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Abstract: The incineration process in waste-to-energy plants is characterized by high levels of inertia,
large delays, strong coupling, and nonlinearity, which makes accurate modeling difficult. Therefore,
an intelligent modeling method for the incineration process in waste-to-energy plants based on deep
learning is proposed. First, the output variables were selected from the three aspects of safety, stability
and economy. The initial variables related to the output variables were determined by mechanism
analysis and the input variables were finally determined by removing invalid and redundant variables
through the Lasso algorithm. Secondly, each delay time was calculated, and a multi-input and multi-
output model was established on the basis of deep learning. Finally, the deep learning model was
compared and verified with traditional models, including LSSVM, CNN, and LSTM. The simulation
results show that the intelligent model of the incineration process in the waste-to-energy plant based
on deep learning is more accurate and effective than the traditional LSSVM, CNN and LSTM models.

Keywords: waste-to-energy; deep learning; variable selection; intelligent modeling

1. Introduction

At present, the treatment methods for domestic waste usually include landfill, compost
and incineration [1,2]. According to the statistics and the volume of domestic waste removal
and transportation, the proportion of landfill treatment, compost treatment and incineration
treatment is 58.30%, 2.10% and 36.20% respectively, and the remaining 3.40% are treated by
simple landfill and stacking [3]. However, due to problems such as the large amount of land
required and environmental pollution, the proportion of landfill treatment and compost
treatment is decreasing year by year. The waste incineration process reduces the content
of harmful substances in the waste by pyrolysis and oxidation under high temperature
and high pressure. The volume of waste after incineration is reduced by more than 85%
and the weight is reduced by more than 75%. The waste incineration process greatly
eliminates the germs and harmful components in the waste, thus achieving the efficient
treatment of the waste. Additionally, the energy generated by incineration can be used
to generate electricity to realize a major goal of waste recycling [4]. It has been suggested
that waste incineration power generation technology has the advantages of “reduction,
recycling, and harmlessness”, and that it is currently the best way to deal with domestic
waste [5]. However, due to the complex composition of waste, the large fluctuations in
waste calorific value, and the fact that the incinerator is a multi-input and multi-output
(MIMO) object distinguished by high levels of inertia, large delays, strong coupling, and
nonlinearity, it is difficult to meet the needs of the subsequent combustion optimization.
Therefore, establishing an accurate and reliable intelligent model of the incineration process
of waste-to-energy plants is the key to subsequent incineration optimization [6,7].

Elisa [8] et al. used the mechanism modeling method to model the incineration process
of waste-to-energy power plants, but there were problems related to the complicated
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derivation process and low precision. Therefore, data-driven modeling has been widely
used in combustion process modeling [9,10]. Peng et al. [11] established a multi-input and
single-output model for boiler combustion oxygen content based on big data and a neural
network, and enhanced the neural network through Bayesian arithmetic, which solved
the problem of slow learning speed and the problem of obtaining the optimal value in a
small range of the classical neural network. Based on the operating data for a boiler in a
thermal power plant, Song et al. [12] used a radial basis neural network to establish a model
with the flue gas oxygen content, furnace negative pressure and steam pressure as outputs.
Compared with a back propagation (BP) neural network, a radial basis function (RBF)
neural network has better categorization capability, approximation ability and learning
speed, but it has poor resistance to noise in the sample data. Zhong et al. [13] used the
particle swarm algorithm and support vector machine to establish a boiler exhaust gas
temperature model of a 660 MW unit, which provided guidance for the operation of the
boiler. However, for large amounts of sample data, support vector machines are prone to
overfitting and lack modeling accuracy. Due to the structural limitations of the algorithms
themselves, these algorithms cannot mine the deep information in the sample data [14].

