.7124 0.7734 0.8666 0.7992 0.9292 1.0868
Hebei 1.0001 1.0076 0.7406 0.636 0.5014 0.4784 0.4874 0.4458 0.5029 0.5594
Shanxi 0.2625 0.2782 0.2751 0.2986 0.3152 0.3048 0.3215 0.3119 0.3257 0.3593
Inner

Mongolia 0.3754 0.416 0.4112 0.4305 0.4248 0.3907 0.3943 0.378 0.4255 0.4981

Liaoning 0.5285 0.6494 0.5818 0.5976 0.6219 0.6505 0.6286 0.5534 0.5901 0.6357
Jilin 0.3682 0.4266 0.4411 0.4538 0.4609 0.442 0.4012 0.3131 0.3481 0.3931

Heilongjiang 0.3448 0.4172 0.4671 0.5306 0.547 0.5272 0.5291 0.5684 0.5873 1.0407
Shanghai 0.7783 1.0196 0.8029 1.0014 1.0351 0.9177 0.8786 0.8136 1.014 1.079
Jiangsu 0.443 0.5087 0.5419 0.5613 0.586 0.6411 0.6966 0.7701 0.845 1.0271

Zhejiang 0.4437 0.493 0.5122 0.5338 0.5481 0.5496 0.6195 0.6448 0.6868 1.0077
Anhui 0.3379 0.3608 0.3588 0.37 0.3851 0.385 0.4049 0.3996 0.4069 0.4473
Fujian 1.0137 1.0016 0.9627 0.6713 0.8216 0.6971 0.8 0.8085 0.8943 1.1226
Jiangxi 0.3293 0.353 0.3496 0.3911 0.4003 0.4082 0.4505 0.4421 0.4773 0.5458

Shandong 0.7088 0.6845 0.5945 0.6342 0.694 0.5003 0.5056 0.5052 0.5327 0.5575
Henan 1.004 0.6278 0.5877 0.5409 0.5564 0.4355 0.4473 0.4272 0.4397 0.489
Hubei 0.5043 0.5737 0.6891 0.7249 1 0.5498 0.6298 0.6249 0.6473 0.7363
Hunan 0.5608 0.5967 0.5552 0.4824 0.4946 0.5006 0.5326 0.4545 0.4571 0.557

Guangdong 1.0106 1.0014 0.6392 0.6643 1.0008 0.6936 1.0047 0.7986 0.8624 1.0797
Guangxi 0.4683 0.7079 0.5264 0.6664 0.6586 0.5511 0.5743 0.5942 0.6319 0.7039
Hainan 0.5127 0.5685 0.5861 0.5995 0.627 0.6397 0.7254 0.7278 0.8058 0.8626

Chongqing 0.3265 0.3758 0.3961 0.4248 0.445 0.4746 0.567 0.5492 0.6236 0.7656
Sichuan 0.4524 0.493 0.5167 0.5185 0.5307 0.5831 0.6528 0.6886 0.7354 0.8916
Guizhou 0.2966 0.3138 0.3602 0.4325 0.5491 0.6919 0.7896 0.9157 1.0302 1.1382
Yunnan 0.2613 0.3005 0.3101 0.3438 0.3505 0.3526 0.3672 0.3981 0.4352 0.5292
Shanxi 0.5111 0.6231 0.6683 0.737 1.0001 0.7612 0.8293 0.8625 0.8948 1.053
Gansu 0.2153 0.2092 0.2161 0.2267 0.2345 0.2301 0.2548 0.2432 0.2621 0.2978

Qinghai 0.496 0.4912 0.5639 0.6149 0.6445 0.6141 0.6691 0.7303 0.8501 1.12
Ningxia 0.3656 0.4078 0.4235 0.4703 0.501 0.5358 0.5558 0.5874 0.6797 0.694
Xinjiang 0.445 0.4174 0.4867 0.5245 0.4206 0.4473 0.4434 0.548 0.7591 1.0263
Average 0.5345 0.5544 0.533 0.5525 0.6024 0.5528 0.5961 0.5925 0.6542 0.7814

The above analysis shows the time series changes and average development trend of
agricultural production efficiency. This paper used kernel density estimation to analyze the
dynamic evolution process of agricultural production efficiency in China. Figure 1 shows
the distribution of kernel density estimates of agricultural productivity from 2010 to 2019.

From Figure 1, the agricultural production efficiency of each region in China changed
from a “single-peak” trend to a “double-peak” direction from 2010 to 2019, and the peak
value decreased. The bimodal trend shows that the regional agricultural production
efficiency tends towards polarization. Agricultural production efficiency in some areas is
clustered to a high level, and agricultural production efficiency in some areas is crowded to
a low level. However, during the sample period, the peak value decreased significantly.
The density distribution curve shifted from a sharp peak to a broad ridge and moved
to the right as a whole. It shows that the gap in agricultural productivity has narrowed
between regions. They correspond to the results given in Table 1. In addition, the center
of the peak density shifted significantly, oscillating between 0.6 and 0.8. The density
centers of the minor peaks oscillate between 0.8 and 1.0. The agricultural productivity has
generally improved in regions with agricultural productivity between 0.2 and 0.4. The gap
in agricultural production efficiency was dramatically reduced, especially in 2016–2019.
China is in a period of economic transformation, and economic growth is shifting to high-
quality economic development. Agricultural productivity in underdeveloped regions has
increased, and the utilization rate of input factors has increased. In addition, agricultural
production technologies from developed areas flow to less developed areas, all of which
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have resulted in a trend of overall growth and narrowing of gaps in the evolution of
agricultural production efficiency between regions in China.
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4. Measurement and Result Analysis of Agricultural Carbon Emissions
4.1. Measurement Methods and Data Sources

