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Abstract: Renewable energy has the characteristics of low carbon and environmental protection
compared to traditional water and thermal power, but it also has the intermittency and uncertainty
that traditional water and thermal power does not have. These characteristics make the inertia of
the power system increase, which greatly affects the frequency stability of the grid. To solve such
problems, the participation of demand-side resources (DSRs) in the dispatch of power systems has
become a viable solution.However, unlike generation-side resources, DSRs have their own unique
characteristics. In this paper, by taking into account a load frequency control system (LFC) with
intermittent demand-side resources, the robust H∞ load frequency control problem are discussed
in detail.A robust controller to coordinate the load side with the resource side is introduced. A
critical stability criterion and robust performance evaluation of the new LFC system was carried
out. Finally, simulation results based on the new LFC system are provided to demonstrate that the
proposed control strategy can effectively improve the stability and robustness of the grid under large
disturbances, thus allowing the grid frequency to return to the reference value.

Keywords: parameter uncertainty; intermittent characteristics; demand response; robust control;
LMI

1. Introduction

Load frequency control, as a basic function of modern interconnected power system
control, tracks the load change of the power system by controlling the active power of
the electric generator, and maintains the system tie line switching power at the planned
value, so as to achieve frequency stabilization of power system [1]. The conventional power
system frequency regulation mainly starts from the power side and performs “power
dispatch”. After receiving ACG commands, there is a delay between the power adjustment
action and power monitoring feedback, resulting in the phenomenon of power reverse
regulation.It is the consensus of all countries to vigorously develop clean energy, and
traditional means of frequency regulation can no longer fulfill the demands of steady and
safety operation of the grid [2].

Marketization of auxiliary services has become inevitable with the further advance-
ment of power system reform, load-side resources have gradually become feasible to
proactively participate in system regulation. Demand response is the main measure of
indirect consumer participation in grid dispatch, using financial incentives and price com-
pensation to guide consumer behaviour with a view to integrating and optimising the
allocation of resources between supply and demand [3].

DSRs can be designed with different control strategies for their participation in fre-
quency regulation according to different scenarios, which can be broadly classified into
three control modes: centralised, decentralised and distributed. Shortet al. discussed the
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principle of DSRs resources participating in power system frequency regulation, and re-
garded the switching state of temperature-controlled loads as positive and negative inputs
on the resource side [4]; Vardakas et al. classified DSRs into two categories, price-based
and incentive-based, and described the decision-making process of different types of DSRs
resources respectively [5]; Ciwei further extended the role of DSRs into the access of inter-
mittent new energy sources, which can incorporate frequency control, a short time scale
control, into the traditional scope of demand response, and use DSRs for frequency and
peak regulation of the system [6]; Yunwei et al. based on this, referred to the user-side load
that is flexibly controlled and quickly adjusts the load level in demand response as dynamic
controllable load, and in this way proposed that demand response can be incorporated
into auxiliary services that provide fast and reliable regulation capability for the power
system [7]. Bing, H simulated the rapid active participation of frequency-responsive loads
and voltage-responsive loads in fault regulation under emergency situations, and proved
that these two types of loads can help the grid to achieve power balance quickly and ensure
the safety and stability of grid operation [8].

As the research progressed, it became clear that, unlike conventional frequency reg-
ulation, DSRs do not seem to be as “peaceful” and have some characteristics that will
inevitably have a negative impact on the grid. Therefore, different control strategies need
to be devised for each characteristic. Taking the apparent operational delay of DSRs as an
example, Pourmousavi et al. first consider the impact of communication delays of DSRs
resources on single-area and multi-area LFC systems [9]; Yi et al. consider time delays as
inertial elements and state that the response characteristics should also be different for
different DSRs [10]. At exactly the same time, user comfort should also be considered as
an important reference indicator for designing control strategies [11]. In these results, the
intermittency of DSRs seems to have been all but ignored by them, which is the focus of
this paper’s research.

To meet user comfort, DSRs are constantly switched on/off, which gives rise to what
this paper calls the intermittent characteristic. The intermittent characteristics are particu-
larly evident for some high-capacity individual resources, i.e., large EV charging stations
and centralized central air condition. In fact, it has been pointed out that intermittency
can be mitigated or even eliminated through load aggregation, but it places new demands
on the coordination of individual resources, such as the reduction of intermittency-like
fluctuations arising from the uncertainty of electricity consumption between individual
consumers. For example, different DSRs should be recognized and different frequency
response thresholds should be designed for different DSRs [12] and different action de-
lays [11,13]. A multi-stage robust optimization problem was developed by C. Zhao et al.
taking into account the wind power output and the intermittent characteristics of DSRs [14].

we all know that no physical system can ever be accurately modelled and that its real
operation is subject to random disturbances in the environment. The same is true for power
systems, such as random load disturbances [15], uncertainties in the access of new energy
sources to the grid [13], variations in output due to random turbine vibrations [16], and
even the intermittent characteristics of the aforementioned DSRs resources, all of which
inevitably affect the stability of power systems. Some researchers [17] considered the
stability of time-varying time-lag power systems under Gaussian random disturbances,
and on this basis [18] proposed stochastic modelling of power systems; others [17,19]
designed sliding mode load frequency controllers for single-domain and multi-domain
power systems, respectively. However, all the above approaches only consider the action
strategies that the generation side can perform in response to stochastic disturbances;
however, there are few studies on the robust performance of delayed multi-domain power
systems that integrate the intermittent characteristics of DSRs, let alone the design of robust
controllers under a broad sense.