With the rapid development of artificial intelligence, modeling methods based on
deep learning have attracted more and more scholars’ attention. Hu et al. [15] established a
boiler combustion efficiency model using a convolutional neural network for a 600 MW
supercritical unit boiler in Henan. Yu et al. [16] used deep CNN and support vector machine
to extract and analyze the deep features of flame images, and realized the modeling of
the NOx concentration of a 4.2 MW heavy oil combustion boiler. Zhang [17] established
a deep neural network model of a stacking noise reduction autoencoder and LSTM net-
work considering the characteristics of ultra-supercritical units such as high inertia, large
delays and noise in the actual data. However, the existing modeling methods generally
have defects such as too few input and output variables, which are far from the actual
operation of the actual unit, and the inability to express the dynamic characteristics of
the model. Therefore, in the process of model establishment, in addition to selecting the
modeling method, the selection of input variables will also affect the modeling accuracy.
Wang et al. [18] utilized principal component analysis means to lower the dimension of the
multi-dimensional input variables of wind turbines. Although the feature dimension was
reduced, the original data was changed and the interpretability of the model was reduced.

Incinerator incineration process modeling data are characterized as complex large
sample data, nonlinear time series, etc. Compared with the methods described above,
the deep learning network method can use the complexity relationship between data
to automatically model and adjust the model parameters so as to establish the optimal
nonlinear model between input and output. That is, this method is able to use the time
series’ characteristics or other complex relationships between historical data to model
through deep learning networks. In summary, an intelligent model of the incineration
process of waste-to-energy plants based on deep learning is elicited. First, the output
variables are selected from the three aspects of safety, stability and economy. The initial
variables related to the output variables are determined. The input variables were finally
determined by removing the invalid variables and redundant variables through the Lasso
algorithm. Secondly, each delay time is calculated, and a multi-input and multi-output
model based on deep learning is established. Finally, the model proposed in this paper is
compared with the traditional model to verify the improvement in its accuracy.

2. Basic Method Principle
2.1. Waste-to-Energy Treatment Technology

After the garbage is transported to the incineration plant, it is fermented in a garbage
storage tank for 3–5 days to increase the calorific value. The calorific value of the waste
after fermentation is about 1800–2100 kcal/kg. Garbage fermentation mainly relies on the
role of microorganisms in the garbage. At the same time, during the storage of the garbage,
the water in the garbage is continuously leached out. After storage and fermentation, the
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garbage is moved to the feeding hopper by a hanging garbage grab, and is transported to
the incinerator through the feeding grate. The incinerator is composed of a multi-stage
mechanical grate, of which the first and second stages of the incineration grate are the waste
drying area, the third and fourth stages of the incineration grate are the waste gasification
area (main combustion area), and the fifth stage is the burning ember area. At the same
time, each section of the combustion grate includes a fixed grate, sliding grate and turning
grate. The sliding grates slowly push the garbage layer forward on the grate, and the
function of the turning grate is to drive the overturning grate pieces to turn up and down
through the reciprocating rotation of the overturning shaft, so as to support the garbage
bed in a local position, destroy the original garbage bed, cause the previously formed bed
to dislocate, and break the hard-shell surface and molten layer caused by burning. The
primary combustion air is blown into the interior of the garbage bed (like throwing a fire)
so that the garbage can be completely burned. The fan system consists of a primary air
system, secondary air system and furnace-wall-cooling air system, among the first two
wind systems that affect the combustion process. The primary air is extracted from the
garbage storage tank, heated to about 180 ◦C by the air preheater, and sent to the bottom
of the incinerator through the gap between the grate pieces of the incinerator. Then it
penetrates the garbage bed and enters the incinerator chamber, where it is mixed with the
garbage and burns. At the same time, a negative pressure in the garbage pond is established
to prevent the overflow of garbage odor, so as to achieve effective management of odor. The
secondary air mainly adjusts the amount of oxygen to ensure better combustion conditions.
In view of the characteristics of China’s garbage, which has high moisture content, high
non-combustible content and low calorific value, the design of the rear arch of the furnace is
adapted, as shown in Figure 1, to form a good aerodynamic field and help combustion [19].
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Figure 1. Incinerator structure diagram. Figure 1. Incinerator structure diagram.