The explained variable in this paper is agricultural carbon emission intensity. There is no
direct statistical caliber for agricultural carbon emissions, and it needs to be estimated based on
other indicators. Academia generally believes that carbon emissions in crop planting mainly
come from two primary sources. First, production factors such as chemical fertilizers (the raw
materials are primarily anthracite coal), pesticides, and plastic films required for agricultural
planting also belong to direct carbon emissions. Second, in agricultural production, using
electrical energy in rural machinery, such as tillage, irrigation, and transportation, consumes
fossil energy, which is indirect carbon emission. Based on this, this paper refers to the
estimation method of agricultural carbon emissions by Li Bo (2011) [32], and the estimation of
agricultural carbon emissions is shown in Equation (4).

carj,t = ∑ CO2,i = ∑ Ei · αi (4)

where carj,t is the carbon emissions of the j region in the t year. CO2,t is the carbon emission
of the i production activity in different areas. The carbon emissions from all production
activities are added up to the total carbon emissions of agricultural production in a region.
Ei is the amount of carbon emission sources used in production activity i. αi is the carbon
emission coefficient of the i carbon emission source.

Different institutions and scholars have other criteria for determining the carbon emission
coefficient of agricultural production. This paper adopts the reference coefficients given by the
School of Biology and Technology of China Agricultural University, the IPCC United Nations
Intergovernmental Committee of Experts on Climate Change, the Institute of Agricultural
Resources and Ecological Environment of Nanjing Agricultural University, and the Oak Ridge
National Laboratory of the United States. The details are shown in Table 3.
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Table 3. Carbon emission coefficient and sources.

Carbon Emission Source Carbon Emission Coefficient Sources

ploughing 312.6 kg C/km2 School of Biology and Technology of China Agricultural University
Diesel fuel 0.5927 kg C/kg IPCC United Nations Intergovernmental Committee of Experts on Climate Change

Agricultural film 5.18 kg C/kg Institute of Agricultural Resources and Ecological Environment of Nanjing
Agricultural University

Pesticide 4.934 kg C/kg Oak Ridge National Laboratory of the United States [33]
Fertilizer 0.8956 kg C/kg Oak Ridge National Laboratory of the United States
Irrigation 25 kg C/km2 Dubey and Lal, 2009 [34]

In the calculation of chemical fertilizers as carbon emission sources, the carbon emis-
sions of different types of fertilizers may be quite different, different crops are planted
on land, and different amounts of certain chemical fertilizers also cause different CH4
and N2O emission factors. According to the research of Hu Xiaokang et al. (2011) [35], in
the detection of summer maize soil, the greenhouse effect caused by N2O-N emission
under the conditions of nitrogen fertilizer application of 300 kgN/hm2, 250 kg N/hm2,

and 185 kgN/hm2 was 1621.29 kgCO2/hm2, 1095.82 kgCO2/hm2, and 786.72 kgCO2/hm2,
respectively. China has a vast territory and abundant resources. The main crops grown in
different regions are very different, and the application structures of nitrogen, phosphorus,
and potassium fertilizer are also different between regions. Therefore, in the calculation of
the carbon emission of chemical fertilizers in this section, the carbon emission coefficient
of chemical fertilizers refers to the research data of the Oak Ridge National Laboratory
in the United States. This is mainly because, first, the chemical fertilizer carbon emission
coefficient given by the Oak Ridge National Laboratory in the United States is widely used
in academia and has great reference value; second, according to the research of Chinese
scholars on the carbon emission coefficient of NPK fertilizers (Deng M.J. et al., 2016) [36],
the average value of the research is consistent with the carbon emission coefficient of
fertilizers given by the Oak Ridge National Laboratory in the United States.

The data sources for the estimation of regional carbon emissions in China are the
“China Agricultural Statistical Yearbook (Calendar Years)” and the “Statistical Yearbooks
(Calendar Years)” of each province, and the “China Rural Statistical Yearbook (Calendar
Years)”. Considering data availability, excluding the data of Tibet, Hong Kong, Macau, and
Taiwan, a total of panel data of 30 provinces in China from 2010 to 2019 were obtained.
This paper used this to estimate agricultural carbon emissions.

4.2. Analysis of the Results of Agricultural Carbon Emissions

According to the estimation method of agricultural carbon emissions and the carbon
emission coefficients of different carbon sources given above, this paper obtained the carbon
emissions of other regions in China from 2020 to 2019. According to the estimated results,
the total value of agricultural carbon emissions in China from 2010 to 2019 and the regional
Theil index are drawn, as shown in Figure 2.

