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Abstract: This paper proposes a prediction-driven sequential optimization methodology for joint
decision-making problems of production-sales-stock in refined oil enterprises. In the proposed
prediction-driven sequential optimization methodology, three dynamic nonlinear programming
models are first constructed to model the production-sales-stock decision-making problems in refined
oil enterprises. Then, the analytical solutions to sequential optimization for production-sales-stock
decision-making issues are presented by using the inverse inference method in dynamic program-
ming. Finally, the impact of price and demand prediction of refined oil products on sequential
optimization for production-sales-stock decision-making are analyzed using a numerical analysis
method. Numerical results demonstrated the significant impact of forecasting results of price and
demand of refined oil products on sequential optimization decision-making, indicating that the
prediction-driven sequential optimization methodology can be used as an effective tool for joint
decision-making of production-sales-stock.

Keywords: sequential optimization; prediction-driven modeling; refined oil price forecasting; market
demand forecasting; production-sales-stock decision-making

1. Introduction

With the continuous opening-up of the refined oil market and the increasing compe-
tition among refined oil enterprises in China, optimization of the production-sales-stock
decision-making of refined oil products has become a main task of refined oil enterprises.
In the context of the gradual opening up of the refined oil market, the economic activities
associated with the production, sales, and inventory management of refined oil products
are constantly changing, with high complexity and uncertainty. In order to reduce the
risk of decision-making, improve the scientific level of management, and enhance the
predictability of future situations, it is necessary to adopt scientific methods for prediction
and use the accurate prediction results to make the right decisions. As is known to all,
forecasting and decision-making are two important components of management. The key
to management activities is decision-making and the premise of decision-making is fore-
casting. Therefore, only by making accurate predictions about the changes of the market
demand and price of refined oil products, understanding the market supply and demand
situation, and grasping the development direction and trend of the market in a timely
manner can managers adjust their competition strategy and inventory scale in terms of the
market demand and achieve economic benefits in fierce market competition.

In the existing literature, there are numerous relevant studies on production, market-
ing, and inventory decision-making in the area of logistics and supply chain management.
However, most existing studies have only analyzed one or two aspects of the above three
issues (i.e., production, marketing, and inventory decision-making issues), as shown in
the literature review. Few researchers have investigated the joint optimization of produc-
tion, marketing, and inventory decision-making issues from a micro-perspective due to
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data availability and the difficulties of the multi-objective optimization issues. Therefore,
the main goal of this paper is to focus on the joint optimization solution of production-
sales-stock decision-making and to construct a joint optimization model of production,
marketing, and inventory decision-making from a micro-perspective.

Joint optimization methods are divided into two types: sequential optimization and
simultaneous optimization or integrated optimization [1]. In this paper, the sequential
optimization method of production, marketing, and inventory decision making will be
investigated thoroughly. Different from the previous sequential optimization methods of
production-sales-stock decision-making, this paper tries to construct a prediction-driven
sequential optimization model for production-sales-stock decision-making by combining
the prediction results of market demand and the price of refined oil products.

The main contributions of this paper are two-fold. On the one hand, this paper
proposes a novel prediction-driven sequential optimization model and gives a feasible
solution to joint optimization of production-sales-stock decision-making. On the other
hand, this paper investigates the impact of market demand and price prediction on sequen-
tial optimization decision-making, demonstrating the significant effect of prediction on
decision-making issue.

The rest of this paper is organized as follows. Section 2 presents a comprehensive
literature review. Section 3 constructs a prediction-driven sequential optimization model.
Section 4 gives a solution to the constructed sequential optimization model for production-
sales-stock decision-making problem. In Section 5, the impacts of demand and price
prediction on sequential optimization decision-making are analyzed in detail, while conclu-
sions are drawn in Section 6.

2. Literature Review

In the existing literature, there are many studies on production, marketing, and
inventory decision-making. For example, in production decision-making, Zhong et al. [2]
proposed a real-time advanced production and scheduling plan based on radio frequency
identification (RFID) technology to coordinate different decision-makers in the production
process and leverage a data model based on Extensible Markup Language (XML) to enable
the deployment and use of the system. Chien et al. [3] presented an uncertain multi-
objective decision-making framework for capacity planning that minimizes loss from
overcapacity or shortages caused by uncertainty, and empirical analysis confirmed the
practical feasibility of this framework. Tsai and Jhong [4] use the activity-based costing
(ABC) and constraint theory, combined with the Green Production Decision Model (GPDM),
to effectively track related costs to solve the problems of worker shortages and slow
production, and to make recommendations for environmental improvement. Wang et al. [5]
investigated the optimal production decision-making problems of two competitive supply
chains from the perspective of the green supply chain. Experimental results showed
that the intensity of competition between supply chains was negatively correlated with
wholesale prices and competition between supply chains had a significant impact on
the greenness of decision-making scenarios. Rodríguez et al. [6] proposed a fuzzy logic
decision-making system based on machine learning that provides decision-making for
the operation of production plants to meet production targets where uncertainty exists.
Canonico [7] examined how knowledge visualization translates specific multi-objective
decision-making issues into production decision optimization problems in the context
of partnerships between universities and large automotive companies, and empirically
established multi-objective decision-making models as solutions to portfolio optimization
problems to improve production quality in factories. In summary, from the perspective of
refined oil production enterprises, the prediction of market demand and market price is
the premise of production decision-making, and thus the three issues, i.e., market demand
prediction, product price forecasting, and production decision-making, should be combined
to formulate an optimal business strategy. However, in the existing literature, most scholars
have studied these three issues separately or considered only two of them simultaneously,
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while there is no literature investigating prediction-driven production decision-making
problems based on the prediction results of market demand and market price.