2.2. Lasso Algorithm

Least absolute shrinkage and selection operator (Lasso) is a penalty-based variable
selection method first proposed by the famous statistician Robert Tibshirani in 1996 [20,21].
The specific principle is as follows.
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The following is an example of a typical linear regression model:

yi = β0 +
p

∑
j=1

xijβ j + ei i = 1, 2, · · · , n (1)

There are n sets of observations, and each group of observations consists of an input
variable yi and p-correlated predictor variables xi = (xi1, xi2, · · · , xip)

T .
The traditional method is to minimize the least squares objective function:

minmize
β0,β

n

∑
i=1

(yi − β0 −
p

∑
j=1

xijβ j)
2 (2)

In the general formula, the least squares estimation of β is not 0, and if n < p, there are
countless solutions that make the objective function 0, hence the result of the least squares
estimation is not unique. Therefore, this process needs to introduce a penalty function, that
is, regularization. The Lasso algorithm is based on the least squares estimation to introduce
a penalty factor to constrain the norm of β, as shown in the formula.

RSS(β̂) = argmin︸ ︷︷ ︸
β̂

n
∑

i=1
(yi − β0 −

p
∑

j=1
β jxij)

2 + λ
p
∑

j=1

∣∣β j
∣∣

β̂ = argmin
{
‖y− β0 − xβ‖2

2

}
s.t ‖β‖ ≤ t

(3)

In the formula, λ ≥ 0 is the hyperparameter, λ
p
∑

j=1

∣∣β j
∣∣ is the compression penalty, t is

the adjustment parameter, and the inequality ‖β‖ ≤ t effectively restricts the parameter
space and realizes feature selection.

2.3. Model Building Based on Deep Learning
2.3.1. Convolutional Neural Network

CNN is a feedforward network that was first used in image processing and has
excellent performance [22]. CNN has the characteristics of weight sharing, local connection,
and dimensionality reduction sampling, and can fully mine the local characteristics of the
data itself.

CNN generally contains three basic layers: a convolutional layer, pooling layer and
fully connected layer. The pixels in the local area of the input image are weighted by the
weight coefficient of the convolution kernel, the operation of feature extraction is completed
by the convolution layer, and the activation function introduces nonlinear changes to the
network model. The pooling layer performs dimension reduction sampling on the output
of the convolutional layer, and at the same time, the pooling operation results in translation
invariance in the CNN. The fully connected layer is where each node is linked to all the
nodes in the previous layer, which is used to synthesize the features extracted in the front,
as depicted in Figure 2.



Energies 2022, 15, 4285 5 of 12Energies 2022, 15, 4285 5 of 13 
 

 

 

Figure 2. Construction of CNN. 

This paper uses CNN to fully mine the features of the data, and the feature data pro-

cessed by the convolution operation is sent to the Bi-LSTM network for further operations. 

2.3.2. Bi-LSTM Model 

The cyclic unit construction of LSTM is exhibited in Figure 3. 

 

Figure 3. Cyclic unit construction of the LSTM network. 

1

tanht

t t

t t

t

c

o x
P b

i h

f








   
                  
   

  



 (4)

1( )t i t i t ii P x Q h b     (5)

 1t f t f t ff P x Q h b     (6)

1 0( )t O t o to P x Q h b     (7)

ttttt cicfc ~
1  

 (8)

1ta n h ( )t c t c t cc P x Q h b    (9)

)tanh( ttt coh   (10)

First, use the input 
tx  at the present moment and the external condition 

1th  at the 

previous moment to calculate 
tf 、 

ti 、 
to  and 

tc
~ . Secondly, use 

tf  and
ti  to update 

the memory unit 
tc , and finally, pass the internal state information to the external state 

th  in combination with 
to  [23]. 