The frequent opening/closing of DSRs changes the supply/demand balance of the grid
at all times, and when the resource capacity of DSRs reaches a certain level, it may cause
fluctuations in the grid frequency and threaten the safety of the power system. Luckily,
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this paper proposes an intermittent controller that fully coordinates generation-side and
demand-side resources while taking into account the uncertainty of system parameters,
improving the stability and robustness of the grid under disturbances.

The main contributions are summarized as follow:

• Focusing on the unique characteristics of DSRs, dissecting their causes and designing
an intermittent control strategy to overcome their negative impact on the grid.

• A critical analysis of stability and robust performance is provided for new LFC systems,
considering the parameter uncertainties of the power system.

The sections of this paper are described below. A description of what the intermittent
characteristics of DSRs are and why they occur is presented in Section 2, introducing the
theoretical foundations of intermittent control and modelling the LFC system. Several
lemmas that will be needed in the next derivations are first given in Section 3. A critical
proof of the stability of the designed system is then shown, and the robustness performance
is analysed. A simulation result is presented in Section 4 to demonstrate the effectiveness
of the developed control strategy. Lastly, the paper concludes with a conclusion.

2. The Intermittent Characteristics of DSRs and Coordinated LFC Model

A description of what the intermittent characteristics of DSRs are and how it affected
the system stability will be explained in this section. A robust control strategy is then
introduced to address the intermittent characteristics of DSRs. A two-area LFC system
with time delays is also constructed to test the performance of this control strategy in grid
frequency regulation.

2.1. Cause of Intermittency of DSRs

The intermittency of DSRs’ participation in grid dispatch is a distinctly different char-
acteristic from the responsiveness of generation-side resources. It is typically characterized
by the rapid cyclic switching on and off of participating frequency regulation resources
within a limited period of time. This is motivated by considerations of user comfort, which
means that the response power of DSRs is neither constant at all times nor always sufficient
to fulfill grid requirements. In other words, DSRs need to be switched off to help the
grid maintain a balance between supply and demand when there is a frequency deviation,
and switched on to meet user comfort when their numbers are too low to provide regular
service. The classic example is air conditioner (AC).

The AC needs to be maintained in the temperature range between [Tmin, Tmax] to
meet the human comfort , from which we can obtain the operating characteristics of the
individual ACs in this temperature range and the on/off time parameters as shown in
Figure 1. It is worth noting that the intermittent characteristics of DSRs are more often
reflected in the large capacity of individual resources, which can be coordinated and
optimised to eliminate and mitigate the internal effects of individual resources on each
other. However, this does not mean that its intermittent characteristics do not exist. With
the large-scale and high-frequency use of DSRs in a short period of time, its intermittency
becomes a factor that must be considered.
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Figure 1. Classic intermittent DSRs: Air Conditioner.

2.2. Control Strategies for the Intermittent Characteristics of DSRs

Considering that demand-side resources are essentially frequency regulation resources
provided by users, when the control center is in frequency regulation, demand-side re-
sources will frequently be in two states of switching on/off, which will lead to certain inter-
mittent characteristics. If a large number of demand-side resources are directly involved
in the frequency regulation of the power system without coordination, the simultaneous
switching on/off of a large number of resources will cause huge load fluctuations, which
will seriously threaten the safety and stability of the power system, and the introduction
of large-capacity demand response resources with intermittent characteristics increases
the non-linearity of the system. Hence, appropriate control strategies are essential for the
steady and safety operation of the grid.

Assuming that the DSRs are involved in primary frequency regulation and that they
can detect and respond to grid frequency deviations. With this in mind, the response power
of the DSRs can be expressed in Formula (1).

PDSR(t) = K(t)× ∆ f (1)

where PDSR(t) denotes the real-time power response of DSRs in frequency regulation, ∆ f
indicates the deviation of the frequency from the reference value,K(t) is the control gain,
which is a time-varying function that can be described by Formula (2).

K(t) =

{
K, nT ≤ t ≤ nT + δ

0, nT + δ < t ≤ (n + 1)
(2)

K ∈ Rm×n is a constant control gain, T, δ are two parameters to be derived, represent-
ing the control period and control width of the DSRs respectively, which affect the stability
of the system. when taken large enough the control performance is favorable but sacrificing
the user comfort, conversely, when small, the switching frequency is high, which may cause
greater damage to the equipment and its repeated switching also causes disturbance to
the grid. At the core of the problem lies the design of the intermittent gain K(t). The two
remaining parameters, control period T and control width δ > 0, are related to the type of
DSRs and a more detailed derivation is then shown in Section 3.
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2.3. LFC Model with DSRs

This paper takes a two-region time-lag interconnected power system as the object
of study. Considering the intermittent characteristics of the DSRs and the parameter
uncertainty due to changes in the balance point during the actual operation of the system,
this subsection gives open/closed-loop system models of LFC system.