For marketing decision-making, Seifert et al. [8] analyzed the integration of direct
and indirect marketing channels under decentralized decision-making from a supply
chain perspective and explored how to coordinate the supply chain and distribute supply
chain profits between manufacturers and their retail channel partners. Berger et al. [9]
investigated the impact of negative news on corporate sales. Different from the traditional
concept that negative news has only negative effects, their study showed that negative
information about a product might increase sales of such products, and enterprises could
flexibly use negative news to develop appropriate sales strategies. Rad et al. [10] established
an integrated supplier-buyer supply chain model in the event of incomplete production and
shortage and investigated the supply chain joint sales strategy. Empirical results showed
that coordination and stock-outs could improve the overall expected profit of the system.
Yang et al. [11] studied the use of big data technology for promotion by companies with new
product sales, and found that the application of big data technology could increase sales and
increase the price of new products. In summary, in the perspective of sales decision-making,
most of the literature on sales decision-making focuses on the analysis of decision-making
behavior, the construction of decision support systems, and the construction and solution
of pricing decision models. However, the existing references lack the connection between
demand forecasting and sales decisions, and these studies does not jointly optimize and
analyze future market demand with sales decision-making for production enterprise.

In the field of inventory control and stock decision-making, Escudero et al. [12] con-
structed a CORO model in an uncertain environment to simulate the optimization of oil
supply, transportation, and distribution in the oil supply chain. Kulp [13] proposed a
newsboy model for making inventory decisions for supply chains and manufacturers based
on the analysis of corporate relationships. Netessine and Rudi [14] proposed a method
of combining order assembly and manufacturing by comparing the advantages and dis-
advantages of various supply chain inventory management models, considering the cost,
flexibility, and warehousing characteristics of manufacturing enterprises. Their method
enables upstream and downstream enterprises in the supply chain to share inventory
information, thus reducing the risk of supply and demand imbalance due to the bullwhip
effect. Caro and Gallien [15] studied stock management issues for fast-selling products,
while Zong et al. [16] discussed inventory management and the design of algorithms based
on ERP systems. Chan and Prakash [17] examined the issue of inventory collaboration
in the supply chain of manufacturing companies using retention costs, deferred costs,
and order costs. Raviv and Kolka [18] proposed an inventory model for bicycle rental
station management and gave a solution to the model. Experimental results found that the
proposed model was suitable for other similar closed-loop inventory systems. Natarajan
and Smileinathan [19] studied inventory management problems with financial constraints
within limited planning periods. They designed a multi-period stochastic inventory model
with financial constraints and demonstrated the effectiveness of optimal replenishment
strategies. Moradi and MirHassani [20] analyzed multi-product pipelines to solve the
scheduling problem of petroleum derivatives. Their method could meet the day-to-day
needs of customers by considering integrated inventory management in distribution cen-
ters (DCs) and refineries. Ali et al. [21] provided oil and gas companies with a new way to
invest less in inventory planning and maintain plant productivity. Real-world operational
practices demonstrated the superiority of this approach. Mishra et al. [22] used a nonlinear
price-demand model to develop a sustainable inventory management scheme with carbon
emissions restrictions and tax regulations for enterprises, and found that this scheme could
enable companies to achieve higher profits under restricted conditions. In summary, the
inventory decision in the existing literature focused on inventory cost control, and lacked
joint optimization analysis of production, sales, and inventory from the perspective of
supply chains.
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From the above literature, it can be seen that there are a great many studies about
production, sales, and inventory decision-making problem. However, most references only
consider these three issues (i.e., production, sales, and inventory) separately or consider
only two of them simultaneously, and there is no literature investigating the joint opti-
mization of the three issues simultaneously. Furthermore, some existing joint optimization
methods do not take the prediction results of market demand and price change into account,
thus leading to decision results that cannot satisfy practical needs. Therefore, this paper
proposes a novel prediction-driven joint optimization method for production-sales-stock
decision-making problems based on the prediction results of market demand and market
price, which will be elaborated below.

3. Prediction-Driven Sequential Optimization Model Construction for
Production-Sales-Stock Decision-Making
3.1. Model Settings

Consider a refined oil enterprise that dominates the market and maximizes the ex-
pected profit of the enterprise by producing, stocking, and selling certain refined oil
products. Assume that the enterprise is faced with a decision-making problem with n
periods; without loss of generality, it is only necessary to analyze the decision-making
problems of any period of the enterprise (such as the ith period). Usually, the enterprise in
period i (i ∈ {1, 2, . . . , n}) faces uncertain product prices and market demand. Therefore,
we can assume that the prediction value of the average price of refined oil products during
the future period T (i.e., the total duration of period i) is p (p > 0) and the average error of
the product price prediction is ε1. Meantime, the forecast value of market demand in the
future T period is set to D (D > 0) and the average error of the market demand forecast is
ε2. Note that the prediction errors ε1 and ε2 indicate the reliability of prediction results.