From Figure 2, the changes in China’s agricultural carbon emissions from 2020 to 2019
can be divided into three stages. The first stage was from 2010 to 2013. During this period,
the total value of China’s agricultural carbon emissions increased steadily. In 2010, 2011,
and 2013, the total agricultural carbon emissions of the 30 regions were 291.98 million tons,
294.12 million tons, and 297.74 million tons, respectively. The Theil index of carbon emis-
sions decreased significantly, from 0.2090 in 2010 to 0.2059 in 2013, which indicates that the
gap in carbon emissions between regions has reduced. After 2005, the Chinese government
implemented a series of policies to increase grain production, and the average carbon
emission also increased. The agricultural production in the main grain-producing areas
was stable, and the output value of the agricultural output in non-main grain-producing
regions increased. In the second stage, from 2013 to 2017, the total value of China’s agri-
cultural carbon emissions showed a fluctuating downward trend. In 2014, 2015, and 2017,
the total agricultural carbon emissions were 303.33 million tons, 305.17 million tons, and
294.34 million tons, respectively. The Theil index of carbon emissions increased significantly
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from 0.2059 in 2013 to 0.2155 in 2017. It indicates a widening gap in agricultural carbon
emissions in different regions. As China’s economy enters a transitional period, agricul-
tural production technologies innovate, and the government emphasizes environmental
protection. Crop yields have risen, and average carbon emissions have continued to grow.
However, the carbon emissions in a few developed regions decreased instead, which shows
that the total amount of agricultural carbon emissions has decreased, while the differences
in carbon emissions between regions have expanded. The third stage is from 2017 to
2019, and agricultural carbon emissions dropped significantly. In 2018 and 2019, the total
value of agricultural carbon emissions in China’s 30 regions was 283.92 million tons and
272.57 million tons, respectively. However, the carbon emission Theil index first rises and
then falls, and the time is short, so it is impossible to judge the difference trend of carbon
emissions accurately. In terms of general trends, as the government pays more attention to
the environment, based on ensuring food security, China’s agricultural carbon emissions
gradually decreased.
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Figure 2. The total value of agricultural carbon emissions in China and the regional Theil index from
2010 to 2019.

In order to investigate the dynamic evolution of agricultural carbon emissions in China,
this paper next uses kernel density estimation to analyze it. Due to the slight differences in
the kernel density estimates of different farm carbon emissions, Figure 3 only shows the
distribution of the kernel density estimates of agricultural carbon emissions in 2010, 2013,
2016, and 2019 in China.

As can be seen from Figure 3, the overall distribution curve of agricultural carbon
emission kernel density from 2010 to 2019 first shifted to the right and then moved to the
left. It more intuitively reflects the trend of total agricultural carbon emissions increasing
first and then decreasing in China, consistent with the results in Figure 2. From the peak
changes in the kernel density distribution, the agricultural carbon emissions of each region
in China gradually showed an apparent “double peak” trend. The slight difference between
the heights of the two peaks indicates that the two ends of the regional agricultural carbon
emissions have similar aggregation trends. There is little difference in the number of
regions with high levels of carbon emissions and low levels of carbon emissions. In 2019,
the direction of the two peaks was obvious. The total amount of agricultural carbon
emissions tended to be concentrated and gradually approached the two equilibrium points.
As time changes, the area to the left of the peak gradually decreases, while the site to the
right gradually increases. It shows that the growth rate of agricultural carbon emissions is
relatively fast in low and medium-level regions.



Energies 2022, 15, 4464 12 of 22

Energies 2022, 15, 4464 12 of 23 
 

 

dicates that the gap in carbon emissions between regions has reduced. After 2005, the Chi-
nese government implemented a series of policies to increase grain production, and the 
average carbon emission also increased. The agricultural production in the main grain-
producing areas was stable, and the output value of the agricultural output in non-main 
grain-producing regions increased. In the second stage, from 2013 to 2017, the total value 
of China’s agricultural carbon emissions showed a fluctuating downward trend. In 2014, 
2015, and 2017, the total agricultural carbon emissions were 303.33 million tons, 305.17 
million tons, and 294.34 million tons, respectively. The Theil index of carbon emissions 
increased significantly from 0.2059 in 2013 to 0.2155 in 2017. It indicates a widening gap 
in agricultural carbon emissions in different regions. As China’s economy enters a transi-
tional period, agricultural production technologies innovate, and the government empha-
sizes environmental protection. Crop yields have risen, and average carbon emissions 
have continued to grow. However, the carbon emissions in a few developed regions de-
creased instead, which shows that the total amount of agricultural carbon emissions has 
decreased, while the differences in carbon emissions between regions have expanded. The 
third stage is from 2017 to 2019, and agricultural carbon emissions dropped significantly. 
In 2018 and 2019, the total value of agricultural carbon emissions in China’s 30 regions 
was 283.92 million tons and 272.57 million tons, respectively. However, the carbon emis-
sion Theil index first rises and then falls, and the time is short, so it is impossible to judge 
the difference trend of carbon emissions accurately. In terms of general trends, as the gov-
ernment pays more attention to the environment, based on ensuring food security, 
China’s agricultural carbon emissions gradually decreased. 