2.3.1. Open-Loop LFC System Model

Power systems are complex dynamic systems which consist of governors, prime
movers, generators, loads, contactors and proportional-integral controllers. The LFC
system model for a two-area interconnected system containing DSRs is shown in Figure 2.

Figure 2. Two-area LFC system with DSRs.

In the two-area LFC system model described in Figure 2, ∆Ei,∆Pvi,∆Pmi,∆ fi, i =
1, 2, . . . , N are power change in secondary frequency control, electromagnetic power devi-
ation, mechanical power deviation, the frequency deviation in area i. ∆P12 is the tie-line
power deviation and ∆Pdi is the active change in system load. ki, di, Tgi, Tchi, Kpi, Tpi, i =
1, 2, . . . , N denote control gain in secondary frequency regulation, time lag, time constants
for governors, time constants for turbines, system gain, time constants for system in area i.
T12 is the power simultaneous factor of the tie-line between two regions. bi is the regional
frequency offset factor and Ri is the droop gain in primary frequency control in area i.

As the system usually has multiple delays and is often modelled as a time lag module
to simplify the analysis, the system dynamic state–space representation can be described by:

ẋ(t) = Ax(t) +
N

∑
i=1

Aix(t− di) + B1u1m(t) + B2u2n(t) + Bww(t)

z(t) = Cx(t) + Dww(t) (3)

Considering the errors in system modelling and the uncertainty in power system
parameters due to changes in the equilibrium operating point of the power system [20],
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the above state–space representation can be extended to a model containing the parameter
uncertainty terms as follows, namely:

ẋ(t) = (A + ∆A)x(t)

+
N

∑
i=1

(Ai + ∆Ai)x(t− di) + (B1 + ∆B1)u1m(t) + (B2 + ∆B2)u2n(t) + Bww(t) (4)

State vectors can be defined as x(t) = [∆ f1, ∆Pm1, ∆Pv1, ∆E1, ∆P12, ∆ f2, ∆Pm2, ∆Pv2
, ∆E2] A is system matrix, Ai, i = 1, 2, . . . , N is the matrix of time lag term coefficients,
B1 is the input gain on the generation side, B2 is the input gain on the DSRs. u1m(t) is
generation-side resources input, while u2n(t) indicates DSRs input. Bw is the gain of the
perturbation, which defaults to 1 in this paper. C is the output gain. Dw is the direct
transmission matrix. N is the number of regions of the LFC system subject to the study,
which in this paper is constant 2 Specific parameter data can be found in the Appendix A.
To facilitate the design of controller, the parameter uncertainty term is assembled and can
be replaced by A, Ai, Bi for A + ∆A, Ai + ∆Ai, Bi + ∆Bi.

To ensure the asymptotic stability of the whole system, we assumed that each region
of the system satisfies the following basic assumptions:

1. (A, Bi) is controllable and rank(Bi) = mi
2. The uncertainty term ∆A, ∆Ai, ∆Bi is bounded and satisfies max{‖∆A‖, ‖∆Ai‖, ‖∆Bi‖}

≤ h, where ‖�‖ is the norm of the matrix and h is a constant greater than zero. The un-
certainty can be described by the following matrix:

[∆A, ∆Ai, ∆Bi] = HF[EA, EAi , EBi ] (5)

where the real constant matrix H, EA, EAi , EBi ∈ Rm×n describing the upper bound on the
uncertainty component is known and the matrix F describing the uncertainty is unknown;
however, it satisfies the following constraint:

FFT ≤ I (6)

Assumption 1 holds, a state feedback controller can be designed whose input u1m =

[u11, u12]
T can be expressed as:

u1m(t) = Lx(t) (7)

It represents the use of conventional resources (hydro-fired units rotating standby,
etc.) in the primary frequency regulation of the system. Next, the controller for the DSRs is
designed, and its input u2n = [u21, u22]

T can be expressed as:

u2n(t) = K(t)x(t− d) (8)

whereby the time lag d of the DSRs is given and the intermittent control gain K(t) is the
parameter to be found, which can be formulated as Formula (2).

2.3.2. Closed-Loop LFC System Model and Robust H∞ Performance

By substituting u1m and u2n into Equation (4), the closed-loop state equation of the
system can be obtained:

ẋ(t) = Ax(t) +
N
∑

i=1
Aix(t− di) + B1Lx(t) + B2Kx(t− d) + Bww(t)

z(t) = Cx(t) + Dww(t), nT ≤ t ≤ nT + δ

ẋ(t) = Ax(t) +
N
∑

i=1
Aix(t− di) + B1Lx(t) + Bww(t)

z(t) = Cx(t) + Dww(t), nT + δ ≤ t ≤ (n + 1)T

(9)
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where L, K and ∆ are the controller gains and control width that need to be determined. The
robust H∞ performance indicator to be met for the closed-loop Equation (9) is as follows:

Jw(t) =
∫ ∞

0
[zT(t)z(t)− γ2wT(t)w(t)]dt < 0 (10)

under the initial conditions φ(t) = 0, γ > 0, if there exists an allowable bounded in-
puts u1m, u2n such that the system satisfying the above inequality for all permissible
parameter uncertainties.

3. Main Result

Based on intermittent control theory [21,22], Sections 2.2 and 2.3 give a robust controller
design scheme for the LFC considering the intermittent characteristics of DSRs. An analysis
of the stability and robust H∞ performance of the system is also presented, following the
introduction of some common lemmas.