LSTM can only extract forward sequence information, while Bi-LSTM (Bidirectional 

Long Short-Term Memory) extracts sequence information in both directions to obtain 

more data features [24]. Bi-LSTM consists of two layers of LSTM networks with the same 

input
convolutional 

layer pooling
 layer

convolutional
 layer

pooling
 layer

fully connected 
layer

output

1tc  






tc

1th  th

tx

tf ti totc


  tanh

tanh

Figure 2. Construction of CNN.

This paper uses CNN to fully mine the features of the data, and the feature data pro-
cessed by the convolution operation is sent to the Bi-LSTM network for further operations.

2.3.2. Bi-LSTM Model

The cyclic unit construction of LSTM is exhibited in Figure 3.

Energies 2022, 15, 4285 5 of 13 
 

 

 

Figure 2. Construction of CNN. 

This paper uses CNN to fully mine the features of the data, and the feature data pro-

cessed by the convolution operation is sent to the Bi-LSTM network for further operations. 

2.3.2. Bi-LSTM Model 

The cyclic unit construction of LSTM is exhibited in Figure 3. 

 

Figure 3. Cyclic unit construction of the LSTM network. 

1

tanht

t t

t t

t

c

o x
P b

i h

f








   
                  
   

  



 (4)

1( )t i t i t ii P x Q h b     (5)

 1t f t f t ff P x Q h b     (6)

1 0( )t O t o to P x Q h b     (7)

ttttt cicfc ~
1  

 (8)

1ta n h ( )t c t c t cc P x Q h b    (9)

)tanh( ttt coh   (10)

First, use the input 
tx  at the present moment and the external condition 

1th  at the 

previous moment to calculate 
tf 、 

ti 、 
to  and 

tc
~ . Secondly, use 

tf  and
ti  to update 

the memory unit 
tc , and finally, pass the internal state information to the external state 

th  in combination with 
to  [23]. 

LSTM can only extract forward sequence information, while Bi-LSTM (Bidirectional 

Long Short-Term Memory) extracts sequence information in both directions to obtain 

more data features [24]. Bi-LSTM consists of two layers of LSTM networks with the same 

input
convolutional 

layer pooling
 layer

convolutional
 layer

pooling
 layer

fully connected 
layer

output

1tc  






tc

1th  th

tx

tf ti totc


  tanh

tanh

Figure 3. Cyclic unit construction of the LSTM network.
c̃t
ot
it
ft

 =


tanh

σ
σ
σ

(P
[

xt
ht−1

]
+ b
)

(4)

it = σ(Pixt + Qiht−1 + bi) (5)

ft = σ
(

Pf xt + Q f ht−1 + b f

)
(6)

ot = σ(POxt + Qoht−1 + b0) (7)

ct = ft ⊗ ct−1 + it ⊗ c̃t (8)

c̃t = tanh(Pcxt + Qcht−1 + bc) (9)

ht = ot ⊗ tanh(ct) (10)

First, use the input xt at the present moment and the external condition ht−1 at the
previous moment to calculate ft, it, ot and c̃t. Secondly, use ft and it to update the memory
unit ct, and finally, pass the internal state information to the external state ht in combination
with ot [23].

LSTM can only extract forward sequence information, while Bi-LSTM (Bidirectional
Long Short-Term Memory) extracts sequence information in both directions to obtain more
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data features [24]. Bi-LSTM consists of two layers of LSTM networks with the same input
and different information transfer directions. The Bi-LSTM structure is shown in Figure 4.
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h(2)t = f (U(2)h(2)t+1 + W(2)xt + b(2)) (12)

ht = h(1)t ⊕ h(2)t (13)

⊕ is the vector concatenation.

2.3.3. Intelligent Model of Incineration Process Based on Deep Learning

The CNN-BiLSTM combined model not only combines the feedforward mechanism of
the CNN with the feedback mechanism of the RNN, but also greatly reduces the computa-
tional cost through feature extraction of the CNN. Furthermore, by combining the models
with BiLSTM, the model accuracy is improved.