In order to investigate the dynamic evolution of agricultural carbon emissions in 
China, this paper next uses kernel density estimation to analyze it. Due to the slight dif-
ferences in the kernel density estimates of different farm carbon emissions, Figure 3 only 
shows the distribution of the kernel density estimates of agricultural carbon emissions in 
2010, 2013, 2016, and 2019 in China. 

 
Figure 3. Distribution of Kernel density estimates of agricultural carbon emissions for selected years 
in China. 

As can be seen from Figure 3, the overall distribution curve of agricultural carbon 
emission kernel density from 2010 to 2019 first shifted to the right and then moved to the 
left. It more intuitively reflects the trend of total agricultural carbon emissions increasing 
first and then decreasing in China, consistent with the results in Figure 2. From the peak 

Figure 3. Distribution of Kernel density estimates of agricultural carbon emissions for selected years
in China.

In contrast, the increase in agricultural carbon emissions in high-level regions is rela-
tively slow. It corroborates with the Theil index in Figure 2. The difference in agricultural
carbon emissions between regions gradually narrows and then continues to expand.

The variation trends and spatial distribution characteristics of carbon emissions in
different regions are shown in Figure 4. Figure 4 shows the distribution map of agricultural
carbon emissions in China based on agricultural carbon emissions by region in 2010,
2013, 2016, and 2019. The figure divides regional carbon emissions into five groups,
namely 50-5 million tons, 501-8 million tons, 801-13 million tons, 1301-18 million tons, and
1801-25 million tons. Then draw a map of the regional distribution of different groups.

From Figure 4, the regional spatial distribution of agricultural carbon emissions varies
relatively little in China from 2010 to 2019, with two main characteristics. First, areas
with high agricultural carbon emissions are concentrated in the central region of China,
dominated by the main grain-producing regions, such as Henan, Shandong, Hunan, and
other regions. Areas with low agricultural carbon emissions are concentrated in the coastal
regions of China, such as Hainan, Tianjin, Shanghai, Zhejiang, and other regions. It is related
to the factor endowment and strategic economic position of China. The central plain region
has a suitable climate, four distinct seasons, and abundant land resources, which provide
advantages for agricultural development. The eastern coastal region is the window to the
world in China’s reform and opening up. It plays an important role in the construction of
“domestic circulation as the main, domestic and foreign double circulation”. It is the key to
integrating the world’s resources, so there is less arable land and low agricultural carbon
emissions in coastal regions. Second, areas with low-level agricultural carbon emissions
first decreased and then increased. The number of sites with high levels of agricultural
carbon emissions decreased. The regions with agricultural carbon emissions exceeding
18 million tons were Sichuan, Hunan, and Henan in 2010, while seven regions had less
than 5 million tons. Based on ensuring the growth of agricultural output value, the growth
rate of agricultural carbon emissions is relatively low in most regions. In 2019, two regions
with agricultural carbon emissions exceeding 18 million tons, namely Henan and Hunan.
There are nine regions with less than 5 million tons, including some central provinces such
as Shanxi and Chongqing. The excessive use of agricultural and chemical fertilizers caused
a series of negative impacts such as environmental pollution and ecological damage, such
as low utilization of chemical fertilizers affecting soil health. In recent years, the No. 1
document of the Central Committee of China has repeatedly emphasized the development
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of modern agriculture with coordinated resources. To promote the green development of
agriculture and reduce agricultural carbon emissions, the first meeting of China’s Central
Finance and Economics Committee in 2021 proposed to adjust the structure of farming
inputs, reduce the use of chemical fertilizers and pesticides, and increase the use of organic
fertilizers. It is of great practical significance to limit the input of agricultural production
factors such as agricultural fertilizers, improve agricultural production efficiency to mitigate
environmental pollution, and reduce agricultural carbon emissions.
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5. The Threshold Effect of Agricultural Production Efficiency in China on the Intensity
of Agricultural Carbon Emission Intensity
5.1. Threshold Model and Variable Description

Advanced agricultural production technologies can improve efficiency, reducing car-
bon intensity. However, the improvement of technological level may also lead to an increase
in the use of energy in agricultural production and thus increase the carbon intensity of
agriculture. The relationship between agricultural production efficiency and agricultural
carbon emissions may not be purely linear. Affected by the regional economic development
level, urbanization process, geographical factor endowment, industrial structure, etc., there
may be heterogeneity between the two. Therefore, this paper uses a nonlinear adjustment
mechanism to empirically test the effect of agricultural production efficiency on agricul-
tural carbon emissions. Due to the introduction of cross-terms, the cross form cannot be
judged, and it is easily affected by collinearity, and the obtained results are inaccurate.
This paper adopts the threshold regression model proposed by Hansen (1999) [37] and
uses agricultural production efficiency as the threshold to study the nonlinear relationship
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between agricultural production efficiency and agricultural carbon emissions. The essence
of the threshold model is to use the threshold value to construct a segmentation function
and verify the regression effect of the segmentation function. The threshold regression
model was established in this paper, as shown in Equation (5).

