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Abstract: The deployment of a 765-kV transmission line on Eskom’s South African Grid marks the
beginning of a new era in power industries. The integration of renewable energies by independent
power producers (IPPs) leads to an infrastructural change in the stability performance of the entire
grid. These developments are expected to bring about a multiterminal direct current (MTDC) system
for practical implementation on this grid. Therefore, this study focuses on the dynamic response of
the South African transmission grid during a system disturbance. In the carrying out of this study,
the South African grid was modeled on PSCAD, and its performance was evaluated. The impact
of the MTDC link on the grid’s interarea oscillation was also investigated. An additional current
order controller for the MTDC link was developed, and its impact on the MTDC power transfer was
analyzed. The results show a better system performance and reduced interarea power swings with
the inclusion of the MTDC link.

Keywords: fault clearing time; oscillation damping; interarea oscillation; line commutated converter
(LCC); high-voltage direct current (HVDC); multiterminal direct current (MTDC); rotor angle; short
circuits ratio

1. Introduction

The South African economy has undergone some sustainable economic growth and
increasing prosperity since their independence [1,2]; however, the electric power deficits
experienced by the national grid over the last decade are becoming a big challenge [3].
These problems arise from the inadequate planning for load growth and failure to integrate
new generating plants to compensate for the ever-increasing load demand. The decommis-
sioning of aged, synchronous generators furthermore compounds these problems, making
the power utilities operate the grid as close as possible to the maximum transmission
capacity. Another problem faced is the weak tie-lines due to long-distance transmission,
making the voltage and power control more critical with increased transmission losses.
This congested transmission grid is very susceptible to voltage collapse; therefore, load
shedding is often introduced to avert this risk of total system collapse [3–5].

Due to the abundance of coal reserves, the electricity generated in the country is
mainly from fossil fuels [6–8]. This means of generation is well-known to be a significant
contributor to greenhouse gases and plays a significant role in the depletion of the ozone
layer. Renewable energy sources present a viable promising solution to a more environ-
mentally friendly generation, transmission and even consumer side. It offers the benefit of
an increase in the economic growth rate in the country. Thus, South African governments
welcome the integration of renewable energy by independent power producers (IPPs) into
the national grid [9–11]. However, renewable energy integration requires better grid code
compliance and a stable transmission medium [12]. Therefore, a high-voltage direct current
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(HVDC) system is often used for the interlink between the source and the grid before being
distributed using AC lines; some examples are the ±533 kV 1920 MW Cahora Bassa inter-
linking Mozambique and South Africa [13], ±800 kV 6000 MW NER-Agra Multiterminal
HVDC [14], ±500 kV 4.5 GW Zhangbei VSC-HVDC Power Transmission Project [15], etc.

Both AC and DC transmissions come with their capabilities and limitations; an AC
transmission allows quick and easy voltage transformation from one voltage level to
another. However, its susceptibility to a cascading problem during systems disturbance
makes the DC transmission system a more viable option. Other advantages of the DC
transmission systems are bidirectional power controllability, enhanced system stability,
reduced losses, asynchronous interconnection and reduced right of way [16,17].

The DC systems are gaining more publicity and are expected to have rapid growth in
both the short and long run. Many researchers have compared their mechanisms, structures,
topologies and other control measures [18]. Studies on the leveled cost, expected growth,
configurations and deployment are all mentioned in [18,19]. On power system interarea
oscillations, the convectional solution is by careful coordination of the generator’s power
system stabilizer and the automatic voltage regulators. Other secondary controllers such
as the governor are added for better reliability of these generating plants. Elizondo et al.,
in [20], gave comprehensive literature on the problems arising, from small signal stability
to the future trend. On the South African grid, Minnaar et al., in [21], recorded different
types of faults that occurred along the South African transmission network. They further
conducted a reliability check of the grid based on the probabilistic fault performance
parameters with respect to the season, time of day and climate. They found that most
of the fault on this grid is due to bird streamers, with 38% occurrence, lightning with
26% and fires with 22%. Additionally, in [5], Corsi et al. applied a coordinated automatic
real-time secondary voltage regulator (SVR) to the South African transmission grid, thereby
providing improved power quality and controllability and stability to the grid. The study
on the impact of the HVDC link on the South African grid during a three-phase short
circuit was further carried out by Mbangula et al. [22]. This study investigated the rotor
angle stability of the South African transmission grid, focusing only on a two-terminal
converter technology. Oni et al. discussed the modeling of a multiterminal HVDC (MTDC)
system in [23] and evaluated the performance analysis using a single machine infinite bus
system and four area machine networks in [24] and [25], respectively. They found out that
the MTDC network significantly improves during a system disturbance. However, those
studies in the literature did not focus on the impact of a complementary controller on the
MTDC link or analyze the dynamic study of the MTDC link on the South African network,
especially on the 765-kV corridor. Additionally, there is limited literature on the analysis
of this 765-kV corridor of the Eskom South grid. Besides, the current Line Commutated
Converter (LCC) HVDC on Eskom is a ±533 kV Cahora Bassa HVDC link; therefore,
it will be a novel contribution to the body of knowledge to analyze this transmission
network with the usage of a MTDC scheme. Another contribution is the implementation
of a complementary controller for better damping of the oscillations during fault on the
AC grid.