Suppose that the enterprise first produces refined oil products; the production quantity
is Qs (subscript s is the label of sequential decision-making and the same below). Then, the
refined oil products are distributed and stored to oil depots close to the consumer market
and sold to outside consumers through oil depots. Since the distribution cost is a one-time
fixed cost, the distribution cost can be standardized to zero [23]. Similarly, the delivery
time (i.e., the interval between the start of distribution and the arrival of the refined oil
products) is also a fixed constant, so it is also normalized to zero. Here, the unit production
cost of the finished oil is set to c1 (c1 > 0). In a certain oil depot, the storage cost per unit
of refined oil products per unit of time is c2 (c2 > 0). At the beginning of the ith period,
the amount of residual oil in the oil depot is set to q (this residual oil quantity comes from
the (i − 1)th period sales surplus). Thus, the refined oil enterprise needs to replenish the
inventory for the oil depot at the time ts (0 ≤ ts ≤ T), and the amount of replenishment is
equal to the production quantity Qs. It is worth noting that customers or consumers will
turn to other small refineries to meet the demand for refined oil products if the oil depot is
short of refined oil products. That is, the refined oil shortage will lead to loss of demand
during the refined oil shortage period. Because enterprises need to trade off out-of-stock
losses and inventory costs, oil depots can allow for being out-of-stock.

In addition, the enterprise can motivate employees to put in sales efforts to increase
sales of refined oil products and thus increase market share. The sales of refined oil
products gained through incentives is set to 2

√
ms [24,25], where ms (ms > 0) is the amount

of incentives paid. This means that sales incentives can increase the sales amount, but this
increase is diminishes marginally. Therefore, the market demand faced by refined the oil
enterprise in the T-period are D + ε2 + 2

√
ms. For the convenience of analysis, these market

demands are set to be generated evenly over the T period. Generally, the chronological
order of sequential optimization decision-making is shown below.

Stage 1: The enterprise decides on the amount of sales incentives ms;
Stage 2: The enterprise decides on the production quantity of refined oil products Qs;
Stage 3: The enterprise decides on the replenishment time ts when the oil depot will

replenish its inventory.
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For convenience of computation, the mathematical symbols used in this paper are
listed in Table 1.

Table 1. A list of mathematical symbols.

Symbol Description

D Prediction value of market demand for refined oil products in the ith period

ε2
Prediction error of market demand for refined oil products (for ease of

calculation, the forecast error of the test set is used)
p Prediction value of the average price of refined oil products in the ith period

ε1
Prediction error of the average price of refined oil products (for ease of

calculation, the prediction error of the test set is used)

Qs
Production quantity of refined oil product to meet the needs of the market

demand and inventory replenishment demand in the ith period
ts Replenishment time point of oil depot of the refined oil enterprise
ms Sales incentive amount
c1 The unit production cost of refined oil products
c2 The storage cost per unit of refined oil products per unit of time

q The amount of residual oil in the oil depot at the start of the ith period (sales
surplus of the (i − 1)th period).

T The total time duration of the ith period

πs
The expected profit generated by the production, marketing, and inventory

activities of the enterprise in the T period

3.2. Model Construction

Since there is a chronological order in the production, sales, and inventory decisions
of the refined oil enterprise, the inverse inference method in dynamic programming is used
to analyze the replenishment decision in Stage 3. Given the sales incentive amount ms and
production quantity Qs, the refined oil enterprise needs to decide on an optimal time point
ts for inventory replenishment to maximize their expected profits πs, that is,

max
ts

πs =
{
(p + ε1) ·

[
q + min

(
D+ε2+2

√
ms

T · (T − ts), Qs

)]
− c1Qs −ms

− q
2 ·

qT
D+ε2+2

√
ms
· c2 − 1

2 min
(

D+ε2+2
√

ms
T · (T − ts), Qs

)
min

(
T − ts,

QsT
D+ε2+2

√
ms

)
· c2

(1)

s.t.
qT

D + ε2 + 2
√

ms
≤ ts ≤ T (2)

where (p + ε1) ·
[
q + min

(
D+ε2+2

√
ms

T · (T − ts), Qs

)]
is the sales revenue, c1Qs is the pro-

duction cost, ms is the sales incentive amount paid by the refined oil enterprise, q
2 ·

qT
D+ε2+2

√
ms
· c2 is the storage cost of residual oil in the oil depot at the starting time

point generated in the subsequent time periods, and 1
2 min

(
D+ε2+2

√
ms

T · (T − ts), Qs

)
min(

T − ts,
QsT

D+ε2+2
√

ms

)
· c2 is the inventory cost incurred by the replenished oil of the oil

depot after replenishment time ts. It is worth noting that it is impossible for a refined oil
enterprise to replenish the refined oil stock before the residual oil inventory q is used up,
due to the fact that such an action will not bring any benefits to the refined oil enterprise
but will increase the inventory cost. Therefore, the time point of replenishment must be
satisfied with qT

D+ε2+2
√

ms
≤ ts ≤ T. That is, the replenishment time is defined to be the

time point after the residual oil stock is used up.
Next, the production decision of the refined oil enterprise in Stage 2 is analyzed. Given

the sales incentive amount ms, the refined oil enterprise needs to decide on an optimal
production quantity Qs to maximize its expected profits πs, that is,
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max
Qs

πs =
{
(p + ε1) ·

[
q + min

(
D+ε2+2

√
ms

T · (T − t∗s (Qs)), Qs

)]
− c1Qs −ms − q

2 ·
qT

D+ε2+2
√

ms

· c2− 1
2 min

(
D+ε2+2

√
ms

T · (T − t∗s (Qs)), Qs

)
min

(
T − t∗s (Qs),

QsT
D+ε2+2

√
ms

)
· c2

} (3)

s.t. Qs ≥ 0 (4)

where t∗s (Qs) is the optimal decision at Stage 3 and is a function of production quantity
Qs. The objective function in Equation (3) is almost identical to Equation (1), the unique
difference being that ts is changed to t∗s (Qs).