CAIi,t = α + ρ1 Agri,t · I(Agr < ω1) + ρ2 Agri,t · I(ω1 ≤ Age < ω2) +
· · · · · ·+ ρn Agri,t · I(ωn−1 ≤ Agr < ωn) + γnXi,t + ui + λt + εi,t

(5)

variable agricultural carbon emission intensity, ρ1, ρ2 . . . ρn, is the influence coefficient
of agricultural production efficiency (Agr) in different sections. Agr is both a threshold
variable and an explanatory variable. I(·) is the indicative threshold function. If the paren-
thesized expression is true, I(·) = 1; otherwise I(·) = 0. ω1, ω2 · · ·ωn is the threshold value,
which is endogenously determined by the selected sample data.X is the control variable
and γn is the coefficient of the control variable.u, λ, and ε represent the regional fixed effects,
time fixed effects, and random disturbance terms of the regression model, respectively.

This paper lists the explanatory variables, explained variables, and selected control
variables based on the threshold regression model.

(1) Explained Variable: Agricultural Carbon Emission Intensity (CAI)

In the previous section, this paper estimated the agricultural carbon emissions of
different regions in China from 2010 to 2019. This paper used carbon emission intensity,
the carbon dioxide produced per cultivated land unit, and the explained variable. Carbon
emission intensity can better reflect the carbon emission level in agricultural production
activities compared with carbon emission. Based on this, the carbon emission intensity of
agriculture is calculated as shown in Equation (6).

Agricultural carbon emissions intensity:

CAIi,t =
cari,t

(Arable− land)i,t
(6)

where CAIi,t refers to the agricultural carbon emission intensity of the i region in the t year,
which is also the explained variable in the threshold regression model.(Arable− land)i,t is
the cultivated area of the region in the current year. cari,t is the regional agricultural carbon
emissions estimated above.

(2) Explanatory variables: agricultural productivity (Agr). The farm production efficiency
of 30 regions in China from 2010 to 2019 was measured above.

(3) Control variables: Due to a large amount of literature, this paper selected the follow-
ing control variables to explain the impact on agricultural carbon emission intensity.
The degree of disaster (dis): One of the essential differences between farm production
and other industries is that natural conditions significantly affect it. Therefore, this
paper chose the degree of agricultural disaster to express and use the ratio of the
affected area of crops to the size of arable land to calculate the degree of agricultural
disaster. Urbanization level (urb): The civilization process and socialization level of
cities also affect rural life and production methods to a certain extent. This paper
adopted the proportion of the urban population to the total population at the end of
the year to represent the urbanization level. Industry structure (ind): The industrial
structure represents the progress of social modernization and the degree of completion
of industrialization and profoundly affects the development process of the primary
industry. This paper used the ratio of the added value of the tertiary sector to the
secondary industry to measure the upgrading of the industrial structure. Resident
income level (pci): The living standards of residents in agricultural production areas
also affect the intensity of agricultural carbon emissions. In this paper, the average
disposable income of urban and rural residents was used to indicate the income level
of residents. The quality of the workforce (edu): The labor quality and education level
of agricultural producers can affect the awareness of ecological, environmental pro-
tection, energy conservation, and emission reduction. Since agricultural production
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is not necessarily for all rural residents, and some rural residents were not engaged
in agricultural production, this paper used the per capita education years (years) to
represent the quality of farm laborers in a region.

The data of the control variables in this paper were obtained from the “China Statis-
tical Yearbook (Calendar)” and the Provincial Statistical Yearbook. Some indicators were
calculated based on statistical data. Considering the particularity and data availability of
Tibet, Hong Kong, Macao, and Taiwan, the data of these four regions were excluded from
data collation. Finally, the panel data of 30 areas from 2010 to 2019 were obtained. Table 4
shows the descriptive statistical analysis of each variable.

Table 4. Descriptive statistical analysis.

Variable Definition Mean Std Min Max

AEI Carbon emission intensity 0.2127 0.1065 0.0875 0.763
Agr Agricultural productivity 0.5953 0.2179 0.2092 1.138
dis Degree of disaster 0.1609 0.1189 0 0.6187
urb Urbanization level 57.72 12.60 33.81 89.6
ind Industry structure 45.74 9.763 28.6 83.5
pci Resident income level 2.197 1.1005 0.7 7.22
edu The quality of workforce 0.0192 0.0050 0.008 0.0345

5.2. Empirical Results

According to the theoretical assumptions in Section 2, there may be a nonlinear
relationship between agricultural production efficiency and agricultural carbon emissions.
Therefore, this paper used agricultural production efficiency as a threshold variable to verify
the effect between agricultural production efficiency and agricultural carbon emissions in
China’s provinces. The number of thresholds needed to be determined before performing
threshold regression. Next, tests were conducted under the null hypothesis of no threshold,
presence of a single threshold, the existence of a double threshold, and presence of a triple
threshold, respectively. Table 5 presents the p-values and critical values derived from the
self-sampling method.

Table 5. Regression results of threshold effect test.