Unlike steady-state modeling, dynamic models take into account the effects of time [25].
In the dynamic model of the CNN-BiLSTM incineration process, the output is not only
related to the current data of each auxiliary variable, but also related to the delay time of
the input and output variables [26].

In describing the dynamic characteristics of the waste incinerator combustion process,
due to the existence of the delay time d, the sampling point at time t can be represented
as {x(t− d), y(t)}. By discretizing the dynamic model of the incineration process, the
difference equation form of the dynamic model is obtained as:

y(t) = f [y(t− 1), · · · y(t− n), x(t− d)] (14)

The above formula can be expressed as an intelligent model of the incineration process
of waste-to-energy plants, which is a MIMO model. From the above equation, the output
variable of the model can be obtained and is shown as the relationship of the output values
of n past moments and the input values of d past moments.

3. Intelligent Model of Waste-to-Energy Plant Incineration Process Based on
Deep Learning
3.1. Variable Selection Based on the Lasso Algorithm

Before building an incineration model, the input variables and output variables of
the model should be determined. In this paper, the selection of the output variables of
the intelligent model of waste-to-energy plant incineration process took the three aspects
of safety, stability and economy into consideration. The output variables are the oxygen
content of the boiler flue gas outlet (CO2), steam flow (Q), the furnace temperature of the
incinerator (T1), and the temperature of the ember section (T2). The amount of oxygen
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is related to the load, and the amount of oxygen is used as a precursor to load changes.
When the oxygen feedback value is higher than the set value, it means that the air volume
is excessive or the garbage calorific value is insufficient. At this time, the boiler load
decreases. When the oxygen feedback value is lower than the set value, the boiler load will
increase. At this time, the boiler load should be reduced. If the oxygen content is lower
than a certain level, it means that there is an abnormal situation such as an explosion in the
furnace. At this time, the feeding should be stopped to prevent the garbage in the furnace
from deflagrating and causing danger. When the steam flow is stable, this ensures that
the steam turbine and generator work at the rated load and the equipment performance
is good. Ensuring that the furnace flue gas stays above 850 ◦C for 2 s can prevent the
generation of harmful flue gas dioxins. The temperature of the ember section is maintained
within a certain range, which ensures that the garbage is fully burned and improves the
combustion efficiency.

Mechanism analysis was used to select the input variables that have an impact on the
output variables. A total of 19 variables related to the output variables were screened out
from the variables collected by the power plant, namely, primary air flow, the temperature
of primary air, unit 1–5 primary air flow, secondary air flow, the temperature of secondary
air, unit 1–5 material layer thickness, the transmission speed of the sliding grate unit 1, the
transmission speed of the sliding grate unit 2, the transmission speed of the sliding grate
unit 3, the transmission speed of the sliding grate unit 4, and the transmission speed of the
sliding grate unit 5. Since the secondary air temperature basically does not fluctuate, and
there is a coefficient relationship between the transmission speeds of the five units of the
sliding grate, 19 variables were screened and 14 initial variables were obtained.

The 14 initial variables were selected by the Lasso algorithm, and 8 input variables
were finally obtained, namely, primary air flow, unit 1 primary air flow, unit 4 primary air
flow, unit 5 primary air flow, secondary air flow, unit 1 material layer thickness, material
layer thickness of unit 5, and conveying speed of sliding grate unit 1. Then, 25,200 sets of
data were selected from a northern waste power plant from 16:00 on 6 August 2019 to 10:00
on 8 August 2019, and the sampling time was 6 s. The unit and variation range of each
input variable are shown in Table 1. The local trend diagrams of the input variables are
shown in Figure 5.
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Figure 5. The local trend diagrams of the input variables.
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Table 1. Unit and variation range of input variables.