Therefore, this study focuses on the performance evaluation of the South African
transmission grid when interconnected with a three-terminal LCC HVDC system. In
carrying out this study, a comprehensive dynamic system model was developed to facilitate
the analysis of the system and form the basis for postulating an appropriate and optimal
operating point. This research was also carried out to identify the potential usage of the
MTDC network on the South African grid and investigate the performance analysis of the
MTDC link and the complementary controller on the entire grid operating performance.
Given the complexity of the grid network, five of the eight grids were modeled on PSCAD,
and the impact of a substantial three-phase short circuit fault was analyzed on the grid
elements. Synchronous damping of the oscillations, bus voltage and converter response
during the steady-state and post-fault conditions are presented in this paper. Highlighted
below are the contribution of this manuscript.
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2. Challenges and Possibility of SA Grid

The South African power utility is one of the world’s largest electrical power utilities
in Africa, covering the generation, transmission and distribution of power all over the
South African region and in the neighboring Southern African region. The only DC line on
this network is the 1300-km ±533 kV Cahora Bassa HVDC line that interlinks the Sango
substation near the Zambezi River in Mozambique and the Apollo substation in the South
African Central grid [13,26]. Other electric power transfer is mainly via long AC lines
using either 756-kV, 400-kV or 275-kV transmission lines. The entire grid is characterized
by long weak tie-lines and, therefore, has low Short Circuit Ratios (SCR), thus becoming
a matter of necessity to analyze the various possible interaction effects between the AC
and MTDC networks. At low SCR values, transient DC quantities are likely to exhibit a
commutation failure, especially at the inverter AC station. Other challenges are the AC/DC
interaction during overvoltage, harmonic oscillations during load shedding, converter
commutation failures, low mechanical inertias, recovery during system disturbance and
voltage stability [27–29]. Therefore, considering these effects requires careful design and
control measures to appropriately fit the operational scenarios of the MTDC network
incorporated into the South African grid.

The impact of cold weather during the winter season leaves the entire grid in limbo,
causing different transient load demands (see Figure 1). Another finding is the exponential
growth rate of the load demands in the country’s central grid. Figure 2 shows the provin-
cial load demands during the peak season, with the Central grid standing at 10,231 MW,
followed by the Eastern grid with 6160 MW at the 2017 peak load demand. Additionally,
the exponential load growth in the Central grid alone is expected to record an increase
of ≈5.2 GW in the year 2028, as published by Eskom in their transmission development
plan (TDP 2019–2028), as shown in Table 1 [30]. While these problems may persist, the
investigation into the usage of the MTDC system on this network cannot be overempha-
sized, as this will bring more knowledge on the reduction of active and reactive powers to
losses, improved stability margins and the ease of renewable energy integration. The South
African generation capacity is mainly coal-based due to the many coal reserves. Moreover,
the plan to integrate an additional power of 17,800 MW of renewable energy by 2030 will
require an alternative and efficient means of transmission for this renewable source that is
expected to represent about 20% of the country’s installed capacity.
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Figure 1. Impact of the load demand during the winter season.
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Figure 2. South African provincial load demand [30].

Table 1. Load progression in the Central grid.