Finally, the sales incentive decision of the refined oil enterprise in Stage 1 is analyzed.
Here the enterprise needs to decide on an optimal sales incentive amount ms to maximize
its expected profit πs, that is,

max
ms

πs =
{
(p + ε1) ·

[
q + min

(
D+ε2+2

√
ms

T · (T − t∗s (Q∗s (ms))), Qs

)]
− c1Q∗s (ms)−ms

− q
2 ·

qT
D+ε2+2

√
ms
· c2 − 1

2 min
(

D+ε2+2
√

ms
T · (T − t∗s (Q∗s (ms))), Q∗s (ms)

)
·min

(
T − t∗s (Q∗s (ms)),

Q∗s (ms)T
D+ε2+2

√
ms

)
· c2

 (5)

s.t. ms ≥ 0 (6)

where Q∗s (ms) is the optimal decision at Stage 2 and is a function of ms. Similarly, the
objective function in Equation (5) is almost identical to Equation (3), the unique difference
being that Qs is changed to Q∗s (ms).

4. Solution and Analysis of Production-Sales-Stock Sequential Optimization
4.1. Solution to Production-Sales-Stock Sequential Optimization

By solving the mathematical programming of Equation (1), Lemma 1 can be obtained.

Lemma 1. Given the sales incentive amount msand production quantity Qs, the optimal decision
on replenishment time point t∗s can be represented by

t∗s =

 T − QsT
D+ε2+2

√
ms

, Qs <
(D+ε2+2

√
ms)(p+ε1)

Tc2
Tc2−p−ε1

c2
, Qs ≥ (D+ε2+2

√
ms)(p+ε1)

Tc2

.

Proof. Since

min
(

D + ε2 + 2
√

ms

T
· (T − ts), Qs

)
=


D+ε2+2

√
ms

T · (T − ts), ts ≥ T − QsT
D+ε2+2

√
ms

Qs, ts < T − QsT
D+ε2+2

√
ms

and

min
(

T − ts,
QsT

D + ε2 + 2
√

ms

)
=

{
T − ts, ts ≥ T − QsT

D+ε2+2
√

ms
QsT

D+ε2+2
√

ms
, ts < T − QsT

D+ε2+2
√

ms

the objective function of Equation (1) can be reduced to the following form.

πs =



(p + ε1) · (q + Qs)− c1Qs −ms − q
2 ·

qT
D+ε2+2

√
ms
· c2

− 1
2 Qs

QsT
D+ε2+2

√
ms

c2, ts < T − QsT
D+ε2+2

√
ms

(p + ε1) ·
[
q + D+ε2+2

√
ms

T · (T − ts)
]
− c1Qs −ms − q

2 ·
qT

D+ε2+2
√

ms
· c2

− 1
2

D+ε2+2
√

ms
T · (T − ts)(T − ts)c2, ts ≥ T − QsT

D+ε2+2
√

ms

(7)
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It is easy to see that Equation (7) is continuous and that the first part of Equation (7) is
a constant and the second part is a concave function of ts. The second part of Equation (7) is
derived and the first derivative equals zero; then, the solution to the first-order condition is

ts =
Tc2 − p− ε1

c2
.

Since it is difficult to determine the size relationship between the above first-order
conditional solution and T − QsT

D+ε2+2
√

ms
, it can be discussed in different cases.

(1) If Tc2−p−ε1
c2

≥ T− QsT
D+ε2+2

√
ms

, that is, Qs ≥ (D+ε2+2
√

ms)(p+ε1)
Tc2

, then the first part of
Equation (7) is a constant and the second part is a unimodal function (first increasing and
then decreasing), so the maximum value is obtained at the first-order conditional solution.
Other than that, since

qT
D + ε2 + 2

√
ms
≤ Tc2 − p− ε1

c2
≤ T,

the first-order conditional solution satisfies the constraint condition (2), so the optimal
solution can be expressed by

t∗s =
Tc2 − p− ε1

c2

(2) If Tc2−p−ε1
c2

< T − QsT
D+ε2+2

√
ms

, that is, Qs <
(D+ε2+2

√
ms)(p+ε1)

Tc2
, the first part of

Equation (7) is constant and the second part is monotonically decreasing, so the maximum
value is obtained at the dividing point. Similarly, since

qT
D + ε2 + 2

√
ms
≤ T − QsT

D + ε2 + 2
√

ms
≤ T,

the demarcation point satisfies the constraint (2), so the optimal solution is

t∗s = T − QsT
D + ε2 + 2

√
ms

In summary, the optimal solution can be represented in the following form.

t∗s =

 T − QsT
D+ε2+2

√
ms

, Qs <
(D+ε2+2

√
ms)(p+ε1)

Tc2
Tc2−p−ε1

c2
, Qs ≥ (D+ε2+2

√
ms)(p+ε1)

Tc2

(8)

�
Lemma 2. Given the sales incentive amount ms, the optimal production decision of the refined oil
enterprise can be given by

Q∗s =
(p + ε1 − c1)(D + ε2 + 2

√
ms)

Tc2
.

