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Abstract: To reduce the levelized cost of wind energy, through the reduction in operation and
maintenance costs, it is imperative that the wind turbine downtime is reduced through maintenance
strategies based on condition monitoring. The standard approach toward this challenge is based on
vibration monitoring, which requires the installation of specific tailored sensors that incur associated
added costs. On the other hand, the life expectancy of wind parks built during the 1990s wind
power boom is dwindling, and data-driven maintenance strategies issued from already accessible
supervisory control and data acquisition (SCADA) data is an auspicious competitive solution because
no additional sensors are required. Note that it is a major issue to provide fault diagnosis approaches
built only on SCADA data, as these data were not established with the objective of being used
for condition monitoring but rather for control capacities. The present study posits an early fault
diagnosis strategy based exclusively on SCADA data and supports it with results on a real wind
park with 18 wind turbines. The contributed methodology is an anomaly detection model based on
a one-class support vector machine classifier; that is, it is a semi-supervised approach that trains a
decision function that categorizes fresh data as similar or dissimilar to the training set. Therefore, only
healthy (normal operation) data is required to train the model, which greatly expands the possibility
of employing this methodology (because there is no need for faulty data from the past, and only
normal operation SCADA data is needed). The results obtained from the real wind park show that
this is a promising strategy.

Keywords: anomaly detection; condition-based maintenance; condition monitoring; fault diagnosis;
main bearing; one-class support vector machine; predictive maintenance; SCADA data; wind turbine

1. Introduction

Renewable energy had a record-breaking year in 2020, in stark contrast to the decline
observed in the fossil fuel sectors owing to the COVID-19 pandemic, as its installed power
capacity grew by more than 260 gigawatts (GW) [1]. Renewable energy refers to the
energy obtained from natural resources that are available nearly everywhere; they are
inexhaustible, and they cause little to no greenhouse gas emissions.

Among the different forms of renewable energies, wind energy showed remarkable
growth in 2020, with 111 GW of new installations [1]. However, taking into account that
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the levelized cost of energy (LCOE) is the key tool for evaluating the essential economics of
any type of power project, it is noteworthy that operating and maintenance (O&M) costs
typically score 20% to 25% of the overall LCOE of modern wind parks [2]. Thus, to further
extend the deployment of wind energy, reducing O&M costs has become a priority.

In recent decades, much effort has been devoted to initiating a shift from wind turbine
(WT) preventive and/or corrective maintenance to maintenance based on the actual asset
condition, that is through condition monitoring systems (CMS), e.g., [3–10]. However, the
high cost associated with the installation of the specific tailored extra sensors needed by
CMS and the communication infrastructure and protocol required to deal with the high-
frequency sampling data from these sensors have postponed their widespread usage [2]. On
the other hand, data-driven maintenance approaches from already accessible supervisory
control and data acquisition (SCADA) data is an auspicious competitive answer [11]. The
present study contributes such a strategy for early warning in the event of main bearing
failures in WTs. This is an ambitious goal, as SCADA data is primarily used for control
purposes and not for condition monitoring.

Usually, SCADA data logs four different statistics for each variable (sensor) and per
certain duration (which is usually 10 min): minimum, maximum, average, and standard
deviation. In industrial size WTs, these SCADA data contain between 100 and 200 different
variables. Thus, with the properties of low sampling rate and high dimension, SCADA
data is usually managed and used by the owners and/or operators for live monitoring
and history querying in a remote monitoring center setting. Because data-driven models
were not anticipated as a feasible solution to condition monitoring when these systems were
established, most operators now have several years of unexplored SCADA data. Furthermore,
they did not anticipate the importance of having maintenance annotations. As a result,
maintenance logs lack a consistent structure and frequently include a great deal of noise.

