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Abstract: Low-latency communication is becoming more popular as applications that demand real-
time interaction, such as autonomous mobile vehicles and tactile Internet, have recently gained
prominence. In this paper, we propose a fast autotuning algorithm to support low-latency communi-
cation in the Quick UDP Internet Connection (QUIC) protocol. The transmission rate is adjusted by
the fast autotuning based on the quantity of unused buffers. If the buffer has large free space, the
receive window is quickly enlarged to increase the transmission rate and reduce the transmission
delay. The fast autotuning is evaluated in this paper through extensive simulations, and the results
show that the fast autotuning effectively reduces the transmission latency and increases throughput.

Keywords: low latency; QUIC; flow control

1. Introduction

With the recent emergence of the extended reality (XR) and tactile Internet technology,
the demand for low-latency transmission and throughput increment has increased. More-
over, network bandwidth is expanding with the emergence of communication technologies,
such as Gigabit Ethernet, 5G, and WiFi 6. Wired networks such as Gigabit Ethernet support
throughput of tens of Gbps, while data rates of up to several Gbps are available in wireless
networks such as 5G and WiFi 6 [1–3]. With increasing network capability, the total bytes
in a web page is also increasing, as shown in Figure 1 [4]. The web data have increased by
more than 20% in desktop and mobile environments, from 1772 and 1569 KB in 2018 to
2174 and 1957 KB in 2022, respectively. However, the reduction in transmission latency is
negligible, despite the median size of a web page being roughly 2.2 MB, which is trivial in
comparison to network capacity. We utilized Pingdom to analyze the web data size and
page load time of the Amazon, Netflix, YouTube, Naver, and Daum sites [5], and found that
the average web page sizes are 4.2 MB, 2.1 MB, 2.6 MB, 2.9 MB, and 1.2 MB, and the average
loading times are 1.547, 2.798, 2.219, 0.824, and 1.102 seconds, respectively, as shown in
Figure 2. The result indicates that the transmission delay is significant in comparison to the
network capacity of Gbps.

Furthermore, 5G and WiFi 6 have been prepared to support low-latency commu-
nication [6–9]. In 5G, the 3GPP establishes three visions: enhanced mobile broadband
(EMB), massive machine-type communications (MMTC), and ultra-reliable and low-latency
communication (URLLC). Among them, URLLC aims for a delay time of less than 1 ms
and transmission reliability of 99.99 % in radio access networks to meet the demand for
low-latency communication [6,7]. In WiFi 6, several methods such as orthogonal frequency
division multiple access (OFDMA) and spatial reuse (SR) have been proposed to improve
user performance metrics such as reduced latency in heavily crowded areas [8,9].

Studies on the low-latency transmission of web content in transport and application
layers have proposed using SPDY and Quick UDP Internet Connection (QUIC) proto-
cols [10]. SPDY, an application layer protocol, uses multiplexing, header compression,
and server push to minimize the web page load time [11]. The proposed features were
included in the HTTP/2 standard, but SPDY support was phased out in 2016. The QUIC
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protocol is a novel transport layer protocol recently standardized by the Internet engineer-
ing task force (IETF) [12–14]. For reduced transmission latency, QUIC employs 0-RTT to
reduce the connection establishment time, multiple streams within a connection to avoid
head of line (LOL) blocking from sequential TCP delivery, and a new packet number to
eliminate retransmission ambiguity. Hence, for network-based services demanding an
immediate response, the QUIC protocol is often used to provide low-latency service.
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Figure 1. Median web page size.
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Figure 2. Loading time and size of web pages.