Proof. Substituting Equation (8) into Equation (3), one obtains

πs =



(p + ε1) · (q + Qs)− c1Qs −ms − q
2 ·

qT
D+ε2+2

√
ms
· c2

− 1
2 Qs

QsT
D+ε2+2

√
ms

c2, Qs <
(D+ε2+2

√
ms)(p+ε1)

Tc2
(p+ε1)(2

√
ms p+2

√
msε1+2qTc2+Dp+Dε1+pε1+ε1ε2)

2Tc2

−c1Qs −ms − q2Tc2
2(D+ε2+2

√
ms)

, Qs ≥ (D+ε2+2
√

ms)(p+ε1)
Tc2

(9)

It is easy to see that Equation (9) is continuous, and that the first part of Equation (9) is
the concave function of Qs and the second part is the monotonic decreasing function about
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Qs. The first part of Equation (9) is derived and the first derivative equals zero; then, the
first-order condition is solved by

Qs =
(p + ε1 − c1)(D + ε2 + 2

√
ms)

Tc2
.

Since (p+ε1−c1)(D+ε2+2
√

ms)
Tc2

− (D+ε2+2
√

ms)(p+ε1)
Tc2

= − c1(D+ε2+2
√

ms)
Tc2

< 0 and the above
first-order conditional solution satisfies the constraint condition (4), the first-order condi-
tional solution is the optimal solution, i.e.,

Q∗s =
(p + ε1 − c1)(D + ε2 + 2

√
ms)

Tc2
(10)

�
Lemma 3. The optimal sales incentive amount m∗s is the unique root of the Equation f (m∗s ) = 0,
wherein

f (m∗s ) = 2
(p + ε1 − c1)

2

Tc2
√

m∗s
+

Tc2q2

2(D + ε2 + 2
√

m∗s )
2√m∗s

− 1.

Proof. Substituting Equation (10) into Equation (8), one obtains

t∗s = T − p + ε1 − c1

c2
(11)

Substituting Equations (10) and (11) into Equation (5), we obtain

πs = (p + ε1)
[
(p+ε1−c1)(D+ε2+2

√
ms)

Tc2
+ q
]
− c1(p+ε1−c1)(D+ε2+2

√
ms)

Tc2

−ms − Tc2
2(D+ε2+2

√
ms)

[
(p+ε1−c1)

2(D+ε2+2
√

ms)
2

T2c2
2 + q2

] (12)

Equation (12) can be further simplified into the following form, i.e.,

πs =
(p + ε1 − c1)

2(D + ε2 + 2
√

ms)

2Tc2
− Tc2q2

2(D + ε2 + 2
√

ms)
+ (p + ε1)q−ms (13)

To find a first derivative of Equation (13), we can obtain

∂πs

∂ms
=

(x− c1)
2

2Tc2
√

ms
+

Tc2q2

2(D + ε2 + 2
√

ms)
2√ms

− 1 (14)

Since ∂2πs
∂ms2 = − 4q2T2c2

2ms
3
2 +q2T2c2

2(D+ε2+2
√

ms)ms+(p+ε1−c1)
2(D+ε2+2

√
ms)

3ms

4ms
5
2 T2c2

2(D+ε2+2
√

ms)
3

< 0,

Equation (13) is the concave function about ms and has a unique maximum value point.
Moreover, Equation (14) is the monotonical decreasing function about ms.

Since

lim
ms→0

(x− c1)
2

2Tc2
√

ms
+

Tc2q2

2(D + ε2 + 2
√

ms)
2√ms

− 1 = ∞

and

lim
ms→∞

(x− c1)
2

2Tc2
√

ms
+

Tc2q2

2(D + ε2 + 2
√

ms)
2√ms

− 1 = −1

the following equation holds:

(x− c1)
2

2Tc2
√

ms
+

Tc2q2

2(D + ε2 + 2
√

ms)
2√ms

− 1 = 0.

This equation only has one unique root and that root is the optimal solution. �
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4.2. Decision Analysis of Production-Sales-Stock Sequential Optimization

Combining Lemmas 1–3, Proposition 1 can be found.

Proposition 1. Under sequential decision-making, the optimal sales incentive amount m∗s in the ith
(i ∈ {1, 2, . . . , n}) period is satisfied

2(p + ε1 − c1)
2

Tc2
√

m∗s
+

Tc2q2

2(D + ε2 + 2
√

m∗s )
2√m∗s

− 1 = 0 (15)

and m∗s is the only root of the above equation. Therefore, the optimal production decision of the
refined oil enterprise is expressed by

Q∗s =
(p + ε1 − c1)(D + ε2 + 2

√
m∗s )

Tc2
(16)

The optimal time point for inventory replenishment is given by

t∗s = T − p + ε1 − c1

c2
(17)

The optimal expected profit of the refined oil enterprise can be represented by

π∗s =
(p + ε1 − c1)

2(D + ε2 + 2
√

m∗s )
2Tc2

− Tc2q2

2(D + ε2 + 2
√

m∗s )
+ (p + ε1)q−m∗s (18)

Proof. Combining Lemmas 1–3, it is easy to obtain Proposition 1. �

Proposition 1 shows that the optimal production quantity of a refined oil enterprise in
any period (i.e., Period i) is determined by the price of refined oil products p + ε1, the unit
production cost c1, the market demand per unit time D+ε2+2

√
ms

T , and the inventory cost per
unit of product per unit time c2. Proposition 1 also states that the optimal replenishment
time point for an oil depot in any period (i.e., Period i) is determined by the total duration
(T) of that period, the price of refined oil products p + ε1, the production cost per unit
c1, and the inventory cost per unit of product per unit of time c2, but is not related to
sales incentives. This is because refined oil enterprises mainly respond to market demand
through production and control inventory with replenishment time points, so the impact
of sales incentives on market demand is only reflected in production, but has no impact on
the timing of replenishment.