There have been several successful contributions to condition monitoring with actual
SCADA data in recent years (based on data from real in-production WTs). For example,
in [12] the prognosis of a WT gearbox bearing is accomplished, but it proposes a supervised
approach that needs historical faulty data to be tagged, which is a tedious and time-
consuming task prone to errors (due to the maintenance log’s non-standardized and
noisy characteristics). In [13], an unsupervised approach is proposed for WT condition
monitoring; however, because this study does not have access to work order data, it is not
possible to fully validate whether the model is detecting the faults appropriately. In [14], an
ensemble technique to detecting abnormalities and diagnosing defects is offered; however,
it has only been tried on two WTs, and the alarm is triggered just days ahead of the fatal
breakdown occurring, not giving sufficient time to plan the repair.

In contrast to the aforementioned references, this work proposes a main bearing early
fault detection strategy based solely on WT SCADA data, which is the main contribution
that it addresses. At the same time, the following six main challenges are found in the
literature. (i) It uses only standard SCADA data (10-min average); thus, it can be applied to
any wind turbine. (ii) It is a normal behavior model; that is, to be constructed (trained) only
requires normal (healthy) data. Because it does not require any faulty data, any wind park
(even those where the failure of interest has not yet occurred) can benefit from it, and it
avoids the problem of highly unbalanced data sets. (iii) It is validated on real (not simulated
or experimental) SCADA data and proven to be robust to seasonality and operating and
environmental conditions. A significant number of references use simulated SCADA data or
experimental data (from a test bench) to validate the results. Although it is understandable,
as real SCADA data sets are often proprietary and are not easily available by the scientific
community, it is an important drawback as relying on synthetically generated data may
not generalize well to actual real-world conditions. (iv) The warning is given months in
advance to the fault, thus allowing wind park operators to program the maintenance, in
contrast to a non-negligible number of studies based on SCADA data that detect the fault
with less than a week in advance, thus not being helpful in a real application. (v) It advances
an indicator based on an exponential weighted moving average filter, depending on the
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weekly number of anomalies, to reduce the number of false positive alerts in contrary to a
substantial number of references that result in a significant number of false alerts, making
the contribution inconvenient in the real world, as it would result in alarm fatigue for
operators. (vi) The validation is performed at wind farm level encompassing 18 WTs (not
only on one or two WTs), as opposed to the majority of the literature that bases its results
on a relatively small amount of data, usually only one to four wind turbines. Thus, it is not
clear whether the proposed strategies will generalize well to the whole wind farm.

The rest of the article is organized as follows. Sections 2 and 3 present descriptions of
the wind park and the real SCADA data, respectively. Section 4 summarizes the various
types of failures that the main bearing can suffer. Section 5 comprehensively delineates the
fault diagnosis maintenance strategy. Section 6 showcases the results and discussion, and
Section 7 lists the conclusions.

2. Wind Park

The wind park under study comprises 18 WTs, all with the same characteristics. The
specific WT model cannot be revealed because of a non-disclosure agreement; however,
some technical specifications are listed in Table 1.

Table 1. The wind turbines’ technical parameters.

Number of Blades 3
Nominal power 2300 kW

Voltage 690 V
Gearbox type 3-stage planetary/helical

Rotor diameter 101 m
Rotor speed 6–16 rpm

Cut-in wind speed 3–4 m/s
Rated wind speed 12–13 m/s

Cut-out wind speed 25 m/s
Monitoring SCADA system WebWPS

Power regulation Independent pitch

Each WT has a three-bladed rotor and a diameter of 101 m with a sweep area of 8000 m2

that generates 2300 kW. These are variable speed and pitch-controlled WTs that operate
at a higher percentage of their maximal aerodynamic efficiency for a longer period of
time [15]. Furthermore, variable-speed functioning helps to lower turbine loads because
abrupt increases in wind energy caused by gusts can be handled by increasing rotor speed
instead of by component bending [16]. The WTs’ theoretical power curve is presented in
Figures 1 and 2 exhibits the principal components of the WTs.
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Figure 1. Wind turbines’ operation regions.
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Figure 2. Main components of the wind turbine [17].