Year
Zonal Demand

Grid Peak
West Rand Johannesburg East Rand Vaal

2019 3749 3600 3248 1838 11,439
2020 3841 3687 3314 1957 11,751
2021 3966 3794 3476 1972 12,204
2022 4113 3832 3579 2006 12,634
2023 4213 3896 3629 2025 12,901
2024 4334 3966 3717 2063 13,299
2025 4508 4141 3813 2093 13,702
2026 4721 4267 3889 2111 14,033
2027 4942 4398 3985 2135 14,547
2028 5138 4542 4100 2165 15,057

3. Network Modeling

The South African grid is divided into seven geographical operating units consisting
of generation, transmission and a distribution network. In the carrying out of this study, six
out of the eight grids were modeled with transmission voltage levels of 765 kV and 400 kV,
as shown in Figure 3. The networks used are the Northern, Central, North-West, Southern
and Western grids. Table A1 in the Appendix A highlights the generators used and their
respective installed capacities.
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Figure 3. Extract of the South African grid.

The synchronous generator control model consists of the IEEE Type AC4A alternator-
supplied rectifier excitation system and a single input power system stabilizer (PSS1A) to
control the generator stator voltage. Three network configurations were considered. The
first configuration explores the steady-state analysis of the network without the inclusion of
the MTDC network; the second scenario analyses the impact of the MTDC on the network.
The third network implements an auxiliary complementary controller to generate a new
DC current order (Idcnew) for the MTDC link. Details and diagrams of the excitation systems
and the PSS used were well-explained in [24]. A performance analysis was carried out
on PSCAD/EMTDC. This simulation tool was used for its best electromagnetic transient
studies and because its main application is in the implementation of the AC/DC network.

3.1. MTDC Link with Complementary Controller

The MTDC system used in this study is a three-terminal LCC HVDC link with two
rectifiers and one inverter, as shown in Figure 4. LCC HVDC system was utilized due to its
advantage over VSC HVDC for long-distance and bulk power transfer. It also has excellent
overcurrent capability, with well-established technology and robust devices, as well as
a proven circuit. Furthermore, from the research carried out by Minnaar et al. in [21],
the South African transmission grid has long-distance transmission lines and is prone to
overhead line faults. Therefore, a LCC HVDC system is preferred in these applications
because of its resilience to DC-side short-circuit faults. The LCC HVDC system can also
operate well during a low DC voltage and DC fault [31].



Energies 2022, 15, 4356 6 of 17

Energies 2022, 15, x FOR PEER REVIEW 6 of 17 
 

 

because of its resilience to DC-side short-circuit faults. The LCC HVDC system can also 

operate well during a low DC voltage and DC fault [31].  

 

Figure 4. Three-terminal LCC HVDC topology. 

The first rectifier used in this study is connected at the MAT_PS substation at a dis-

tance of 1540 km from the inverter station at Hera Substation. The second rectifier is con-

nected at the KOE_PS substation with a 540-km distance interval from the inverter station. 

Both rectifiers export power to the Hera substation in the Central grid.  

The configurations used for the MTDC controller were addressed in [23], with ad-

justments made to the Proportional and Integra (PI) voltage-dependent current order lim-

iter (VDCOL) and the overall power controller to obtain the desired VI characteristics. The 

two rectifier stations are in current control mode and, thus, commutate by varying the 

firing angle α or by controlling the AC voltage by using on-load tap changers (OLTC). The 

inverter station defines the voltage level of the entire MTDC link. The defining of the volt-

age level is done with the extinction angle of γ = γo control. The maximum value (γmax) is 

preselected from the constant extinction angle (γo) and the measured γmeas, which, when 

subtracted from pi, gives the firing angle (αI) for the inverter station (data in Table A2 in 

Appendix A). The data for this controller has been provided in Table A3 in Appendix A. 

An additional supplementary controller is added for a better DC power control dur-

ing system disturbances. This auxiliary controller uses the measured differential changes 

in the AC power to generate the additional DC current for the three converters. The DC 

current (Idc) is then added to Iord from the overall current controller. 

3.2. Transmission Line Data  

The tower geometric configuration used for the transmission line modeling is shown 

in Figure 5a,b. The parameters are shown in Table A4 in the Appendix A. 