3.1. Preliminaries

Before proceeding to system stability analysis, some common theorems are listed below:

Lemma 1 (Schur Complement [23]). For any given matrix:[
A B
B C

]
< 0

If A is invertible and satisfies A = AT , C = CT , then the formula above is equivalent to either
of the following expressions:

(1) C < 0, A− BC−1BT < 0,

(2) A < 0, D− BT A−1B < 0.

Lemma 2 ([24]). For any real matrix U, V, W ∈ Rm×n, and matrix M satisfies M = MT , then:

M + UVW + WTVTUT < 0

For all matrices satisfying VVT < I, there exists ε ∈ R, ε > 0, such that the following
equation holds:

M + ε−1UUT + εWTW < 0

Lemma 3. An inequality is valid for any vectors x, y ∈ Rm, positive definite matrix Q ∈ Rm×n:

2xTy ≤ xTQx + yTQ−1y

Lemma 4 (Halanay inequality [25]). Assuming that V : [µ− τ, ∞)→ [0, ∞) is a continuous
function and the following inequality is valid:

dV(t)
dt

≤ −aV(t) + b max Vt

is satisfied for t > µ,if a > b > 0, and then

V(t) ≤ [max Vµ] exp{−r(t− µ)}, t ≥ µ

where max Vt = supt−τ≤θ≤tV(θ) and r > 0 is the smallest real root of the equation:

− r = −a + b exp{rτ}
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Lemma 5 ([26]). Let V : [µ− τ, ∞)→ [0, ∞) be a continuous function such that:

dV(t)
dt

≤ aV(t) + b max Vt

is satisfied for t > µ,if a > b > 0, then:

V(t) ≤ max Vt ≤ [max Vµ] exp{(a + b)(t− µ)}, t ≥ µ

where max Vt = supt−τ≤θ≤tV(θ)

3.2. Controller Design

For any system, stability is a primary prerequisite. This subsection first analyses
the stability of the LFC systems accounting for parameter uncertainty and intermittent
characteristic DSRs and then gives the design steps for the controller; see Appendix B for a
more detailed proof of Theorem 1.

Theorem 1. An LFC system is exponentially stable if there exist positive definite matrices
P = PT , Q = QT , Qi = Qi

T , positive real numbers a1, a2, βi, b1, b2, real matrices H, and in-
termittent control parameters T, δ satisfying the following constraints.

(a) 

AX + XT AT + B1R + RT B1
T + a1X + M A1X A2X B2Y EAX EB2 R

XA1
T −Z1 0 · · · · · · 0

XA2
T 0 −Z2

. . .
...

YT B2
T ...

. . . −Z
. . .

...

XTEA
T ...

. . . − 1
ε1

I 0
RTEB2

T 0 · · · · · · 0 − 1
ε2

I


≤ 0

(b)
Si − βiX ≤ 0,

(c)
S− βX ≤ 0,

(d) 
AX + XT AT + B1R + RT B1

T − a2X + M A1X A2X EAX
XA1

T −Z1 0 0
XA2

T 0 −Z2 0
XTEA

T 0 0 − 1
ε1

I

 ≤ 0

(e)
a1 > b1 > b2

(f)
ρ = r(δ− τ)− (a2 + b)(T − δ) > 0

where r is a positive solution of −r = −a1 + berτ , τ = max(di, d), b1 =
N
∑

i=1
βi. Defin-

ing the relevant parameters X = P−1, Si = P−1Qi
−1P−1, S = PTQ−1P−1, Zi = Si +

εi+2XTEAi
TEAi X, i = 1, 2, the state feedback gains L, and K can be constructed as Y =

KX, R = LX. Z = S + ε5YTEB2
TEB2Y, ε1, ε2, ε3, ε4, ε5are real numbers greater than 0 that

satisfy the constraints, M = ( 1
ε1
+ 1

ε2
+ 1

ε3
+ 1

ε4
+ 1

ε5
)HHT .
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The exponentially stable robust controller parameters can be obtained by solving
inequalities (a) to (f), and it is clear that Theorem 1 is a linear matrix inequality constrained
feasibility problem that can be solved using the feasp solver in the LMI toolbox.

3.3. Analysis of H∞ Performance

When LFC systems possess H∞ performance, a certain level of stability is still achieved
under different perturbations of the system.

Theorem 2. For a prescribed attenuation level γ > 0, the LCF system is still asymptotically stable
and posses H∞ performance.

Proof of Theorem 1. The stability of the closed-loop system Equation (9) under zero initial
conditions is analysed below, and it follows easily from the proof of Lemma 1 that, for any
non-zero w(t), the following equality holds.