The WTs under consideration additionally feature a SCADA web processing server
(WPS), which provides remote control as well as a range of relevant status displays and
statistics. Electrical and mechanical data, operation and fault status, meteorological data,
and network station data are all displayed in status displays. However, recall that, as stated
in the introduction section, the SCADA system was not developed specifically for condition
monitoring purposes.

3. Real SCADA Data Description

A collection of measurements from the wind park’s SCADA systems and information
from its alert log that records work orders (information about maintenance and repair
operations) gathered over the same period are utilized in this article. The continuous
operational data were measured between 1 January 2014 and 12 December 2019 (a period
of around five years). The available SCADA data contains more than 75 different variables
that can be classified into the following groups: control variables, temperature variables,
environmental variables, electrical variables, and hydraulic variables (see Table 2).

Table 2. Data variables collected by the SCADA system.

Variable Group Number of Variables

Control variables 13
Component temperature variables 35

Environmental variables 9
Electrical variables 13
Hydraulic variables 6

The mean, maximum, minimum, and standard deviation values of the average period
of 10 min are available for each of the gathered variables. Thus, a data matrix with the
following structure is obtained:

x11 x12 · · · x1N
...

...
. . .

...
xi1 xi2 · · · xiN
...

...
. . .

...
xm1 xm2 · · · xmN

 ∈ Mm×N(R), (1)

where m = 312,446 is the number of samples; N = 304 is the number of collected variables;
andM (m× N) is the vector space of matrices with m rows and N columns over R. Finally,
xij indicates the acquired variable j at time step i.
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In addition to the SCADA data, an information file on maintenance and repair op-
erations (work order logs) was accessed, as previously described. These records detail
when and how the failures occurred as well as when and how the work was completed
and whether the subsystem was fixed or replaced.

4. Main Bearing Failures

The main bearing is a major element of a WT. Figure 3 shows a spherical roller main
bearing used in the WTs. It is obliged to meet stringent requirements in terms of load
capacity, accuracy, noise level, friction and frictional heat, life, and dependability. This
component does not always attain the necessary service life. Failures typically result in
financial losses owing to lost production and contact component damage as well as the
expense incurred from repairs. All of the bearing sections are susceptible to failure and
can be harmed in a number of ways [18]. A bearing can fail prematurely for a number of
reasons; however, there are 12 basic causes of bearing failure [19]:

• Excessive load
• Overheating
• False brinelling
• True brinelling
• Normal fatigue failure
• Reverse loading
• Contamination
• Lubricant failure
• Corrosion
• Misalignment
• Loose fits
• Tight fits

outer ring

inner ring

cage

rolling 

element

Figure 3. Spherical roller main bearing used in WTs. Courtesy of SKF.

Various types of bearing deterioration and failure exist, and some publications use
different nomenclature for the same mode. As a result, the International Organization for
Standardization (ISO) created and released a document (ISO-15243), early in 2004, that explains
and categorizes the features, changes in appearance, and likely reasons for roll bearing failure
in service. The failure modes are divided into six major classes (and many subgroups) in this
standard: fatigue, wear, corrosion, electrical erosion, plastic deformation, and fracture and
cracking. For further detailed explanation of all types of failure modes, see [16,20].

Most of these types of failures generate heat in the initial stages, which may be
identified using the SCADA temperature variables relevant (closer) to the main bearing.
This will be further examined in Section 5.1.2, where the feature selection step is explained.

5. Fault Diagnosis Strategy

This article proposes an anomaly detection approach for predicting WT’s main bearing
failure in advance, before the disastrous breakdown. The overall idea is to determine
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whether (new) test data belongs to a certain class, determined by the training data. To cope
with this problem, one-class classification methodologies are considered. By just providing
normal (healthy) data to train, an algorithm creates a (representational) model of these
data. If newly encountered data is different, according to some metric, from this model, it
is labeled as out-of-class (faulty). In this work, the one-class SVM algorithm is utilized, see
Section 5.2. It employs a collection of SCADA data to train the one-class SVM algorithm
(train data set). Then, utilizing the remainder of the SCADA data, it goes on to create future
predictions (test data set). In addition, it advances an indicator based on an exponential
weighted moving average filter, depending on the weekly number of anomalies, to reduce
the number of false positive alerts. The following steps are discussed in detail in the next
subsection devoted to data preprocessing:

• Data split;
• Feature selection;
• Data cleaning;
• Data normalization.