 

Figure 5. Tower geometry for the overhead lines: (a) 400-kV geometry and (b) 765-kV geometry. 

  

IInvdcTR-1

Inv

Hera_BB

Rect-1

From 

KOE_PS

A
V

IRect2dc

Rect-2 

From 

MAT_PS

A
V

TI-1

TR-2

A
V

DC LINE 1 DC LINE 2

(a) (b)

39 [m]

15.4 [m]

C1 C2 C3

27.1 [m]

G1 G2

Conductors: 6TERN70

Tower: 765SC

10.425 [m]

0.0 [m]

0.32 [m]

Ground Wire 1: OPGW

Ground Wire 2: TIGER

25.67 [m]

8.5 [m]

C1 C2 C3

18.1 [m]

G1 G2

Conductors: 4ZEBRA70

Tower: 400SC

7.34 [m]

0.0 [m]

0.38 [m]

Ground Wire 1: OPGW

Ground Wire 2: S19

Figure 4. Three-terminal LCC HVDC topology.

The first rectifier used in this study is connected at the MAT_PS substation at a distance
of 1540 km from the inverter station at Hera Substation. The second rectifier is connected
at the KOE_PS substation with a 540-km distance interval from the inverter station. Both
rectifiers export power to the Hera substation in the Central grid.

The configurations used for the MTDC controller were addressed in [23], with adjust-
ments made to the Proportional and Integra (PI) voltage-dependent current order limiter
(VDCOL) and the overall power controller to obtain the desired VI characteristics. The
two rectifier stations are in current control mode and, thus, commutate by varying the
firing angle α or by controlling the AC voltage by using on-load tap changers (OLTC).
The inverter station defines the voltage level of the entire MTDC link. The defining of the
voltage level is done with the extinction angle of γ = γo control. The maximum value (γmax)
is preselected from the constant extinction angle (γo) and the measured γmeas, which, when
subtracted from pi, gives the firing angle (αI) for the inverter station (data in Table A2 in
Appendix A). The data for this controller has been provided in Table A3 in Appendix A.

An additional supplementary controller is added for a better DC power control during
system disturbances. This auxiliary controller uses the measured differential changes in the
AC power to generate the additional DC current for the three converters. The DC current
(Idc) is then added to Iord from the overall current controller.

3.2. Transmission Line Data

The tower geometric configuration used for the transmission line modeling is shown
in Figure 5a,b. The parameters are shown in Table A4 in the Appendix A.
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3.3. Converter Harmonic Filter Design

The first filter used for the converter design is the C-type filter in Figure 6a. The
design is a second-order filter with a minimum power loss at the fundamental frequency
(f ). This capability is due to the parallel RLC configuration, which further resonates at the
fundamental frequency. Thus, the fundamental current transferred through the damping
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resistors is significantly reduced. Additionally, this type of filter accomplished the further
suppression of high-frequency harmonics due to the inherent flat impedance characteristic
above the tuned frequency. The second filter is the high-pass filter capable of suppressing
fifth-order harmonic currents (Figure 6b). The branch impedance of this filter decreases
with the increasing frequency. Losses are minimized in this type of filter with a higher
resistance.
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The parameters for these filters are determined using Equations (1)–(6) [32], and the
parameters are indicated in Table A5 in the Appendix A.

C =
Qc

2π f V2 (1)

L =
V2

2π f Qc(h2
o − 1)

(2)

C1 =
Qc

2π f hV2

(
h2 − 1

)
(3)

R1 =
qV2

hQc
(4)

Z =

(
1
R
+

1
jwL

)−1
(5)

q =
R

2π f L
(6)

where h is the harmonic order, Qc is the filter reactive power, V is the system voltage, w
is the natural frequency and q is the quality factor. C and C1 are the series and common
capacitance, respectively, f is the fundamental frequency, L is the inductance, Z is the total
impedance and R and R1 are the series and parallel resistance, respectively.

4. MTDC Controller Setup
4.1. Rectifier Controller

The rectifier side of the LCC_HVDC system is controlled using the current control
strategy, as shown in Figure 7. The rectifier controls the current on the DC side. The
VDCOL is employed to limit the DC current order. The DC current deviation between the
DC current order and the DC filter current is used to generate the rectifier’s adjustment
signal, i.e., firing angle. The control principle of the rectifier controller is derived as

arect = π −
(

Kp_rec +
Ki_rect

s

)(
Iord − Idc_ f ilter

)
(7)

where Kp_rect and Ki_rect are the proportional and integral gains of the DC current controller
of the rectifier.
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Figure 7. Current and voltage controller.