Flow control is disabled in TCP, because the buffer size is sufficiently large to accom-
modate the network-based service; moreover, packet errors caused by flow control are rare.
However, the QUIC protocol allows for flow control to avoid buffer overflow, and employs
static or autotuning allowances for flow control [15]. The static allowance employs a fixed-
size maximum receive window [16]. The sender delivers data within the maximum receive
window to avoid buffer overflow. The receiver notifies the sender of a receive window
update by sending the MAX_STREAM_DATA frame when the upper layer protocol has
read more than half of the maximum receive window, as shown in Figure 3. Because the
amount of remaining data in the receive window is not half, the receive window is not
updated until new data arrive. After one RTT, the receiver receives new data, and half of
the maximum receive window is then updated. This indicates that the sender can only
transmit half of the receive window at each RTT [17]. Google proposed autotuning al-
lowance [16]. The maximum receive window size is doubled if the receive window update
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period is shorter than a threshold. Moreover, the receive window is no longer increased
after reaching the upper limit or the update cycle has stabilized. In contrast, autotuning
requires time to find a suitable receive window size. Therefore, reducing the maximum
receive window search time is important for low-latency transmission.

Figure 3. Transmission condition of MAX_STREAM_DATA frame.

In this paper, we propose a fast autotuning scheme for low-latency transmission.
The increase factor in fast autotuning is determined to be inversely proportional to the
receive buffer occupancy. If the buffer occupancy is low, the increase factor is increased.
Otherwise, the increase factor has been set to a low value. By rapidly widening the receive
window while avoiding buffer overflow, the suggested approach can decrease transmission
latency. We used the ns-3 simulator for performance evaluation [18]. Fast autotuning
reduced transmission delays by 29% and increased throughput by 12% compared to auto-
tuning in simulations employing a large buffer.

The rest of this paper is organized as follows: We present related works along with
the motivation of this work in Section 2. The proposed fast autotuning method is detailed
in Section 3. In Section 4, we evaluate fast autotuning allowance based on extensive
simulations. Finally, the conclusions are presented in Section 5.

2. Related Works

The QUIC protocol suggests many approaches for reducing the web application
data transmission time [12–14]. To decrease the connection establishment time, QUIC
employs two methods: 1-RTT and 0-RTT handshakes for the initial and reestablishment
connections, respectively. When the client connects to the server for the first time, QUIC
performs a 1-RTT handshake and exchanges data transmission information such as the
maximum receive window for flow control. The 0-RTT handshake shortens the connection
establishment when the client reestablishes the connection with the server. Additionally,
QUIC uses stream multiplexing to avoid HOL blocking in a connection. When one stream
experiences a transmission delay due to HOL, the other streams continue to transmit data
normally, and minimize delay.

The QUIC protocol also uses flow control that limits bytes sent on a stream and
connection to prevent buffer overflow. The maximum amount of transmission in a
stream and connection is advertised during the 1-RTT handshake. A receiver sends the
MAX_STREAM_DATA or MAX_DATA frame to advertise the new limit of the buffer.
The MAX_STREAM_DATA frame represents one stream’s maximum transmission byte off-
set. If the sender has sent the maximum bytes in a stream, the transmission is blocked until
the sender receives a MAX_STREAM_DATA frame from the receiver. The MAX_DATA
frame represents the maximum transmission byte offset of the connection, equivalent to
the total of all streams’ maximum transmission byte offsets, as shown in Figure 4.

Google QUIC has proposed a static allowance for flow control [16]. The receive
window in a static allowance is allocated a fixed amount of memory. As shown in Figure 3,
the receiver transmits the MAX_STREAM_DATA frame if the consumed data, which are
data read from the upper layer, exceed half of the maximum receive window. The receive
offset grows by the maximum receive window from the consumed data after receiving the
MAX_STREAM_DATA frame from the sender, as shown in Figure 5. However, the sender
can only transmit data equivalent to around half of the maximum receive window since
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the data have already been transferred in the previous transmission. After transmitting
the MAX_STREAM_DATA frame, the receiver does not send the MAX_STREAM_DATA
frame until new data arrive because the remaining receiver data size is less than half of the
maximum receive window. The bytes received by a stream with a static allowance when
two streams are transmitted in the ns-3 simulator are depicted in Figure 6. The stream has
4 KB of the maximum receive window. After the initial data, the receiver receives around
2.5 KB of data on average every RTT, indicating that the sender uses half of the receive
window to transmit data.