Critical Value

F-Value p-Value 1% 5% 10%

Single-threshold test 43.32 0.0567 57.723 44.480 39.943
Double-threshold test 25.87 0.0167 28.864 19.240 15.751
Triple-Threshold Test 4.49 0.7433 24.507 17.137 13.808

Note: p-values and critical values are obtained by repeatedly sampling 300 times using the “self-sampling
method” (Bootstrap).

From Table 5, the p-value corresponding to the triple-threshold test is 0.7433, which
fails the 10% significance test, indicating no triple-threshold. The p-value for the single
threshold was 0.0567, which passed the 10% significance test. The p-value for the double-
threshold was 0.0167, which gave them a 5% significance test. This shows that the model
has both a single-threshold and a double-threshold. In order to more accurately analyze the
impact of agricultural production efficiency on agricultural carbon emissions, this paper
used a double-threshold model to verify the relationship between the two. Table 5 gives the
estimated results and confidence intervals of the threshold value of the double-threshold
with agricultural production efficiency as the threshold.

By combining Tables 4 and 5, there was a significant double-threshold effect between
agricultural production efficiency and agricultural carbon emissions. From Table 6, the
estimated values of the double-threshold variables were 0.8501 and 1.0140, respectively.
The 95% confidence interval for the first threshold estimate was [0.8254, 0.8566]. The 95%
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confidence interval for the second threshold estimate was [1.0137, 1.0196]. The estimated
value of the double-threshold can divide the agricultural production efficiency into three
intervals, namely the low agricultural production efficiency region (Agr < 0.8501), the
medium agricultural production efficiency region (0.8501 ≤ Agr < 1.014), and the high
agricultural production efficiency region (Agr ≥ 1.014). The regions in the third interval
have reached effective agricultural production efficiency from the double-threshold value.

Table 6. Threshold estimation results.

Estimated Value 95% Confidence Interval

Threshold value ω1 0.8501 [0.8254, 0.8566]
Threshold value ω2 1.0140 [1.0137, 1.0196]

Based on the double-threshold estimation results above, this paper estimates the
parameters of the double-threshold model. The results of threshold regression are shown
in Table 7. The control variables are the same as above, and the related estimation results of
the control variables are no longer listed in the table.

Table 7. Threshold regression results.

Variable Variable Interval Coefficient (T-Value)

Agricultural production
efficiency

Agr < 0.8501 0.2749 ***
(6.35)

0.8501 ≤ Agr < 1.014 −0.8678 *
(−1.74)

Agr ≥ 1.014 −1.201 **
(2.23)

Note: ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.

From the results of the threshold regression in Table 7, with agricultural production
efficiency as the threshold, the regions in China are divided into low-efficiency regions,
medium-efficiency regions, and high-efficiency regions. When the agricultural production
efficiency is lower than 0.8501, the agricultural production efficiency promotes the agri-
cultural carbon emission intensity. The coefficient of influence at this point was 0.2749,
which passed the significance test at the 1% level. When agricultural production efficiency
is in the second interval, the effect of agricultural production efficiency on agricultural
carbon emission intensity is negative. The influence coefficient is −0.8678, significant at the
10% level. At this time, the increase in agricultural production efficiency suppresses the
intensity of agricultural carbon emissions. When the agricultural production efficiency is
more significant than 1.014, that is, when the region reaches the effective agricultural pro-
duction efficiency, the impact of agricultural production efficiency on agricultural carbon
emission intensity is also negative. The influence coefficient was −1.201, and it passed the
5% significance level test.

In contrast, the influence coefficient of agricultural production efficiency in the third
interval is more significant than that in the second interval. There are regional differences
in the impact of agricultural production efficiency on agricultural carbon emission intensity.
The nonlinear relationship between the two presents an “inverted U-shaped” trend. When
agricultural production efficiency is low, production efficiency increases the intensity of
agriculture carbon emissions. In regions with high agricultural production efficiency,
improving agricultural production efficiency instead suppresses carbon emission intensity.

Previous studies focused on the impact of agricultural carbon emissions. The research
results of Li B. (2011) [32] showed that labor scale factors, outcome factors, and agricultural
production efficiency have a certain inhibitory effect on agricultural carbon emissions. The
research results of Wang S. et al. (2020) [38] showed that the agricultural carbon emission
intensity in Henan Province presents a spatial distribution pattern of “high in the north
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and south and low in the middle”, and there are large spatial differences in agricultural
production efficiency in Henan Province under the constraints of carbon emissions. Dif-
ferent scholars have drawn different conclusions, which also proves that the impact of
agricultural production efficiency on agricultural carbon emissions has regional heterogene-
ity. Yang H.J. et al. (2015) [39] conducted a study using panel data from 31 provinces in
China from 2004 to 2012. The conclusion is that China’s generalized agricultural production
efficiency has a significant threshold effect on agricultural carbon emission reduction, and
improving agricultural production efficiency is an effective way to reduce agricultural
emissions. This paper draws similar conclusions based on the measurement of agricultural
productivity and agricultural carbon emissions in the narrow sense. The nonlinear relation-
ship between China’s narrow agricultural production efficiency and agricultural carbon
emission intensity presents an “inverted U-shaped” trend.