Proposition 1 has important practical significance. Since Proposition 1 gives the
optimal production and inventory decisions in any period, the results can be used in each
period of decision-making. This means that a decision support system can be established
based on Proposition 1 and optimal decision-making and optimal inventory control in
each period of production can be achieved to maximize the long-term profits of refined
oil enterprises.

Proposition 2. If the prediction is completely accurate then, at the end of the ith period, the refined
oil enterprise either runs out of inventory or is out of stock, i.e., Q∗s T

D+ε2+2
√

m∗s
≤ T − t∗s .

Proof. In terms of Lemmas 1–3, Proposition 2 is clearly true. �

Proposition 2 means that if the prediction is 100% accurate, refined oil enterprises
would rather be out of stock than leave inventory in the next period. Because the inventory
is left over in the next period, it is impossible to generate revenue in the current period, but
the inventory cost rises. However, this does not mean that refined oil enterprises will never
leave inventory for the next period due to the fact that forecasts cannot be 100% accurate.
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Therefore, when building the sequential optimal decision model, this paper considers the
generalized situation. That is, at the beginning of each period, it is assumed that there is
residual oil q in the oil depot.

Proposition 3. Optimal inventory replenishment time points are monotonically increasing (i.e.,
∂t∗s
∂c1

> 0, ∂t∗s
∂c2

> 0, ∂t∗s
∂T > 0) with respect to production costs, inventory costs, and the total duration

of the ith period. However, they have nothing to do with sales incentives (i.e., ∂t∗s
∂m∗s

= 0).

Proof. Since t∗s = T − p+ε1−c1
c2

, we can obtain

∂t∗s
∂c1

> 0,
∂t∗s
∂c2

> 0,
∂t∗s
∂T

> 0,
∂t∗s
∂m∗s

= 0.

�
Proposition 3 implies that with the increase of production costs, inventory costs, and

the total duration of the ith period, refined oil enterprises will postpone the timing of
ordering, i.e., they will lengthen the out-of-stock period after the residual inventory is used
up and before the replenishment time comes, but this out-of-stock period has nothing to
do with sales incentives. This is because the optimal replenishment time point is used to
adjust the total inventory cost and focuses primarily on the unit profit rate and the total
duration of the ith period, regardless of sales incentives. The response to sales incentives is
mainly reflected in production quantity.

Subsequently, the impact of refined oil price forecasts and demand forecasts on
production-sales-stock sequential optimization decision-making is analyzed separately, as
detailed in Section 5.

5. Impact Analysis of Predictions on Sequential Optimization Decision-Making
5.1. Effect of Price Forecasting on Sequential Optimization Decision-Making

In this subsection, the impact of the predicted value and forecast error of the refined
oil price on the decision of the inventory replenishment time point is analyzed. We can
obtain Corollary 1 and Corollary 2.

Corollary 1. The optimal inventory replenishment time point decreases monotonically with the
predicted value of the refined oil price (i.e., ∂t∗s

∂p < 0).

Proof. Since t∗s = T − p+ε1−c1
c2

, we have ∂t∗s
∂p < 0. �

Corollary 1 means that as the price forecast increases, the refined oil enterprise will
advance the ordering time point. That is, the out-of-stock period is shortened or even
disappeared after the residual inventory is used up and before the replenishment time
period comes. This is because the main role of the optimal replenishment time point is to
adjust the inventory. Thus, the higher the price, the less concerned the enterprise is about
the inventory cost, so the stock-out period will become shorter or even disappear.

Corollary 2. If the prediction error of the refined oil price is positive (i.e., ε1 > 0), the optimal
inventory replenishment time point decreases monotonically with that error (i.e., ∂t∗s

∂ε1
< 0, what the

negative derivative means is that the inventory replenishment time point decreases monotonically
with the prediction error). If the prediction error of the refined oil price is negative (i.e., ε1 < 0), the
optimal inventory replenishment time point increases monotonically with that error (i.e., ∂t∗s

∂ε1
> 0).

Proof. Since t∗s = T − p+ε1−c1
c2

, we can obtain ∂t∗s
∂ε1

< 0 when ε1 > 0. Similarly, when ε1 < 0,

we can obtain ∂t∗s
∂ε1

> 0. �



Energies 2022, 15, 4222 11 of 19

Corollary 2 means that if the actual value of the refined oil price is higher than the
predicted value, the enterprise will advance the ordering time point, and the higher it is,
the more obvious the advance effect will be. If the actual value of the refined oil price
is lower than the forecasted value, the refined oil enterprise will delay the ordering time
point, and the lower it is, the more obvious the delay effect will be. The reasons behind
Corollary 2 are similar to those behind Corollary 1 and will not be repeated here.