Jw(t) ≤
∫ ∞

0

[
zT(t)z(t)− γ2wT(t)w(t) + V̇(xt)

]
dt

≤ ξ1
T(t)Π1ξ1(t)dt

nT ≤ t ≤
nT + δ

Jw(t) ≤
∫ ∞

0

[
zT(t)z(t)− γ2wT(t)w(t) + V̇(xt)

]
dt (11)

≤ ξ2
T(t)Π2ξ2(t)dt

nT + δ ≤ t ≤
(n + 1)T

The above equation is equivalent to ‖z∞‖2
2 ≤ γ2‖w‖2

2. That is, the system has H∞
performance, where the energy function can be defined as V(t) = xT Px, and according to
the Lyapunov stability criterion we know that:

V̇(t) = 2xT(t)Pẋ(t)

= 2xT(t)P[(A + ∆A)x(t) +
N

∑
i=1

(Ai + ∆Ai)x(t− di) + (B1 + ∆B1)Lx(t) + (B2 + ∆B2)Kx(t− d)]

≤ xT(t)[PA + AT P + PB1L + LT B1
T P]x(t) +

N

∑
i=1

2x(t)T PAix(t− di) + 2x(t)T PKx(t− d)

≤ ξT(t)wξ(t)

where Π1 and Π2 can be expressed as:

∏1=



AP−1 + P−1 AT
+ BR + RT BT

+ CTC A1 A2 · · · AN BK CT Dw + PBw

A1
T −Q−1

1 0 0 · · · 0 0
A2

T 0 −Q−1
2 0 · · · 0 0

...
...

... 0 0
AN

T 0 0 · · · −Q−1
N 0 0

KT BT 0 0 0 · · · −Q−1 0
DTC + Bw

T PT 0 0 0 0 · · · −γ2 I + Dw
T Dw


and
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∏2=



AP−1 + P−1 AT
+ BR + RT BT

+ CTC A1 A2 · · · AN CT Dw + PBw

A1
T −Q−1

1 0 0 · · · 0
A2

T 0 −Q−1
2 0 · · · 0

...
...

... 0
AN

T 0 0 · · · −Q−1
N 0

DTC + Bw
T PT 0 0 0 0 −γ2 I + Dw

T Dw


where ξ1

T(t) =
[
xT(t), xT(t− d1), · · · , xT(t− dN), xT(t− d), w(t)

]
, ξ2

T(t) =[
xT(t), xT(t− d1), · · · , xT(t− dN), w(t)

]
.

4. Case Study

A controller demonstrated and analysed from Section 3 will be used in a two-area
LFC system [27]. The specific parameters of the 2-zone LFC are shown in Appendix A.
Simplifying the analysis, the parameters of Region I and Region II are identical, the time
lag is manually set to 0.1 s and the power synchronization factor T12 is 0.03. Detailed
parameters on the simulated system are described in Table 1.

Table 1. Parameters of a two-area LFC system.

Area Kpi Tpi Tchi Tgi bi Ri ki di

1 120 20 0.31 0.25 0.425 2.4 0.67 0.1
1 120 20 0.3 0.3 0.425 2.4 0.6 0.1

4.1. The Open-Loop LFC System

Assuming that the open-loop LFC Equation (9) has no additional external inputs and
is only controlled by proportional integration, i.e., the inputs on the generation and demand
sides u1m, u2n are zero, and a disturbance of 0.5 p.u. is applied in region 1, the frequency
deviation of the interconnected LFC system in both regions is shown in Figure 3. Due
to the characteristics of the regional interconnection, a disturbance in one of the regions
will inevitably affect the frequency stability of the whole network, and thus there is an
urgent need for a set of control strategies that can adequately coordinate the generation
and demand side resources.

Figure 3. Frequency deviation in LFC open-loop system.
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4.2. The Close-Loop LFC System

In order to verify the effectiveness of the proposed control strategy on a closed-loop
system, two simulation scenarios are designed to simulate the conditions that may occur in
real grid operation. In the first scenario, both generation-side and demand-side resources
are invoked, i.e., the DSRs are deployed by the aggregator to assist the grid to achieve
power balancing quickly and to ensure the security and stability of the grid operation.
In the second scenario, we consider the uncertainty of the system parameters, i.e., the
system dynamic equations do not describe the system characteristics and behaviour well
due to certain reasons, such as operating point drift and modelling errors. In both scenarios,
the control strategy proposed in this paper can be solved by LMI, and the detailed solution
steps can be found in Figure 4.

Figure 4. Detailed solution process of control parameter K and L.

4.2.1. Load-Side and Generation-Side Cooperative Control

In this section, the uncertainty in the system parameters is not considered. We only
need to solve Equations (a) to (f) in Theorem 1 to get to the corresponding controller
parameters, however, before doing so we need to make some reasonable assumptions to
reduce the difficulty of solving for the unknown parameters including the positive definite
matrix P, Qi, Q, the intermittent control parameters T, δ, and the positive real numbers
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a1, a2, βi, b2. An initial attempt at a solution was made and we found that it was difficult to
converge on a feasible solution due to the high dimensions of the system and the numerous
unknown variables. Therefore, two realistic assumptions were made, as described below:

• As mentioned in Section 2.2, the intermittent control parameters should not only take
into account the comfort of the user but also the stability of the system, otherwise the
intermittent input itself is a strong source of disturbance for the LFC system, and a
review of the relevant literature [28,29] shows that these two parameters are generally
a fixed value in a certain region and can be obtained directly.

• In Formulas (1) and (2) we present the input expression for a DSR resource with
intermittent characteristics, which should be related only to the frequency deviation of
the system.The DSRs are generally considered to be incapable of detecting any status
information other than local frequency deviations in the system, such as the tie line
power deviation ∆P12 and the active change in system load ∆Pdi, etc. Therefore, we
only need to solve for two parameters.