5.1. Preprocessing

When constructing a data-driven maintenance model, it is critical to ensure that
the data used to train the model and the data that is inferred from the model is of high
quality [21]. Data preprocessing often entails the following tasks: data cleaning, data
normalization, feature extraction, feature selection, and unbalanced data handling. Further-
more, data received by real-world systems (such as data from SCADA sensors) is frequently
partial, inconsistent, or inaccurate; hence, it is critical to perform data preprocessing to
resolve any possible issues pertaining to the data before it is used by the model. In this
study, the feature selection, data cleaning, and normalization stages are carried out. The
feature selection stage is carried out with expert knowledge and is based on the relevance
of the variables to the component under study. On the other hand, as it is a normality
model, it is not necessary to manage unbalanced data.

5.1.1. Data Split

It is critical to separate the data prior to taking any action based on it so that data
leakage from the test data set into the training data set is avoided.

The data split is based on the work orders of the turbine that presented the main bear-
ing failure, which was WT5. The work orders evidenced that the WT entered maintenance
on 11 June 2018. Data from several years prior to the failure were used as training data
(from 1 January 2014 to 11 December 2017). It is important to emphasize that this article is
based on a one-class SVM model, which means that the model is trained with a single class
of (healthy) data. Thus, in the work orders, no fault related to the main bearing was found
in the period used to define the training set. Furthermore, because the data used spanned
almost four years, a variety of data for each of the four seasons of the year (winter, spring,
summer, and autumn) was obtained, which will aid in training a seasonal robust anomaly
detection strategy. Furthermore, all regions of operation of the WT were used to train the
model with the goal of obtaining a strategy able to perform in any operational region (see
Figure 2). Then, to create the test data set, the data from 11 December 2017 to 12 December
2019 were used. These data will be used to make inferences from the previously trained
model and to validate its efficiency. Table 3 specifies the size of the two subsets.

Table 3. Matrix dimensionality.

Set Matrix Size

Training Xtrain 208,275 × 304
Test Xtest 104,171 × 304
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5.1.2. Feature Selection

The data set has 304 variables, as stated in Section 3; however, when studying a specific
failure, experts must skillfully select the most significant variables for the physical system
to be investigated [22]. As a result, only the mean values for the main shaft temperature
(the temperature variable most closely associated to the examined failure) and the mean
values for the following exogenous variables were chosen for this study:

• Ambient temperature;
• Primary wind speed;
• Secondary wind speed;
• Actual wind speed;
• Anemometer measure.

The main objective is that the model must be insensitive to other faults that are not
closely connected to the component of interest. To accomplish this aim, the model uses
only exogenous variables and the main shaft temperature (the closest to the main bearing).

A correlation matrix analysis is performed to determine which of the exogenous
variables contributes the most to the model. There are different distinct types of correlations,
such as the Spearman, Kendall, and Pearson correlations, among which the present study
employs the Pearson correlation to establish the linear connection between the variables [23].
Numbers close to +1 suggest a significantly positive correlation, whereas values nearer to
−1 represent a significantly negative correlation. The findings of the correlation analysis are
compiled in Table 4. It can be observed that, except for the ambient temperature, all other
factors have a high connection. As a result, another method is required for determining the
preferred variable from among the associated variables.