Next, the numerical analysis method is used to analyze the impact of the predicted
value and the forecasted error of the refined oil price on the optimal sales incentive decision,
the optimal production decision, and the expected profit; the corresponding results are
illustrated in Figure 1. The values of the relevant parameters in the optimal models are
shown in Table 2 [26]. It is worth noting that the unit of price is 1000 yuan/ton, the unit
of sales incentives is 1000 yuan, the unit of production is ton, and the unit of profit is
1000 yuan in Figure 1.

Figure 1. The effect of the predicted values of refined oil price on optimal sales incentives, production
quantity, and the expected profits.

Table 2. The parametric values of the sequential optimization decision model when the predicted
values of refined oil price are used.

Symbol Value Unit

D 100 Ton
ε2 5 Ton
ε1 0.5 Thousand yuan/ton
c1 4 Thousand yuan/ton
c2 2 Thousand yuan/ton/quarter
q 5 Ton
T 1 Quarter

Figure 1a shows that the sales incentives increases with the increase of price prediction
value, and this effect increases marginally. This is because, as the price increases, the use
of sales incentives to increase the sales amount of refined oil products can bring more
profits, so the sales incentives of refined oil enterprises increase monotonically with the
price prediction value. Moreover, in the case of constant production costs, the increase in
price will lead to an increase in the unit profit margin, so the profit increase effect due to
sales incentives will be more obvious (that is, marginal increase). Figure 1b shows that the
production quantity of refined oil enterprises increases monotonically with the predicted
value of the refined oil price. This is because the optimal production decision is essentially
to find a balance between sales revenue and inventory cost, and the expected price increase
will increase sales revenue, so the above balance will move upwards. Figure 1c shows
that the expected profit of the refined oil enterprise increases with the increase in the price
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forecasted value and the increasing effect is marginal. This is because, as the sales price
of refined oil products increases, the total profit of the enterprise will obviously increase.
Moreover, in the case of constant production costs, an increase in prices will lead to an
increase in the unit profit rate, so the increasing effect of the total profit will be more obvious
(i.e., a marginal increase).

Similarly, the numerical analysis method is used to analyze the impact of price predic-
tion error on the optimal sales incentive decision, the optimal production decision, and the
expected profit; the corresponding results are reported in Figure 2. Accordingly, the values
of the relevant parameters of sequential optimal decision models are shown in Table 3. It
is worth noting that the unit of price prediction error is 1000 yuan/ton, the unit of sales
incentives is 1000 yuan, the unit of production is ton, and the unit of profit is 1000 yuan in
Figure 2.

Figure 2. The effect of the prediction error of refined oil price on optimal sales incentives, production
quantity, and expected profits.

Table 3. The parametric values of the sequential optimization decision model when the prediction
error of refined oil price is used.

Symbol Value Unit

D 100 Ton
ε2 5 Ton
c1 4 Thousand yuan/ton
c2 2 Thousand yuan/ton/quarter
q 5 Ton
T 1 Quarter
p 8 Thousand yuan/ton

Figure 2 shows that the sales incentives and expected profits of refined oil enterprises
increase with the increase of the relative error of price forecasting, and the effect of this
increase is marginal. Moreover, the production quantity of refined oil enterprises also
increases monotonically with the relative error of price forecasting. This is because the
above error is the relative error of the testing set; the greater the relative error, the higher
the expected price. Thus, the impact of relative errors of refined oil price forecasting on
sales incentives, production volumes, and expected profits is similar to the impact of price
prediction values.

5.2. Effect of Demand Forecasting on Sequential Optimization Decision-Making

In this subsection, the impact of the prediction value and the relative error of the
market demand on the timing decision of inventory replenishment is analyzed. We can
obtain Corollary 3.
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Corollary 3. The optimal inventory replenishment time point is independent of the prediction value
and the prediction error of market demand (i.e., ∂t∗s

∂D = 0 and ∂t∗s
∂ε2

= 0).

Proof. Since
t∗s = T − p + ε1 − c1

c2
,

we can obtain ∂t∗s
∂D = 0 and ∂t∗s

∂ε2
= 0. �

The reason behind Corollary 3 is that the optimal replenishment time point is used
to adjust the total inventory cost, so the decision on it is mainly focused on the unit profit
margin and the total duration of the ith period, regardless of the demand forecast value
and its forecast error. The response to demand is mainly reflected in production.

Based on the above theoretical analysis, the impact of demand forecast values on opti-
mal sales incentive decisions, production decisions, and expected profits is then analyzed;
the corresponding results are illustrated in Figure 3. Accordingly, the values of the relevant
parameters of sequential optimal decision models are shown in Table 4. Note that the unit
of sales incentives is 1000 yuan, the unit of demand and production is ton, and the unit of
profit is 1000 yuan in Figure 3.

Figure 3. Impact of demand forecast values on optimal sales incentives, production quantity, and
expected profits.