4.2. Inverter Controller

The inverter side of the LCC-HVDC system is controlled using the constant extinction
angle control strategy. A block diagram of the constant extinction angle control strategy is
depicted in Figure 7. Based on the deviation of the measured firing angle (γmeas) from the
reference firing angle (γ0), the adjustment signal (ainv) is generated by a PI-based controller.
The control principle of the constant extinction angle control strategy for the inverter is
given in Equations (8)–(10):

ainv = max(aγ, aidc) (8)

aγ = π −
(

Kp_γ +
Ki_γ

s

)
(γ0 − γmeas + CEC) (9)

aidc = π −
(

Kp_id +
Ki_id

s

)(
Iord − Idc + Imargin

)
(10)

where Kp_y and Ki_y are the proportional and integral gains of the constant extinction
angle controller, K_id and Ki_id are the proportional and integral gains of the DC current
controller, CEC is the current error control that drives the DC current control and extinction
angle control and Imargin is the margin current for the DC side of the inverter that is usually
zero. When there is a voltage drop resulting from a disturbance or fault, the firing angle
is increased, which causes a significant deviation that may lead to instability. During this
period, the constant extinction controller will reduce the adjustment signal to control the
downward ramping of the DC voltage until it becomes stable.

4.3. Supplementary Controller

To improve the performance of the DC power controller, a supplementary (auxiliary)
controller is proposed. The proposed controller uses the measured deviation of the AC
side’s active power to generate a new current reference for the rectifier and inverter of the
LCC-HVDC system, as shown in Figure 8. The control principle of the auxiliary control is
based on the fourth-order lead–lag compensator that is derived as

Idc_new = Iord −
G4

1 + sT5
· N
Vdc

(11)

where

N =
G1(sT1)

1 + sT1
·G2(1 + sT2)

1 + sT3
· G3

1 + sT4
·∆P (12)

where G1, G2, G3 and G4 are the gains of the compensator, while T1, T2, T3, T4 and T5 are
the time constants of the compensator.
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Figure 8. Auxiliary controller.

The overall power controller shown in Figure 9 helps to generate the current order
for the three converters. It also helps to balance the power and current order of the entire
converter by ensuring that the DC current summation across the converters equals zero
(∑Idc = 0).

Energies 2022, 15, x FOR PEER REVIEW 9 of 17 
 

 

𝑁 =  
G1(sT1)

1 + sT1
∙

G2(1 + sT2)

1 + sT3
∙

G3

1 + sT4
∙ ∆𝑃 (12) 

where G1, G2, G3 and G4 are the gains of the compensator, while T1, T2, T3, T4 and T5 are the 

time constants of the compensator. 

 

Figure 8. Auxiliary controller. 

The overall power controller shown in Figure 9 helps to generate the current order 

for the three converters. It also helps to balance the power and current order of the entire 

converter by ensuring that the DC current summation across the converters equals zero 

(∑Idc = 0). 

 

Figure 9. Overall power controller. 

5. Simulation Result 

The grid was modeled on PSCAD/EMTDC, and the system’s response was evaluated 

following a 270-ms three-phase fault on the transmission lines between Hera and Groot-

vlie (He_Gr) substations. The fault was applied (10%) to the transmission line from the 

Grootvlie bus. The type of fault was carried out following different scenarios of fault anal-

ysis on the system. It was found that this fault location produced the most critical clearing 

time for the entire network. Therefore, the system’s response during this particular system 

disturbance was used as the base case.  

The generator power output, rotor angle, generator speed and bus voltage were pre-

sented graphically on a subplot during the dynamic analysis. Following this severe dis-

turbance at the He_Gr transmission line at t = 2 s simulation time, a 20-μs solution time 

and 100-μs channel plot step were used to compute the results. The parameter depicted 

on a subplot was for a better illustration of the system performance before, during and 

after the disturbance. The DC power, voltage and the firing angle for the converters were 

illustrated on a plot. For the synchronous generator plot, MED_PS and MAT_PS were 

chosen to represent the Northern grid generating plant and GRT_PS, KRIE_PS and 

TUT_PS were selected to represent the North-East grid, while KOE_PS and ANK_PS rep-

resent the generators from the Western grid. Furthermore, a strategic busbar was chosen 

from the main generating substation for the bus voltage to evaluate the voltage profile. 