Figure 4. Connection-level flow control.

Figure 5. Increased receive offset by receiving MAX_STREAM_DATA frame.
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Figure 6. Received bytes of a stream with static allowance.

In [17], the improved static allowance scheme was proposed to solve the throughput
degradation in static allowance. The receiver transmits a MAX_STREAM_DATA frame
if the amount of consumed data is larger than (threshold-MSS). Half of the maximum
receive window is used as the threshold, and MSS is the maximum segment size. In other
words, the MAX_STREAM_DATA frame is sent one packet earlier than the static allowance.
The receive window updates occur twice within one RTT because the remaining data
exceed (threshold-MSS). Thus, the sender transmits as many data as the maximum receive
window allows in every RTT. Google has proposed autotuning allowance to search for an
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appropriate receive window [16]. If the time interval between two MAX_STREAM_DATA
frames is less than twice the RTT, the current receive window is identified as insufficient,
and the maximum receive window is doubled. Moreover, an upper bound prevents
indefinite increments in the receive window.

Compared to prior works, the proposed scheme aims to reduce the transmission delay
caused by flow control. The improved static allowance uses the allocated receive window
fully. However, if the maximum receive window is smaller than the transmission rate,
the transmission is delayed until the MAX_STREAM_DATA frame is received, because the
improved static allowance also utilizes a fixed memory size. The autotuning allowance
increases the receive window size to prevent transmission interruption. However, to deter-
mine an adequate maximum receive window, the autotuning allowance requires several
RTTs, increasing the transmission latency. Moreover, for small data sizes, an adequate
receive window will not be identified until transmission completion. The proposed fast
autotuning allowance reduces the search time for finding an adequate receive window.
The receiver increases the receive window exponentially if free buffer space is sufficient;
otherwise, the receive window is not enlarged to avoid buffer overflow. The computational
overhead is minimal because of the low complexity of the proposed algorithm.

3. Proposed Scheme

This section details the proposed fast autotuning allowance strategy. We first present
the calculation of the buffer occupancy, based on which an increase factor is determined.
At time t, the buffer occupancy of a stream, Bstr(t), is expressed as Equation (1). Supper and
Swin are the upper bound and the current maximum receive window of the
stream, respectively.

Bstr(t) =
Swin

Supper
× 100 (1)

In the QUIC protocol, because a sender or a receiver can generate a stream if necessary,
buffer occupancy calculations are required for both streams and connections. For a connec-
tion at time t, the buffer occupancy of a connection, Bcon(t), is calculated using Equation (2).
Cupper is the upper bound of the buffer for a connection. The increase factor is determined
based on the buffer occupancy after a receive window update.

Bcon(t) =
∑ Swin
Cupper

× 100 (2)

The fast autotuning algorithm is described in Algorithm 1. By subtracting consumed
bytes, Cbytes, from maximum receive window offset, Wmaxo f f set, the receiver calculates the
available receive window, Wavail . The receive window update is triggered if the available
receive window is less than Wmax/2; the receiver then delivers the MAX_STREAM_DATA
frame for a stream (or MAX_DATA frame for a connection). Finc, the increase factor, is
determined based on the buffer occupancy, if Tinterval , the time since the last window update,
is less than 2RTT. The buffer occupancy is calculated using Equation (1) for the stream
and Equation (2) for the connection. Because sufficient free buffer space is not available
if the buffer occupancy is greater than 75%, the increase factor is set to 2. The increase
factor is set to 4 if the buffer occupancy is between 50 and 75%, it is 8 if the occupancy
is greater than 25% but less than 50%, and it is 16 if the free buffer space exceeds 75%.
The maximum receive window is then determined by the smaller of (Wmax ∗ Finc) and Bupper,
the upper bound of the buffer. The maximum offset of the receive window is increased
by (Wmax − Wavail), as depicted Figure 5. The fast autotuning seeks to reach the maximum
receive window as quickly as possible. As a result, since the autotuning allowance doubles
the maximum receive window, the increase factor in Algorithm 1 increases by the power
of 2 based on the buffer occupancy. The autotuning, for example, requires two buffer
updates to raise the maximum receive window by four times, but the fast autotuning only
requires one.
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Algorithm 1 Fast autotuning