Serial Number Variable Name Unit Variation Range

1 primary air flow Nm3/h 13,500–23,069
2 Unit 1 primary air flow Nm3/h 299–5932
3 Unit 4 primary air flow Nm3/h 9721–17,763
4 Unit 5 primary air flow Nm3/h 1423–13,173
5 secondary air flow Nm3/h 4538–4673
6 unit 1 material layer thickness - 11.98–74.25
7 unit 5 material layer thickness - 1.27–5.05
8 unit 1 conveying speed of sliding grate mm/s 0.14–2.80

3.2. Calculation of Delay Time

Waste-to-energy generating units typically have large delays, and there is a time delay
between the various data collected by the power plant. When an input variable changes,
it takes a while for the output variable to react to the change. In order to ensure the
consistency of each input variable and output variable in the time sequence, a time delay
compensation algorithm based on mutual information is proposed. Mutual information
can calculate the correlation between the two groups of samples. By determining the
mutual information numerical value between the input variables and the output variables,
the delay time between the input variables and the output variables can be obtained (the
specific process can be found in [26]). Taking the steam flow as the output as an example,
Table 2 shows the maximum mutual information of each input variable for the steam flow
and the corresponding time delay at this time.

Table 2. Delay time and maximum mutual information of auxiliary variables.

Auxiliary Variable Number 1 2 3 4 5 6 7 8

Delay Time 260 290 240 90 210 280 70 250
Maximum Mutual Information 0.7794 0.6983 0.8434 1.0875 0.9343 0.7260 1.2867 0.7999

3.3. Model Establishment

The steps to build an intelligent model of the incineration process of a waste-to-energy
plant are as follows:

(1) The initial variables are screened by mechanism analysis and the Lasso algorithm,
and invalid variables and redundant variables are removed.

(2) Data preprocessing, including outlier removal, noise reduction, and normalization.
(3) The mutual information method is used to determine each delay time.
(4) The model is established: first, the input variables after feature selection are input into

the CNN layer of the model, and the deep time series features are extracted through
the convolution and pooling layers. Secondly, they are sent to the BiLSTM layer to
further strengthen the connection between the temporal features. The last layer is the
fully connected layer, and the model output is completed.

The CNN-BiLSTM model structure includes: 1 CNN, 1 max pooling layer, 1 dropout
layer, 2 BiLSTM layers, and 1 fully connected layer. The parameters of the final training
model are: the batch size is 128, epochs are 50, and the Adam optimization algorithm
is selected.

In Figure 6, u is the initial variable, x is the input variable after variable selection, dij is

the delay time between the input xi and the output yj, Y is the actual value, and
^
Y is the

model output value.
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The model building process is shown in Figure 6.

4. Model Establishment and Result Analysis
4.1. Model Evaluation Indicators

The model evaluation indicators used in this paper are MAE, MAPE, and RMSE. The
closer the value is to 0, the more accurate the output of the model. The calculation formula
is as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (15)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (16)

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(17)

where yi is the actual sample value, ŷi is the model output value, and n is the amount
of data.

MAE reflects the magnitude of the deviation of the measured value from the true value;
MAPE reflects the degree to which the sample output value deviates from the measured
value; and RMSE reflects the sample standard deviation of the bias between the model
output value and the measured value, reflecting the degree of dispersion of the sample.
The combination of the three can better represent the precision of the model.

4.2. Model Establishment Result Analysis

.To test and verify that the output of the model is accurate, the first 90% of the
25,200 sets of data were used as the training set and the last 10% ere used as the test
set in chronological order. Before the data is entered into the model, the data should be
normalized to eliminate the influence of the input variables on the output of the modeling
results due to different magnitudes and speeding up the running time of the model.
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4.2.1. The Influence of Variable Selection on Modeling Results

There were still invalid variables and redundant variables in the variables obtained
after the mechanism analysis. So as to solve the issue of model overfitting and further
simplify the model, the Lasso algorithm was used for variable selection. Experiments
were executed on the 14 initial variables obtained from the mechanism analysis and the
8 input variables selected by the Lasso algorithm to verify that the output of the model was
accurate. The final evaluation indexes are revealed in Table 3.