In regions with low agricultural production efficiency, increased production efficiency
increases the intensity of agricultural carbon emission. Two mechanisms of action mainly
achieve this process. First, in underdeveloped areas, the improvement of agricultural
production efficiency is reflected in the increased efficiency of using agricultural chemical
fertilizers and agricultural machinery. The extensive use of chemical fertilizers and the
utilization of agricultural machinery in agricultural production activities such as irrigation,
tillage, and transportation increased agricultural carbon emissions. Second, the increase in
agricultural production efficiency leads to higher yields in farming. An increase in the rate
of return leads to more increased investment in agricultural production and an increase
in the labor force. The expansion of the farm production scale inevitably leads to higher
intensity of agricultural carbon emissions. Once the efficiency of regional agricultural pro-
duction increases to a certain level, the improvement of agricultural production efficiency
suppresses the intensity of agricultural carbon emissions.

On the one hand, after a particular stage of economic development, agricultural eco-
nomic growth cannot rely solely on expanding the scale of production. It also requires the
coordinated development of factors such as optimization of agricultural structure, progress
in agricultural science and technology, and modernization of agricultural production meth-
ods. The essence of agricultural production efficiency improvement in this process is the
factor utilization rate. The utilization rate of input factors such as chemical fertilizers and
agriculture has increased, and the input of chemical fertilizers, pesticides, machinery, and
other elements per unit area is reduced. However, the output value is still growing. With
improved agricultural production efficiency, the intensity of agricultural carbon emissions
decreases instead.

On the other hand, resources and technology are heavily invested in agricultural
production. The government has imposed restrictions on chemical fertilizers and pesticides
on farmland. The development of modern agriculture through scientific and technological
progress can reduce environmental pollution and energy consumption. By 2019, a signif-
icant portion of the region has not achieved effective agricultural production efficiency.
At present, the Chinese government pays more and more attention to the development
of low-carbon agriculture to complete the transformation and sustainable development
of the agricultural economy. Only after regional agriculture achieves effective production
efficiency can the carbon emission intensity of agriculture be reduced based on maintaining
food security.

6. Conclusions, Policy Recommendations, and Research Prospects
6.1. Conclusions

This paper established an index system for measuring agricultural production ef-
ficiency based on the panel data of 30 regions in China from 2010 to 2019. Then, the
super-efficiency SBM model was used to measure the agricultural production efficiency
in the different areas. Additionally, its time evolution characteristics were analyzed us-
ing kernel density estimation. This paper then proceeded to estimate agricultural carbon
emissions using the factor inputs in agricultural production activities and studying the tem-
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poral evolution characteristics of agricultural carbon emissions using the Theil index and
kernel density estimation. Spatial attributes of regional agricultural carbon emissions were
analyzed by depicting their spatial distribution over some years using ArcMap software.
Finally, this paper used the threshold regression model to empirically test whether there is
a nonlinear relationship between agricultural production efficiency and agricultural carbon
emission intensity. The conclusion is as follows:

(1) There are two main characteristics of China’s agricultural production efficiency from
2010 to 2019. First, the efficiency of agricultural productivity has steadily increased in
most regions. Second, there is a large agricultural production efficiency gap between
areas, narrowing gradually with time. China is in a period of economic transformation,
and economic growth is shifting to high-quality economic development. Agricultural
productivity in underdeveloped regions has increased, and the utilization rate of
input factors has increased. Agricultural production technology from developed
regions flows to less developed areas. These have resulted in the overall growth
and narrowing gap in the evolution of agricultural production efficiency between
provinces in China;

(2) China’s agricultural carbon emissions changes from 2019 to 2020 can be divided into
three stages. In the first stage, the average agricultural carbon emissions increased
steadily, while the Theil index of carbon emissions decreased significantly. In the
second stage, the gap widened between agricultural carbon emissions in different
regions. From 2017 to 2019, the agricultural carbon emissions dropped substantially
in the third stage, and it was impossible to judge the trend of difference in carbon
emissions accurately. Areas with high agricultural carbon emissions are concentrated
in the central region of China. The low-level agricultural carbon emission areas first
decreased and then increased; the number of high-level agricultural carbon emission
areas decreased. As the government pays more attention to the environment, China’s
agricultural carbon emissions have gradually reduced to ensure food security;

(3) There are regional differences in the effect of agricultural production efficiency on the
intensity of agricultural carbon emissions—the nonlinear relationship between the
two shows an “inverted U-shaped” situation. When agricultural production efficiency
is low, production efficiency increases the intensity of agriculture carbon emissions.
In regions with high agricultural production efficiency, improving agricultural pro-
duction efficiency instead suppresses carbon emission intensity.