1: Wavail = Wmaxo f f set − Cbytes
2:
3: if Wavail < Wmax/2 then
4: if Tinterval < RTT ∗ 2 then
5: if Boccupancy >= 75 then
6: Finc = 2
7: else if 50 <= Boccupancy < 75 then
8: Finc = 4
9: else if 25 <= Boccupancy < 50 then

10: Finc = 8
11: else if Boccupancy < 25 then
12: Finc = 16
13: end if
14:
15: Wmax = min(Wmax ∗ Finc, Bupper)
16: end if
17:
18: Wmaxo f f set+ = (Wmax − Wavail)
19: send MAX_STREAM_DATA (or MAX_DATA)
20: end if

For example, a sender uses a QUIC connection with one stream to transfer data to
a receiver. The upper bounds for the stream and the connection are 128 KB and 256 KB,
respectively. The stream’s and connection’s initial maximum receive windows are 4 KB
and 8 KB, respectively. Because the buffer occupancy is less than 25% of the stream upper
bound when the first buffer update occurs, the increase factor is set to 16 and the maximum
receive window is set to 64 KB. Because the buffer occupancy is 50%, the increase factor for
the second buffer update is calculated to be 4. The maximum receive window, on the other
hand, is set to 128 KB because the stream upper bound cannot be exceeded.

We implemented three flow control algorithms: static, autotuning, and fast autotuning
allowances. First, we analyzed the ns-3 simulator with QUIC [19], and then modified
four classes: QuicL5Protocol, QuicSocketBase, QuicStreamBase, and QuicStreamRxBuffer
classes. For example, Algorithm 1 should determine the available amount of data for
a stream or connection. We modified AvailableWindow function in the QuicSocketBase
class to calculate the available amount of data by subtracting CalculateAllRecv() from the
m_max_data variable. In the function, m_max_data variable means the maximum amount
of data that can be sent on the connection and CalculatedAllRecv() in the QuicL5Protocol
class indicates the amount of received data.

4. Evaluation

We evaluate the performance of the fast autotuning allowance using an ns-3 simula-
tor [18], and compare the results to the static and autotuning allowances [15,16]. In [15],
the static allowance is utilized in seven out of ten representative IETF QUIC implementa-
tions, while the autotuning allowance, which is used in quiche, is a flow control mechanism
proposed by Google recently. As discussed earlier, we implemented static, autotuning,
and fast autotuning allowance in the ns-3 simulator and measured the throughput and
transmission time for performance evaluation. We measured the bytes received by the
receiver with a tiny buffer for each of the three flow control models. Then, we extended the
experiment to evaluate the performance of a four-stream connection with a large buffer.
Finally, the transmission delay for each data size was measured through simulations.

4.1. Two-Stream Connection with Small Buffer

We simulated and measured the throughput of a connection with static, autotuning,
and fast autotuning allowances. The number of streams, the maximum receive win-
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dow, and the upper bound are listed in Table 1. First, we evaluated the throughput of a
two-stream connection with static allowance. The average throughput was 234.56 Kbps,
and Figure 7a depicts the bytes received by the receiver over time. Because the sum of the
maximum stream receive window was 8 KB, approximately 7.32 KB of data were sent in the
initial transmission. Since the buffer update occurs when the consumed bytes exceed half
of the receive window (Figure 7b), approximately 4.3 KB to 5.1 KB of data were transferred
in the second transmission.

Table 1. Parameter setting for a two-stream connection.

Parameters Value

Number of streams 2
Maximum connection receive window 8 KB

Maximum stream receive window 4 KB
Connection upper bound 64 KB

Stream upper bound 16 KB
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(a) Received bytes
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(b) Sum of two-stream receive window offset
Figure 7. Static allowance in a two-stream connection with small buffer.