Table 4. Correlation analysis.

wtc_AmbieTmp wtc_PrWindSp wtc_SeWindSp wtc_AcWindSp wtc_SecAnemo

wtc_AmbieTmp 1 − 0.20 −0.08 −0.20 −0.08
wtc_PrWindSp −0.20 1 0.94 0.99 0.94
wtc_SeWindSp −0.08 0.94 1 0.94 0.99
wtc_AcWindSp −0.20 0.99 0.94 1 0.94
wtc_SecAnemo −0.08 0.94 0.99 0.94 1

The variables with the largest variance (regarding the variable most associated with
the main bearing failure, wtcMainTmp) are selected using a variance comparison feature
selector. The variance for each characteristic is shown in Figure 4.
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actual wind speed, and secondary anemometer measure.
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Finally, three variables are chosen for inclusion in the proposed model. The first
two variables have no physical link with the physical components of the WT, as it is not
desirable that the model learns to detect failures other than the one being examined.

The mean main wind speed and the mean ambient temperature are the two exogenous
variables. The benefit of utilizing a variable linked to wind speed is that it is also tied
to the turbine’s operating region (see Figure 1). On the other hand, the variable mean
ambient temperature offers information regarding seasonality, as the temperature might
vary with the seasons of the year. Finally, the model’s third variable is the mean main
shaft temperature measurement, which is the variable most closely connected to the main
bearing failure. Table 5 describes the new dimensionality of the two different subsets after
the feature selection process.

Table 5. Matrix dimensionality after feature selection.

Set Matrix Matrix Dimensionality

Training Xtrain 208,275 × 3
Test Xtest 104,171 × 3

5.1.3. Data Cleaning

It is important to clean the real data before training a model because it can be inconsis-
tent, noisy, and incomplete [24].

Missing values in a data set can be treated in several ways, one of which is by ignoring
the records and another is by filling in the missing values (manually, by constant, by mean,
by most probable value, etc.). In this article, the missing values are treated as indicated
in [16], a single imputation by the piecewise cubic Hermite polynomial interpolation [25].
For the missing values at the start and end of the data set, the closest nonmissing value is
employed to fill in the value.

As indicated in [22], outlier values are not always systematically eliminated, as this
could cause information related to failure prognosis to be lost. For this reason, the current
study first creates handcrafted specified ranges based on feasible values of the sensors’
signals (see Table 6). Then, the values that are outside these ranges are replaced by missing
values and treated in a similar way.

After the imputation stage, the mean ambient temperature is subtracted from the
mean shaft temperature to avoid the problem of seasonality [26]. Table 7 describes the
dimensionality of the two different subsets, training and test, after feature selection.

Table 6. Selected SCADA variables.

Variable Name Variable Description Range Units

wtc_MainBTmp Mean main shaft temperature [0, 120] °C
wtc_AmbienTmp Mean ambient temperature [− 5, 40] °C

wtc_PrWindSp Mean primary wind speed [0, 60] m/s

Table 7. Matrix dimensionality after the preprocessing stage.

Set Notation Matrix Dimensionality

Training Xtrain 208,275 × 2
Test Xtest 10,471 × 2

5.1.4. Data Normalization

Finally, each of the variables that will be utilized in the model must be normalized.
Otherwise, the model’s output could be skewed towards large-scale data [21]. Further-
more, normalization aids model training by making it easier to learn a single, rather than
numerous, data distribution. Hence, standardizing the data range of SCADA sensors is an
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important step in data preparation. In this article, the z-score normalization is employed,
which is computed as

zij =
xij − µj

σj
, (2)

where µj and σj are the mean and the standard deviation of column j, respectively, in the
training set. Note that xij is measurement at time step i at sensor j, and zij is its normalized
value.

5.2. One-Class Support Vector Machine (OCSVM)

By tackling a quadratic optimization problem, the SVM technique described by
Vapnik [27] has demonstrated great performance for classification problems. This is why,
as the fundamental SVM paradigm recommends, a vast majority of condition monitoring
research uses both healthy and failure samples to train the model. However, in many cases
where negative (failure) samples are either unavailable or impossible to collect, such as
with WT systems, this technique is not practicable. OCSVM is a variant of SVM that may be
used to address this problem [28], as it is a semi-supervised algorithm; that is, it is trained
only on normal data, such as healthy samples in the present scenario, and it computes
the surface of a minimum hyper-sphere (decision boundary) containing all normal data
(healthy data). Then, after being trained, it classifies any points outside the hyper-sphere as
anomalies (failure-related data). The decision boundary is computed in a high-dimensional
feature space, H, using a suitable kernel function. In the present study, the radial basis
function (RBF) kernel is used. The fundamental goal of a OCSVM is to categorize data:

f (zi) =

{
0, if zi ∈ S
1, if zi 6∈ S,

(3)

where S is a hyper-sphere of a high dimensional feature space H, zi is a given sample,
f (zi) = 0 corresponds to the sample being classified as healthy, and f (zi) = 1 corresponds
to being classified as an anomaly. In the current context, z1, z2, . . . zl are training samples
belonging to the healthy class, Z; and l is the number of training samples. Next, given
the kernel Φ : Z → H, the training is accomplished by solving the following quadratic
programming problem:

min
1
2
‖w‖2 +

1
vl

l

∑
i=1

ξi − ρ, (4)

subject to
wT ·Φ(zi) ≥ ρ− ξi i = 1, 2, . . . , l ξi ≥ 0, (5)

where ξi > 0 are the slack variables, v ∈ (0, 1] is a parameter that specifies an upper bound
on the fraction of outliers (training points outside the estimated region), see [29]. Assuming
w and ρ are the optimized parameters,

f (zi) = sign((wT ·Φ(zi))− ρ) (6)

will be positive for the vast majority of samples in the training set. Figure 5 summarizes
the stages of the proposed methodology up to the training of the SVM model.
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Figure 5. Data preprocessing and training of the one-class SVM.

5.3. Inference Stage

The inferences are performed on the test data set Xtest once the model has been trained.
As previously stated, the model’s output must learn to distinguish healthy samples from
anomalies.

5.4. Fault Prognosis Indicator (FPI)

Generally, a threshold is set for FPIs. An alert is generated when the value of anomalies
(outliers) discovered by the model exceeds the set threshold. However, because 10 min
samples were utilized in this study, an overwhelming amount of false alarms might arise,
therefore rendering the approach worthless. This section explains the three steps involved
in computing a fault prognosis indicator (FPI) that is proposed to avoid this issue. The
one-class SVM technique is used to aggregate (count) outliers weekly (see Section 5.4.1),
following which the exponential weighted moving average (EWMA) filter is applied to the
weekly count of outliers, and lastly, a threshold is set.

5.4.1. Weekly Grouping

In the present study, the SCADA samples are obtained every ten minutes; thus,
1008 samples are acquired per week. The weekly grouping entails keeping track of the
number of samples, out of the total of 1008, that are categorized as anomalies by the one-
class SVM algorithm per week. Stated formally, given the i-th week, the number of samples
classified as anomalies in that week are counted and noted as Ci.

5.4.2. EWMA Filter

The moving average (MA) method is a well-known procedure used to smooth histori-
cal data [30]. It takes a time series and defines a fixed subset size. Taking the average of
the initial fixed subset of the sequence of numbers yields the first element of the moving
average. The subset is then updated as it moves ahead, with the initial number in the series
being omitted and the next value in the subset being included. By calculating the MA, the
impacts of random short-term fluctuations over a specified period of time are mitigated (in
the study case, false positives). The MA has various extensions, each one with its respective
characteristics, but their underlying purpose remains the same. The easiest type is the
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simple moving average (SMA), which averages the previous n data points in time series
data as follows:

SMAM =
PM + PM−1 + · · ·+ PM−(n−1)

n
, (7)

where PM is the time series value at time M, and n is the number of samples used in the
calculation.