Figure 4, we first construct the corresponding matrix A, Ai, B, C, D based on the
structure of the system matrix in the Appendix A. In Step 2 we use Assumption 1, con-
sult the relevant literature and pre-determine the intermittent control parameters T, δ,
next we estimate the possible parameter uncertainty and represent it as a combination
of a known matrix H, EA, EAi , EBi and an uncertainty matrix F using the constraints in
Lemma 2, as discussed in the next section. In step 4, we can specify the positive real
numbers a1, a2, b, the principle being to require a1 to be as small as possible and a2 to be as
large as possible. A final set of feasible solutions was obtained using the feasp solver.

L =

[
43.05 26.04 3.39 1110.82 −784.52 22.81 10.61 1.39 1037.39
25.28 11.31 1.32 1083.02 −926.72 46.16 28.41 4.22 1405.06

]

K =

[
2.25 0 0 0 0 0 0 0 0

0 0 0 0 0 1.33 0 0 0

]
The simulation scenario remains the same as before and the above parameters are

brought into the simulation model. A performance comparison between the open-loop
system and the proposed control strategy with different intermittent control parameters
T, δ is shown in Figure 5, and the corresponding power response curves of the DSRs are
shown in Figure 6.

Figure 5. Frequency deviation of area 2.
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Figure 6. The response power of DSRs.

Figure 5 shows that, as compared to open-loop control, the proposed control strategy is
able to reduce the frequency deviation due to load variation, allowing the system frequency
to return to the reference value in a limited time. However, in practical engineering, due
to the capacity and control width of DSRs, we cannot use the DSRs resources as much
as we wish. Therefore, when the input of DSRs does not exceed the disturbance amount,
the higher the adjustable capacity of DSR resources, the more powerful the improvement
of the grid quality under the same intermittent control parameters. On the other hand,
when the control period T is fixed, the control width δ is proportional to the control effect,
and conversely, if it is smaller, its own intermittent characteristics are more intense for
the grid interference, even when the control width is smaller than a certain threshold, the
intermittent control width η = δ/T should be between 40% and 60%, so as to fully exploit
the potential of intermittent DSRs without unduly affecting the user comfort.A detailed
comparison of control performance can be found in Table 2.

Table 2. Comparison of results for control performance.

Method Maximum Frequency Deviation Transient Time

Open-Loop System 0.78 Hz 36.5 s
This Paper (δ = 3.5 s) 0.72 Hz 23.5 s
This Paper (δ = 4 s) 0.52 Hz 21.5 s

A power response curve for the DSRs is shown in Figure 6. where we can see that
the DSRs are constantly switched on/off for a fixed period of time. It is worth noting that
without the regulated capacity cap, the demand for DSRs is likely to far exceed the amount
of this disturbance itself.

4.2.2. Load-Side and Generation-Side Cooperative Control with Parameter Uncertainty

In this paper, parameter uncertainties due to variations in the operating point of
the interconnected LFC system or modelling errors are considered, and the following
simulation results show that the control strategy proposed in this paper can improve
the robustness of the system. Suppose the system parameters are varied over the range
shown below:

Tg1 ∈
[
0.2 0.4

]
, Tg2 ∈

[
0.25 0.5

]
, Tch1 ∈

[
0.22 0.48

]
Tch2 ∈

[
0.3 0.46

]
, Kp1 ∈

[
95 120

]
, Kp2 ∈

[
95 120

]
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According to Lemma 2, the above parameter uncertainty can be rewritten as a combi-
nation of a given parameter H and an uncertain parameter F. We assume that the values
of the above parameters are H = 0.1I, F are matrices satisfying constraint FFT ≤ I gen-
erated by orthogonal decomposition, and then the system parameters EA, EAi , EBi can be
expressed as:

E = F−1H−1∆ (12)

where ∆ denotes the variation of the system matrix parameters, yielding a set of
feasible solutions:

L =

[
52.86 33.83 4.89 1171.59 −766.23 19.94 8.62 1.02 990.97
19.59 8.11 0.63 936.96 −817.82 50.91 33.39 5.59 1333.08

]

K =

[
18.98 0 0 0 0 0 0 0 0

0 0 0 0 0 3.69 0 0 0

]
The simulation scenario is as follows: there exists a certain level of uncertainty in the

system parameters that makes it impossible to stabilise the grid frequency in the presence of
external disturbances by relying solely on conventional side sources; the specific frequency
deviation can be seen in Figure 7.

Figure 7. Frequency deviation of the LFC system considering parameter uncertainty with No
control input.

As shown in Figure 7, a perturbation of 0.5 p.u. is applied in region 1, and the system
is no longer stable due to the change in system parameters. The robustness of the control
strategy proposed in this paper is tested in the following. The simulation scenario is set
up exactly as before, and there are some limitations in the use of DSRs. We tested the
system frequency deviation under different intermittent control parameters separately, the
curves of frequency variation when the system is subject to perturbations with different
parameters are given in Figures 8 and 9, and more detailed data indications can be found
in Table 3.

Table 3. Comparison of the control performance results under parameter uncertainty.