In a two-stream connection with autotuning allowance (Figure 8), the sender sends
4.39 KB and 5.12 KB of data after the first and second buffer updates, respectively, and
the receive window is kept at 8 KB, as with the static allowance. The receive window grows
to 16 KB when the third buffer update happens at around 0.5 s. The receive window offset
rises by around 12.39 KB, with 4.39 KB of consumed bytes (half of the previous receive
window) and 8 KB of a new receive window increment. When the fourth buffer update
happens at 0.68 s, because the receive window abruptly increases to 24 KB instead of 32 KB,
the sender transmits 16.35 KB (8.35 KB for consumed bytes and 8 KB for increment). This is
because one of two streams extends the receive window to 16 KB, while the other maintains
an 8 KB receive window. The receive window of the stream with the 8 KB window grows to
16 KB in the fifth buffer update, and the aggregate grows to 32 KB. The sum of the streams’
receive windows is kept at 32 KB.

Figure 9 shows the simulation results for fast autotuning allowance. Fast autotun-
ing achieves approximately 7% of throughput gain compared to autotuning (Figure 9a).
The throughput gain by fast autotuning is achieved by rapid growth of the receive window.
During the two buffer updates, the aggregate of the receive windows of two streams is
maintained at 8 KB. The receive window is extended by four times to 32 KB after the third
buffer update in 0.5 s. Because a stream’s receiver window is 4 KB and the stream upper
bound is 16 KB, the increase factor is 8. Wmax ∗ Finc is 32 KB, but Wmax is calculated as
16 KB because the stream upper bound is 16KB. Because the aggregate receive window is
32 KB, 28.39 KB of data (24 KB for new increment and 4.39 KB for consumed bytes) are
transmitted, and fast autotuning maintains the aggregate receive window at 32 KB.
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(a) Received bytes.
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Figure 8. Autotuning allowance in a two-stream connection with small buffer.
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Figure 9. Fast autotuning allowance in a two-stream connection with small buffer.

4.2. Four-Stream Connection with Large Buffer

We evaluated the performance for a four-stream connection with a large buffer. The pa-
rameter settings are listed in Table 2. The initial maximum stream receive window was 8 KB
and the upper bound of a stream was 1 MB. The received bytes over time for autotuning
and fast autotuning allowance in Figure 10 show average throughputs of 4.8 and 5.4 MB
per second, respectively. Compared to autotuning allowance, fast autotuning allowance
increases throughput by 12.5% because it increases the maximum receive window signifi-
cantly. Figure 11 depicts the maximum receive window for one stream with autotuning
and fast autotuning. In autotuning, the maximum stream receive window is doubled from
8 KB to 512 KB for 2.5 s, and then maintained at 512 KB. However, in fast autotuning, the
maximum stream receive window grows 16 times in 0.86 s, from 8 KB to 128 KB, and then
four times in 1.03 s, from 128 KB to 512 KB, which is 1.5 s faster than autotuning.

Table 2. Parameter setting for a four-stream connection.

Parameters Value

Number of streams 4
Maximum connection receive window 32 KB

Maximum stream receive window 8 KB
Connection upper bound 64 MB

Stream upper bound 1 MB

We also measured the transmission latency for each data size. Compared to autotun-
ing, fast autotuning reduces transmission latency by around 29% on average (Figure 12).
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The transmission latency is decreased by at least 30% when transmitting 1 MB to 5 MB data,
the average data size communicated over the Internet.
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Figure 10. Received bytes of a connection with large buffer.
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5. Conclusions

We proposed a fast autotuning allowance to reduce transmission latency by rapidly
increasing the maximum receive window based on the buffer status. If the available
buffer is large, the receive window is rapidly increased to decrease transmission latency.
The simulation results showed that the proposed scheme can increase the performance
improvement in network scenarios. We plan to look into the settings for parameters such
as the buffer occupancy and the increase factor in the future.
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