6.2. Policy Recommendations

The above research results show that improving agricultural production efficiency
suppresses the intensity of agricultural carbon emissions after the agricultural production
efficiency is effective. In addition, in 2020, the Chinese government issued the “Opinions
on Doing a Good Job in the Field of “Three Rurals” and Ensuring the Achievement of
a Well-off Society in an All-round Way as Scheduled”. It clearly put forward policies to
strengthen the construction of modern agricultural facilities, strengthen the supporting role
of science and technology, promote high-quality development of agriculture, and ensure
green development of agriculture. The research of this paper found that the regional narrow
agricultural production efficiency can restrain the carbon emission intensity of the planting
industry after reaching effective efficiency. The Chinese government also successively
introduced policies to limit chemical fertilizers and agricultural applications, which have a
greater impact on agricultural producers. For scientific and technological researchers, the
current agricultural production technology, and the inability to meet the needs of green
production, the backward technology will inevitably be eliminated. Researchers need to
strengthen the research and development of agricultural biotechnology and vigorously
implement the independent innovation project of the seed industry. At the same time,
researchers should also speed up the research and development and application of large
and medium-sized, intelligent, and compound agricultural machinery and support the
mechanization of farmland in hilly and mountainous areas. For farmers in the plantation
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industry, government restrictions on the agricultural application of chemical fertilizers
may affect yields to some extent. Farmers need to improve their knowledge of agricultural
production, rationally apply chemical fertilizers, reduce the impact of national policies on
production activities, and increase output. For agricultural and sideline product processing
enterprises, they should cooperate with national policies. More detailed and strict standards
are needed for purchasing agricultural products, and green production efficiency needs to
be improved in the production process.

To achieve a win–win situation between food security and environmental benefits,
we must first improve the efficiency of green agricultural production and increase crop
yields. At the same time, it is also necessary to formulate environmental regulations for
agricultural production based on considering regional heterogeneity to give full play to
the low-carbon orientation function of the government. Therefore, this paper puts forward
specific policy recommendations as follows:

First, improve agricultural technology and promote the development of agricultural
modernization. Agricultural technological progress is not only an inevitable requirement of
agricultural modernization but also a significant initiative to implement the rural revitaliza-
tion strategy. As China’s industrialization enters the middle and late stages, industry feeds
back on agriculture. The government has increased investment in agricultural development
and formulated a series of supportive policies to subsidize agricultural production, but
supporting agriculture alone can only regulate the institutions of agricultural production. It
is also necessary to strengthen agricultural technological innovation and actively promote
the creation of agricultural production machinery, chemical fertilizers, and other production
materials. At the same time, reduce agricultural carbon emissions and take the road of
clean and efficient green agricultural development.

Second, develop agriculture according to local conditions. Agriculture is the foun-
dation of the national economy. Agricultural production in the narrow sense is more
constrained by regional factor endowments. Therefore, it is necessary to formulate policies
according to local conditions to address the regional gap in the impact of agricultural
production efficiency and agricultural carbon emission intensity. We give play to regional
advantages and develop the agricultural economy based on ensuring national food security.
The developed eastern regions lack the geographical endowment to establish agriculture
on a large scale. Therefore, it is possible to vigorously introduce advanced technologies
and management concepts from foreign developed agricultural fields based on high agri-
cultural production efficiency. At the same time, rationally allocate farming resources
and the environment and generate radiation effects to drive the green development of
agriculture in the surrounding areas. Agriculture should be developed vigorously in the
central and western regions, especially Henan, Hunan, and other provinces. Develop
particular agricultural industries based on guaranteed production, and increase the export
volume of high-quality agricultural products. Increase the efficiency of the agricultural
output from the perspective of improving output value, and promote the transformation
of agricultural resource utilization to a green production model with low emissions, low
input, and high output.

Third, limit pesticides and chemical fertilizers, and establish an agricultural green econ-
omy assessment system. Excessive use of agricultural and chemical fertilizers pollutes the
environment, increases agricultural carbon emissions, and damages soil health. Therefore,
local governments should formulate restrictions on the input of pesticides, chemical fertiliz-
ers, and other factors according to the characteristics of local agricultural development. On
the one hand, reducing the redundancy of farming resources, promoting the rational use of
agricultural factor resources, and protecting the ecological environment in rural areas. On
the other hand, it increases the construction of rural educational facilities. Cultivate the
awareness of agricultural producers to protect the environment and low-carbon production.
At the same time, the government also promotes end-of-line treatment technology and
low-carbon clean production and upgrades traditional agriculture. In addition, a set of
agricultural green economic accounting systems needs to be formulated, including agri-
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cultural carbon emissions and agricultural economy. Regional governments incorporate
environmental protection and low-carbon agricultural development into regional economic
growth to achieve a harmonious farm economy and ecological environment development.

6.3. Research Prospects

China has become a significant carbon emitter, and the growth of agricultural carbon
emissions cannot be underestimated. After the reform and opening-up, China’s agricultural
economy has developed at the cost of high emissions and environmental damage to a certain
extent. The Chinese government has gradually begun to pay attention to environmental
protection and agricultural carbon emission reduction. It is essential to take agricultural
production efficiency as the research object and study the agricultural carbon emission
reduction path. There are still some shortcomings in this paper. Limited by the data
availability, the characteristics of agricultural development in rural areas have not been
studied separately. The following research can explore agricultural carbon emissions from
rural revitalization. The scope of the sample data can also be extended to the data of
prefecture-level cities, taking the urban agglomeration as the research object. We can
further improve the research on agricultural carbon emissions, provide a viable path for
transforming China’s agricultural production model to a low-energy, high-efficiency green
production model, and then promote the high-quality development of Chinese agriculture.
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