The dynamic stability response of the network with and without the MTDC network 

is given in Figures 10–16. Figure 10a,b depict the generator active power plots without 

and with a MTDC link. Each generator power supply is represented on a per unit (pu) 

scale on these plots. The combination of both scenarios is shown in Figure 10c. The 

GRT_PS is already out of step on this plot, with its active power swinging between ≈±2 pu 

values. The results in Figure 12a with GRT_PS, a generating plant at the North-East grid, 

has proximity to the short circuit’s fault. Thus, the generator loses synchronism during 

IOrd

ΔP   Isdc

Idc new

sT1

1 + sT1

G1
1 + sT2

1 + sT3

G2 N/D

Vdc

D

N
G3

1 + sT4

G4

1 + sT5

Ptotal
N

D

Vdc

Min
I1nv

IO_INV
I1nvmax

IO_REC1Min

Irect1max

G
1 + sT

IO_REC2

e -sT

Figure 9. Overall power controller.

5. Simulation Result

The grid was modeled on PSCAD/EMTDC, and the system’s response was evaluated
following a 270-ms three-phase fault on the transmission lines between Hera and Grootvlie
(He_Gr) substations. The fault was applied (10%) to the transmission line from the Grootvlie
bus. The type of fault was carried out following different scenarios of fault analysis on the
system. It was found that this fault location produced the most critical clearing time for the
entire network. Therefore, the system’s response during this particular system disturbance
was used as the base case.

The generator power output, rotor angle, generator speed and bus voltage were
presented graphically on a subplot during the dynamic analysis. Following this severe
disturbance at the He_Gr transmission line at t = 2 s simulation time, a 20-µs solution time
and 100-µs channel plot step were used to compute the results. The parameter depicted
on a subplot was for a better illustration of the system performance before, during and
after the disturbance. The DC power, voltage and the firing angle for the converters were
illustrated on a plot. For the synchronous generator plot, MED_PS and MAT_PS were
chosen to represent the Northern grid generating plant and GRT_PS, KRIE_PS and TUT_PS
were selected to represent the North-East grid, while KOE_PS and ANK_PS represent the
generators from the Western grid. Furthermore, a strategic busbar was chosen from the
main generating substation for the bus voltage to evaluate the voltage profile.

The dynamic stability response of the network with and without the MTDC network
is given in Figures 10–16. Figure 10a,b depict the generator active power plots without and
with a MTDC link. Each generator power supply is represented on a per unit (pu) scale
on these plots. The combination of both scenarios is shown in Figure 10c. The GRT_PS is
already out of step on this plot, with its active power swinging between ≈±2 pu values.
The results in Figure 12a with GRT_PS, a generating plant at the North-East grid, has
proximity to the short circuit’s fault. Thus, the generator loses synchronism during the
first swing. Since a disturbance applied to the network has the critical clearing time of the
system, the results showed that, following the disturbance, the first swing in the rated active
power in the line has a larger amplitude of 2 pu. However, other generating plants were
able to maintain stability with a very poor damping factor causing an interarea oscillation,
especially at the Western grid. This impact can be observed in the oscillations shown in
Figure 11a. However, following the same disturbance with the MTDC system, the results
in Figure 11b show that positive damping has been added to the generators’ oscillations
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on the network. Therefore, implementing the MTDC model on the grid provided a better
performance than the first case study. MAT_PS and GRT_PS with the worst post-fault
conditions were able to maintain a stable operating point after the third cycle.
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Figure 11a,b show the generator rotor angle (δ) dynamics in radian. In Figure 11a, the
GRT_PS synchronous generator was out of step from the rest of the synchronous machine.
It recorded a rapid increase in the rotor angle, while other generators witnessed a steady
increase with the continuous oscillation.