Another typical MA extension is the weighted moving average (WMA), which im-
proves the behavior of the SMA by giving more relevance (weight) to recent data:

WMAM =
nPM + (n− 1)PM−1 + · · ·+ P(M−n+1)

n + (n− 1) + · · ·+ 1
. (8)

Furthermore, the exponential moving average (EMA) assigns a weight factor to each
sample depending on its seniority. The EMA can be calculated recursively as follows:

EMA1 = P1, (9)

for t > 1, EMAt = α · Pt + (1− α) · EMAt−1, (10)

where Pt is the value at time t, EMAt is the EMA value at t, and α is the decrease weight
degree (factor between 0 and 1) calculated as

α =
2

n + 1
. (11)

Finally, an approach that integrates the computation of weight factor for WMA and
EMA, called weighted exponential moving average (EWMA), is used in this study [31]. An
EWMA reacts more significantly to recent sample changes than a WMA, which applies
equal weight to all observations in the period. The EWMA has one parameter, α, to be
defined. This parameter is related to the importance of the current point in the EWMA
computation. The greater the value of alpha, the better the EWMA follows the initial time
series. The EWMA’s formula used in this study is applied to the weekly grouping time
series, Ci, as

EWMAt = αCt + (1− α)EWMAt−1, (12)

where EWMA0 is the mean of historical data, and α is the weight decided by the user. The
parameter α can be defined in terms of spans, s, commonly understood as an n-day EW
moving average,

α =
2

s + 1
. (13)

For the present study, s = 4, which means that it considers 4-week groups (around
a month). Actually, this selection is influenced by the findings of McKinnon et al. [32].
Their research, on the influence of time history on WT failures using SCADA data, tests
three distinct moving windows: daily, weekly, and monthly. In comparison to the others,
the weekly moving window has the best performance in identifying failures. On the one
hand, a daily window contains too much noise, leading to a large percentage of false
alarms. On the other hand, a monthly window removes much information and does not
allow any specification of when an anomaly occurred. Finally, note that the EWMA is a
recursive function.

Finally, the FPI activates an alert when the EWMA of the number of anomalies is higher
than a prescribed threshold. To define this threshold, first the training data set is passed
through the model. Then, the weekly counting and the EWMA filter are applied. The
mean (µ) and the standard deviation (σ) of the EWMA over the training set are calculated.
Recall that, for an approximately normally distributed data set, the values within one
standard deviation of the mean account for about 68% of the set; whereas within two
standard deviations account for about 95%; and within three standard deviations account
for about 99.7%. These percentages are rounded theoretical probabilities intended only
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to approximate the empirical data derived from a normal population. Thus, the so-called
three-sigma rule (or 3σ rule) expresses a conventional heuristic that nearly all values are
taken to lie within three standard deviations of the mean, and thus it is empirically useful
to treat 99.7% probability as near certainty. Thus, in this work, the threshold indicates that
values above three standard deviation of the mean should be considered as anomalies.

Therefore, the threshold is declared as

threshold = µ + 3σ. (14)

The final steps of the methodology (from the already trained SVM model) are described
in the flowchart given in Figure 6. The diagram explains how the Xtrain inferences are
grouped by weeks and then filtered to calculate a threshold. Then, the same process is
carried out with the Xtest inferences, not to calculate a new threshold but to use the already
defined threshold (with Xtrain) to trigger an alarm when the outputs trespass it.

Trained 

One-class SVM

Xtrain

Xtest

Weekly

counting

EWMA 

filter
μtrain  + 3σtrain 

Trained 

One-class SVM

Weekly

counting

EWMA 

filter

Is it over

the

threshold?

Inference

Trigger a

warning or 

fault alarm

Healthy

Yes

No

Threshold

Figure 6. Final steps of the proposed methodology (from the already trained SVM model).

6. Results and Discussion

This section details and analyzes the results of the proposed approach over the entire
wind park.

The inferences generated by the one-class SVM model from the test data of two
adjacent turbines impacted by similar wind speeds are shown in Figure 7. Recall that
thanks to the work orders, it is known that WT5 had the failure of interest to this study and
a main bearing repair scheduled for 11 June 2018, whereas WT6 had no working orders
related to this fault type. It can be observed, in Figure 7, that WT5 had many samples
(obtained every 10 min) labeled as anomalies prior to the repair date. On the other hand,
WT6 had a relatively small number of samples classified as anomalies.
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Figure 7. Mean main shaft temperature samples classified as healthy (blue) or anomaly (red) by the
one-class SVM algorithm for WT5 (left) and WT6 (right).