Table 3. Evaluation index of the influence of variable selection on modeling results.

Before Variable Selection
(MAE/MAPE/RMSE)

After Variable Selection
(MAE/MAPE/RMSE)

T1 (◦C) 3.348/0.293/4.299 3.245/0.284/4.027
Q (t/h) 0.060/0.232/0.075 0.051/0.196/0.064
CO2 (%) 0.101/2.530/0.130 0.100/2.519/0.130
T2 (◦C) 0.274/0.121/0.407 0.240/0.100/0.364

It can be seen from Table 3 that after the selection of the initial variables, the test
set error decreased. This phenomenon shows that since there are invalid variables and
redundant variables in the initial variables, if these variables continue to be retained in
the input variables, the generalization ability of the model will be reduced. Therefore, it is
more efficient to select the variables before building a model as this not only simplifies the
model and reduces the computing time during modeling, but also prevents the model from
overfitting and improves the model accuracy.

4.2.2. The Influence of Different Models on the Modeling Results

Three classic models, LSSVM, CNN, and LSTM were selected for comparison to verify
the effectiveness of the CNN-BiLSTM model. When other conditions were kept the same,
the modeling accuracy is as shown in Table 4, and a comparison of the modeling results of
the CNN-BiLSTM model is presented in Figure 7.
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Table 4. Influence of different models on modeling accuracy.

T1 (◦C)
(MAE/MAPE/RMSE)

Q (t/h)
(MAE/MAPE/RMSE)

CO2 (%)
(MAE/MAPE/RMSE)

T2 (◦C)
(MAE/MAPE/RMSE)

LSSVM 4.226/0.423/5.239 0.178/0.654/0.432 0.156/3.106/0.177 1.324/0.849/1.637
CNN 4.540/0.395/6.941 0.292/1.140/0.316 0.133/3.290/0.159 2.198/0.920/2.800
LSTM 3.899/0.350/4.397 0.066/0.258/0.087 0.111/2.637/0.134 0.597/0.262/0.652

CNN-BiLSTM 3.245/0.284/4.027 0.051/0.196/0.064 0.100/2.519/0.130 0.240/0.100/0.364

Table 4 shows that, taking the steam flow as an example, the mean absolute error of
LSSVM is 0.178, the mean absolute error of CNN is 0.292, the mean absolute error of LSTM
is 0.066, and the mean absolute error of CNN-BiLSTM is 0.051. So, the order of model
accuracy from low to high is CNN, LSSVM, LSTM, CNN-BiLSTM. It can be seen that the
intelligent model based on deep learning can effectively improve the utility value of the
traditional model, and it has stronger generalization ability and modeling accuracy.

5. Conclusions

A combined model based on feature selection and CNN-BiLSTM was constructed
in this paper. First, the Lasso algorithm was used to remove invalid and redundant
variables from the initial variables to determine the input variables, and the effective
feature information was extracted through the CNN network. Finally, the BiLSTM network
was used to train the model. Historical operation data from a waste-to-energy plant in the
north was used for simulation analysis. The main conclusions are as follows:

(1) In this paper, based on the historical operation data from waste-to-energy power
plants, multi-dimensional feature sets including waste factors, grate operation factors,
and air volume factors were used, and high-correlation feature parameters through
the effective feature screening of multi-dimensional feature sets by Lasso algorithm
were selected. The comparison of before and after feature selection shows that Lasso
feature screening for multi-dimensional input feature parameters can improve model
accuracy.

(2) Compared with the traditional LSSVM, CNN, and LSTM models, the bidirectional
network model based on feature selection and CNN-BiLSTM selected in this paper,
can fully mine data features under multi-dimensional input feature parameters, and
it has higher accuracy and applicability.
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