These generators, having yielded their excitation and AVR controls, remained unstable
even after clearing the fault due to insufficient decelerating torque to reduce the rotor
speed, i.e., the generators exhibited positive damping (TD) torque but with a negative
synchronizing torque (TS), causing a non-oscillatory instability. The unstable state involving
the rotor angle speed is usually referred to as electromechanical oscillations. The control
systems are intended to restore the power system to stable conditions and to align the
mechanical torque with the electromagnetic torque of each generator, thereby ensuring
the stability of the rotor speeds and that of the rotor angles. The inclusion of the MTDC
link on the network enhanced the stability condition, as seen in Figure 11b. The generators
experienced few rotor angle oscillations but were able to maintain a stable post-fault
condition when the fault was cleared. The turbine governor adjusts the mechanical torque,
and the voltage regulator tries to restore the voltage. The first oscillation of the rotor angle
is of interest, which may indicate whether or not the generator would remain synchronized.
The second observation on these plots is the interarea oscillations between the Northern
grid generators (MED_PS and MAT_PS) and the Western Gird generators (ANK_PS and
KOE_PS). These interarea swings are due to the long and weak transmission lines of the
two grids.

The generator angular speed response is shown in Figure 12a,b. In the first plot
(without the MTDC link), GRT_PS recorded a sharp angular acceleration up to 1.033 pu
at the time t = 2.34. The generator’s post-fault condition experienced unexpanded kinetic
energy, resulting in a continuous increase of the rotor speed and, thus, led to a loss of
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synchronism. Other generators were in stable condition but with insufficient damping
torque. Figure 12b shows a better generator speed with quickly damped oscillations. The
rotor angle eventually settled on a normalized new reference value. However, MAT_PS
and MED_PS had the worst post-fault conditions.

A specific busbar was selected and monitored for voltage profile variation. Figure 13a,b
show this voltage profile without and with the MTDC link, respectively. GRT bus has the
lowest dip of 0.16 pu in Figure 13a,b. These dips occurred due to high fault impedance
generated from the fault proximity. It is followed by KRIE bus and TUT bus, accordingly.
Additionally, the system without the inclusion of MTDC in Figure 13a experienced high-
voltage oscillations between the range of 0.7–1.1 pu. The dynamic voltage response in
Figure 13b with the implementation of the MTDC link shows a steady and stable post-fault
condition. However, the MED busbar recorded the worst post-voltage profile due to the
high impedance of the line from the generator to the load.

Finally, the firing angle for the converters is shown in Figure 14. The pre-fault values
were 29.75◦, 21.97◦ and 150.21◦ for rectifier 1, rectifier 2 and the inverter station, respectively.
Additionally, the DC power is shown in Figure 15 following a three-phase short-circuit
fault on the Gr_He transmission line. The plot shows the converters’ DC power with and
without a supplementary controller. This analysis evaluated the contributional impact
of the supplementary controller on the active power transfer across the multiterminal
converters. At simulation time t = 2 s, the power transfer dips to −8 MW, meaning a reverse
transfer into the rectifier link. However, with the VDCOL, the corresponding lower voltage
of 0.1 pu is selected, reducing the excessive fault current transfer into the inverter station.

The subsequent power oscillation is limited by the action of the VDCOL and the
inverter extinction angle controller, where the mode shifts between the voltage and the
current controller during the fault. The supplementary controller produces better power
oscillation damping for the MTDC link. Rectifiers 1 and 2 and auxiliary inverter power
(ARP1, ARP2 and AIP) showed more significant damping than rectifiers 1 and 2 and the
inverter (RP1, RP2 and IP) without the additional controller. The voltage level of the
converter is a pu of 600 kV. The DC voltage is subject to the VDCOL controller and depends
on the OLTC of the converter transformer. The proper settings of these two controllers see
minimum post-fault voltage oscillations.

Figure 16 shows the interarea power transfer between the transmission line linking the
North-East and the Central grids. The transmission lines considered for the first scenario are
Merc_Herm, Merc_Mid and Grt_Hera. In contrast, during the second scenario, the interarea
power transfer corresponds to the power across the AC lines (Merc_Herm, Merc_Mid and
Grt_Hera), plus the DC power across the rectifier 1 station. This plot shows the impact of
the negatively damped torque (Td) during the first scenario. With very poor damping, the
active power underwent a post-fault harmonic and was thus unable to meet the steady
operating condition. The implementation of the MTDC link provided an enhancement
in the damping of the interarea power oscillations, as the network recorded a significant
positive damping torque, thus providing a more stable post-fault condition. The impact of
the supplementary controller on the damping of the interarea power during the disturbance
is also shown on this plot.