The next step involved counting the samples designated as anomalies on a weekly
basis. The acquired result for WT5 and WT6 is shown in Figure 8. It can be observed that
WT5 exhibited many anomalies in successive weeks before the component repair date.
WT6, on the other hand, had far fewer weekly anomalies. Although this weekly grouping
is a strong indication of a pre-failure in the main bearing, there were still a high number of
false positives that had to be addressed. The EWMA was applied to the weekly counting to
alleviate this problem.
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Figure 8. Number of anomalies per week for WT5 (left) and WT6 (right).

Figure 9 shows the results obtained with the proposed FPI for the whole wind park
composed of 18 WTs over the test data set. On 15 October 2018, two days before a blade
failure, the model set off an alarm at WT4. The method identified it, even though it was
not a failure of interest that could be forecast well in advance. At WT5, which presented
the failure of interest (main bearing) on 11 June 2018, the model raised an alarm for the
first time in March, followed by three times in April, and once on the day of failure. Thus,
the proposed strategy detects the fault months before it happens. Additionally, note that,
for WT5, there is a clear trend of residuals increasing and then decreasing. When bearing
failure initiates (or develops), there is usually a brief heat release rendered as temperature
increasing. As it is stated in [20], almost all bearing failure modes (excessive current, fatigue
fracture, thermal cracking, etc.) are driven by unforeseen heat release. After that, the
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temperature goes back to normal, i.e., crack is not growing. It is crucial that despite the
residuals going back under the threshold, the triggered alarm must be kept active. Thus,
the methodology’s approach is to predict this typical heat release in advance (to raise an
alert when there is a potential abnormal state) before the bearing is entirely damaged. At
WT17, a failure occurred in the gearbox on 29 May 2019, and it was repaired on 7 June of the
same year according to the work order. This was not the failure of interest, but it was also
predicted by the strategy on different occasions: three times in April and four times in May.
The activation alerts were presented several months in advance because the failure in this
element can be transmitted to the main bearing as they are closely connected. Therefore,
the strategy is capable of detecting failures at components close to the main bearing. It is
noteworthy that the remaining WTs in the wind park were accurately predicted as healthy,
with no false alarms. This is because the weekly counting of anomalies with the EWMA
filter effectively avoided false alarms, which is one of the main difficulties encountered by
this type of strategy.

Figure 9. Fault prognosis indicator (FPI) results over 18 in-production wind turbines. The red
horizontal line is the threshold value. The black vertical line indicates the main bearing fault.
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7. Conclusions

A methodology for early fault diagnosis of WT main bearings was presented in this
study. In particular, it proposed an anomaly detection model based only on wind speed,
ambient temperature, and main bearing temperature (given by the SCADA data). The key
advantages of the proposed strategy are listed below:

• The model is insensitive to other faults that are not closely connected to the component
of interest, because it only uses exogenous variables and the main shaft temperature
(the temperature variable most closely associated to the examined failure);

• The methodology is robust to seasonality and operating and environmental conditions;
• It does not require historical faulty data to construct the model;
• There is no need to install extra sensors, as only SCADA data (already available in all

industrial-sized WTs) is used;
• The methodology can be employed even when historical faulty data is unavailable;
• The results, obtained in an in-production wind park with 18 WTs, show that there

are very few false alarms, and for the fault of interest, an alarm is triggered several
months in advance.

The wind park data employed in this work include gearbox faults. Hence, future work
will tackle this system. The gearbox comprises several components (bearings, pinions, and
gears) and has a wide variety of fault scenarios. Furthermore, in WTs, it is a system that
frequently fails prematurely, and its maintenance is costly. Thus, a predictive maintenance
strategy capable of coping with the various faulty scenarios for this system would help to
reduce costs associated with wind park operation and maintenance.
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