Method Maximum Frequency
Deviation Transient Time

Open-Loop System Unstable system(∞) Unstable system(∞)
This Paper (δ = 5 s) 0.35 Hz 72 s
This Paper (δ = 6 s) 0.19 Hz 33 s
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Figure 8. Frequency deviation of the LFC system when δ = 5 s.

Figure 9. Frequency deviation of the LFC system when δ = 6 s.

As shown in Figures 8 and 9, when the intermittent control parameter η is small, due
to the characteristics of the DSRs themselves, the system frequency decays and oscillates
at regular intervals, but eventually stabilises. On the other hand, when the intermittent
control parameter is chosen to be larger, the oscillation also occurs, but compared to the
former, both the overshoot and the regulation time are substantially improved, and the
grid frequency recovers quickly within a short period of time. Noteworthy is that when the
intermittency control parameter η is as small as a critical value, not only does it not alleviate
the disturbance caused by power loss, but it becomes a strong source of disturbance itself,
aggravating the frequency oscillation of the power system.Therefore, in the practical design
of the controller, the intermittent control parameters of the DSRs need to be considered,
and only when the appropriate parameters are chosen can the best frequency regulation
performance be obtained.

We have demonstrated that the system is robust regardless of whether the upper or
lower bounds for uncertain parameter variations are taken, based on the design scheme
in Section 3.2 Therefore, the load frequency robust controller designed in this paper is
insensitive to the uncertainty of the system parameters, has a small overshoot and a short
regulation time, which effectively improves the stability of the system.

5. Conclusions

A unique characteristic of DSRs, the intermittent characteristics, is noted, and the
reasons for this and its possible adverse impacts on the grid are analysed, followed by a
proposed intermittent control strategy for this characteristic, based on which the parameter
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uncertainties of the system are further considered. Finally, two simulation examples under
different scenarios are used to illustrate the effectiveness of the proposed control strategy.

A summary of the full paper is described as follows:

• The intermittent characteristics of demand-side resources are pervasive and are essen-
tially a compromise of demand response for the comfort of the users,which may affect
the steady and safety operation of the power system.

• Demand-side resources have great potential in grid frequency regulation, pressure
on regulation from the generation side would be greatly mitigated if they could be
coordinated and complemented with generation-side resources.
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List of Abbreviations

DSRs Demand-Side Resources
LFC Load Frequency Conrol
AGC Automation Generation Control
AC Air Conditioner

Nomenclature

L, K, T, δ Controller parameters to be determined
εi, a, b Constants greater than zero
∆E1, ∆E2 Power variation for secondary frequency regulation
∆Pv1, ∆Pv2 Electromagnetic power deviation
∆Pm1, ∆Pm2 Mechanical power deviation
ki, di Control gain for secondary frequency regulation, Time lag
Tgi, Tchi Governor and turbine time constants
Kpi, Tpi Power system gain and time constants

Appendix A

This section will give the specific parameters of the matrix mentioned in this paper.

A =



− 1
Tp1

Kp1
Tp1

0 0 −Kp1
Tp1

0 0 0 0

0 − 1
Tch1

1
Tch1

0 0 0 0 0 0
− 1

Tg1R1
0 − 1

Tg1
0 0 0 0 0 0

k1B1 0 0 0 k1 0 0 0 0
2πT1 0 0 0 0 2πT2 0 0 0

0 0 0 0 −Kp2
Tp2

− 1
Tp2

Kp2
Tp2

0 0

0 0 0 0 0 0 − 1
Tch2

1
Tch2

0
0 0 0 0 0 − 1

Tg2R2
0 − 1

Tg2
0

0 0 0 0 k2 k2B2 0 0 0


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A1 =

02 × 3 02 × 1 02 × 5
01 × 3 − 1

Tg1
01 × 5

06 × 3 06 × 1 06 × 5

 A2 =

07 × 8 07 × 1
01 × 8 − 1

Tg2

07 × 8 0


B1 =

[
0 0 − 1

Tg1
0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
Tg2

0

]T

B2 = Bw =

−Kp1
Tp1

0 0 0 0 0 0 0 0

0 0 0 0 0 −Kp2
Tp2

0 0 0

T

C =

[
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

]T

Dw =

[
0
0

]
Appendix B

Proof of Theorem 1. First, the Lyapunov function, below:

V(t) = xT(t)Px(t) (A1)

Substitute the closed-loop system model Equation (9) into the above equation and
take its derivative with respect to time,for nT ≤ t ≤ nT + δ , the following results can be
derived from applying Lemma 1 and the assumptions:

V̇(t) = 2xT(t)Pẋ(t)

= 2xT(t)P

[
Ax(t) +

N

∑
i=1

Aix(t− di) + B1Lx(t) + B2Kx(t− d)

]
≤ xT(t)

[
PA + AT P + PB1L + LT B1

T P
]

x(t)

+
N

∑
i=1

xT(t)PAiQi Ai
T Px(t) +

N

∑
i=1

xT(t− di)Qi
−1x(t− di)

+ xT(t)PB̄2KQKT B̄T
2 Px(t) + xT(t− d)Q−1x(t− d)

= xT(t)[PA + AT P + PB1L + LT B1
T P +

N

∑
i=1

PAiQi Ai
T P

+ PB̄2KQKT B̄T
2 P + a1P]x(t)− a1xT(t)Px(t)