6. Conclusions

The detailed response of South Africa’s transmission grid during a dynamic RMS
simulation was presented in the paper. Additionally, the benefits of implementing a
+600-kV three-terminal line commutated converter link were compared on the network’s
voltage, interarea oscillation and rotor angle stability. The initial response during a system
disturbance showed the loss of a synchronizing effect from both the AVR and PSS, which
caused the generator to lose synchronism with subsequent oscillations. A negative damping
torque for the rotor angle and negative synchronizing torque for the interarea oscillations
was observed during the first scenario. While GRT_PS was already out of step, the other
generators experienced a harmonic power oscillation amplitude as a continuous increase



Energies 2022, 15, 4356 14 of 17

in the rotor angle degree. Additionally, the additional impedance added to the system,
which resulted in a more weakened grid strength due to weak tie-lines, generated some
harmonics responses in the voltage profile. The modeling of the MTDC link on the grid
provided a better system performance, because the MTDC controller provided a robust
and enhanced improvement for the AC network. The results further showed that positive
damping was added to the inertial swing mode of all the generators and the interarea
oscillations. Thus, they showed the benefits of incorporating an MTDC link into a weak
AC grid.

The voltage profile was significantly improved and so was the minimization of the
generator oscillations. Among all the benefits, the power carrying capacity at a reduced loss
stood out. Therefore, the study provided the significant knowledge needed to implement an
LCC MTDC link with complementary controllers on the South African network. Adopting
this research into the network grid thus helped reduce the transmission losses with an
enhanced system stability margin. Finally, the auxiliary controller should be considered, as
it showed a good potential for the mitigation of an excessive active power dip of the MTDC
link during the system disturbance.
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Appendix A

Table A1. Synchronous generator.

Generator Installed Capacity (MW)

Med_PS 2000

Mat_PS 3000

Krie_PS 1770

Tut_PS 700

Koe_PS 2300

Ank_PS 2000

Grt_PS 600
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Table A2. Multiterminal high-voltage direct current data.

Parameter Rectifier 1 Rectifier 2 Inverter

Rated power (MW) 2000 2000 4000

DC current (kA) 0.89 0.677 1.57

α for rectifier, γ0 for inverter 14.8 18 15

Transformer per 6 pulse thyristor

Rating (MVA) 1000 1000 2000

Voltage AC/DC (kV) 400/600 400/600 400/600

Leakage reactance (pu) 0.18 0.18 0.18

PI Controller

Proportional Gain 1.0989 1.5363 1.5363

Integral time constant (s) 0.01092 0.01524 0.01524

VDCOL

Threshold input 0.4–1.0 0.4–0.9 0.4–0.9

Threshold output 0.55–1.5 0.55–1.0 0.55–1.0

Table A3. Auxiliary controller.

Gain Time Constant

T1 T2 T3 T4 T5

G1 1 10 s

G2 0.25 0.6 s 0.22 s

G3 1 0.012 s

G4 1 0.12 s

Table A4. AC transmission line data.

400 kV Line 765 kV Line

No of sub conductor 4 6

Bundle spacing 0.38 0.32 m

DC-resistance Ohm/m 0.0674 0.0718

GMR (Equivalent radius) 11.56 9.04 mm

Outer diameter 28.62 27 mm
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Table A5. Filter design.

AC filter Rectifier 1 Rectifier 2 Inverter

C-type Filter

C 4.00 1.98 5.50

C1 42.02 21.80 58.00

L 0.242 0.46 0.173

R 51.5 100.7 36.79

Rp 100 100 100

High Pass Filter

R 80 Ω 73 80

C 3.9 µf 1.5 4

L 0.0232 H 0.058 0.023

Table A6. MTDC transmission line (T-model) data.

R (Ω) L (H) C (µF)

Rectifier 1 to Inverter 14.50 0.61 26

Rectifier 2 to Inverter 5.40 0.58 26
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