+
N

∑
i=1

xT(t− di)(Qi
−1 − β1P)x(t− di) +

N

∑
i=1

xT(t− di)β1Px(t− di)

+ xT(t− d)(Q−1 − b2P)x(t− d) + xT(t− d)b2Px(t− d)

< −a1V(t) +
N

∑
i=1

βiV(t− di) + b2V(t− d)

(A2)

The next step is to prove that the above Formula (A2) is negative definite, Let:

Ω , PA + AT P + PB1L + LT B1
T P +

N

∑
i=1

PAiQi Ai
T P + PB̄2KQKT B̄T

2 P + a1P
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Pre and post multiply P−1 to Ω and substitute with the following variables: R =
LP−1, X = P−1, Si = P−1Q−1

i P−1, S = PTQ−1P−1. Then we can convert Ω ≤ 0 to:

(A + ∆A)X + XT(A + ∆A)T + (B1 + ∆B1)LX + XT LT(B1 + ∆B1)
T

+
N

∑
i=1

(Ai + ∆Ai)XS−1
i XT(Ai + ∆Ai)

T + (B2 + ∆B2)KXS−1XTKT(B2 + ∆B2)
T

+ a1X ≤ 0

Applying the Schur complement, we might discover that Ω ≤ 0 is identical to condi-
tion (a). An advantage of this is that matrix inequalities of high dimension can be simplified
to a series of LMI inequalities that can be easily solved by computer iteration. Using
conditions (a)–(c) and (A2), one concludes the following:

V̇(t) < −a1V(t) +
N

∑
i=1

βiV(t− di) + b2V(t− d)
nT ≤ t ≤ nT + δ

V̇(t) < a2V(t) +
N

∑
i=1

βiV(t− di)
nT + δ ≤ t ≤

(n + 1)T

Alternatively, the closed-loop system Equation (9) can be considered to possess robust
H∞ performance by ensuring that it is exponentially asymptotically stable with w(t) = 0.

By condition (a), (c), (d), the following conclusions can be drawn:

V̇(t) < a2V(t) + b1 max Vt (A3)

where, τ = max(di, d), b = b1 + b2, b1 =
N
∑

i=1
βi

Moving on, merely ensure that the error ‖e(t)‖ → 0, From Lemma 2 and (A2), One
could easily conclude that:

‖V(t)‖τ , max
t−τ≤θ≤t

|V(θ)| (A4)

the following conclusions can be drawn:

V(t) ≤ ‖V(0)‖τe−rt, 0 ≤ t ≤ δ (A5)

where r is the unique positive solution of −r = −a1 + berτ , by Lemma 4:

V(t) ≤ ‖V(δ)‖τe(a2+b)(t−δ) (A6)

= max
δ−τ≤t≤δ

|V(t)|e(a2+b)(t−δ)

≤ ‖V(0)‖τe−r(δ−t)e(a2+b)(t−δ)

for δ ≤ t ≤ T, assuming that T − τ > δ then:

‖V(T)‖τ = max
T−τ≤t≤T

|V(t)| (A7)

≤ max
T−τ≤t≤T

{
‖V(0)‖τe−r(δ−t)e(a2+b)(t−δ)

}
= ‖V(0)‖τe−r(δ−t)e(a2+b)(T−δ)

= ‖V(0)‖τe−ρ
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Using mathematical induction, we can prove, for any positive integer n, here is the
formula that certainly holds:

‖V(nT)‖τ ≤ ‖V(0)‖τe−nρ (A8)

There is one main premise, assume Formula (A8) holds when k < n. Now, we prove
Formula (A8) is valid when k = n + 1.

First, when t ∈ [nT, nT + δ], we have:

V(t) ≤ ‖V(nT + δ)‖τe(a2+b)(t−nT−δ)

= [ max
nT+δ−τ≤t≤nT+δ

|V(t)|]e(a2+b)(t−nT−δ)

≤ [ max
nT+δ−τ≤t≤nT+δ

‖V(0)‖τe−nρe−r(t−nT)]e(a2+b)(t−nT−δ)

≤ ‖V(0)‖τe−nρe−r(t−nT)e(a2+b)(t−nT−δ)

and

‖V((n + 1)T)‖τ

= max
(n+1)T−τ≤t≤(n+1)T

|V(t)|

≤ max
(n+1)T−τ≤t≤(n+1)T

[
‖V(0)‖τe−nρe−r(t−nT)e(a2+b)(t−nT−δ)

]
= ‖V(0)‖τe−nρe−r(δ−t)e(a2+b)(T−δ)

= ‖V(0)‖τe−(n+1)ρ

Thus, Equation (A8) holds for all positive integers k. For any t > 0, there is n0 > 0,
such that n0T ≤ t ≤ (n0 + 1)T.

V(t) ≤ ‖V(n0T)‖τe(a2+b)(t−n0T)

≤ ‖V(0)‖τe−n0ρe(a2+b)T

≤ ‖V(0)‖τe(a2+b)Teρe−
ρ
T t

Let M = ‖V(0)‖τe(a2+b)Teρ, we have:

λm(p)‖x(t)‖2 ≤ V(t) ≤ Me−
ρ
T t, t ≥ 0 (A9)

Clearly,

‖x(t)‖ ≤

√
M
λm

e−
ρ

2T t.
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