Figure 3a shows that the sales incentives of the refined oil enterprise weaken as the
demand forecast increases, and this attenuation effect is increases marginally. This is
because, with the increase of demand, refined oil enterprises are less willing to use sales
incentives to increase sales of refined oil products. Moreover, in the case of high demand,
if the sales incentives are added, it will increase the cost of inventory sharply, so this
weakening effect is marginally incremental. Figure 3b shows that the production quantity
of refined oil enterprises increases monotonically with the forecast value of market demand.
This is due to the fact that optimal production quantity is a response to demand, so the
higher the demand, the higher the production. Figure 3c shows that the expected profit of
the refined oil enterprise increases with the increase of the demand forecast value. This
is because the increase in demand leads to an increase in sales, and the total profit will
naturally increase.
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Table 4. The parametric values of the sequential optimization decision model when the prediction
values of refined oil demand are used.

Symbol Value Unit

ε2 5 Ton
ε1 0.5 Thousand yuan/ton
c1 4 Thousand yuan/ton
c2 2 Thousand yuan/ton/quarter
q 5 Ton
T 1 Quarter
p 8 Thousand yuan/ton

Likewise, we analyze the impact of demand forecast error on optimal sales incentive
decisions, production decisions, and expected profits; the corresponding results are shown
in Figure 4. Accordingly, the values of the relevant parameters of sequential optimal
decision models are shown in Table 5. It is worth noting that the unit of sales incentives is
1000 yuan, the unit of demand prediction error and production is ton, and the unit of profit
is 1000 yuan in Figure 4.

Figure 4. Effect of demand forecast errors on optimal sales incentives, production quantity, and
expected profits.

Table 5. The parametric values of the sequential optimization decision model when the prediction
errors of refined oil demand are used.

Symbol Value Unit

D 100 Ton
ε1 0.5 Thousand yuan/ton
c1 4 Thousand yuan/ton
c2 2 Thousand yuan/ton/quarter
q 5 Ton
T 1 Quarter
p 8 Thousand yuan/ton

Figure 4 shows that the sales incentives of refined oil enterprises weaken with the
increase of the relative error of demand forecasting, and this weakening effect is increases
marginally, while the production quantity and expected profit of refined oil enterprises
increase monotonically with the relative error of demand forecasting. This is because the
above relative error is the relative error on the test set. That is, the greater the relative error,
the higher the expected price. Therefore, the impact of demand forecasting relative errors
on sales incentives, production quantity, and expected profits is similar to the impact of
demand predictions.



Energies 2022, 15, 4222 15 of 19

5.3. Joint Effect of Price and Demand Forecasting on Sequential Optimization Decision-Making

In this subsection, the joint effects of price and demand forecasts on optimal sales
incentive decisions, optimal production quantity decisions, and expected profits are an-
alyzed, as elaborated in Figure 5. Accordingly, the values of the relevant parameters of
sequential optimal decision models are shown in Table 6. It is worth noting that the unit of
price is 1000 yuan/ton, the unit of sales incentives is 1000 yuan, the unit of demand and
production is ton, and the unit of profit is 1000 yuan in Figure 5.

Figure 5. Joint effect of price and demand forecasts on optimal sales incentives, production quantity,
and expected profits.

Table 6. The parametric values of the sequential optimization decision model when the prediction
values of refined oil price and demand are used.

Symbol Value Unit

ε2 5 Ton
ε1 0.5 Thousand yuan/ton
c1 4 Thousand yuan/ton
c2 2 Thousand yuan/ton/quarter
q 5 Ton
T 1 Quarter

Figure 5a shows that, although sales incentives strengthen with increasing prices
and weaken with increasing demand, when prices and demand increase at the same
time, the strengthening effect of the above sales incentives will mask their weakening
effects, resulting in an overall upward trend in sales incentives. This is because refined
oil enterprises reduce sales incentives to control inventory costs as demand increases.
However, when the prices also increase, refined oil enterprises are less concerned about
inventory costs and more about sales revenue. Therefore, when prices and demand increase
at the same time, sales incentives generally show an upward trend. Figure 5b shows that
the production quantity of refined oil enterprises increases with the increase of prices
and demand, and the growth in the direction of demand is slower and the growth in the
direction of price is faster. This is because, in the case of increased demand at constant
prices, the increase in production will lead to excessively high inventory costs, so refined oil
enterprises tend to be conservative in increasing production. In the case of constant demand
and increased prices, refined oil enterprises are less concerned about inventory costs, so
refined oil enterprises tend to be aggressive in production increases. Figure 5c shows that
the profit of refined oil enterprises increases with the increase of prices and demand, and
the growth in the direction of demand is slower and the growth in the direction of price
is faster. This is because, in the case of increased demand at constant prices, although
enterprises can increase sales, this also increases the inventory cost. That is, the growth rate
of net profit per unit is small, and in the case of demand increase and constant price, the unit
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net profit of enterprises can achieve a large increase. Therefore, the profits of enterprises
grow slower in the direction of demand and grow faster in the direction of prices.

Finally, the joint effect of price and demand forecast error on the optimal sales incentive
decision, production quantity decision, and expected profit are analyzed by numerical
analysis method; the corresponding results are reported in Figure 6. For the numerical
analysis, the values of the relevant parameters of sequential optimal decision models are
shown in Table 7. It is worth noting that the unit of price forecast error is 1000 yuan/ton, the
unit of sales incentives is 1000 yuan, the unit of demand prediction error and production is
ton, and the unit of profit is 1000 yuan in Figure 6.

Figure 6. Joint effect of price and demand forecasting errors on optimal sales incentives, production
quantity, and expected profit.

Table 7. The parametric values of the sequential optimization decision model when the prediction
errors of refined oil price and demand are used.

Symbol Value Unit

D 100 Ton
c1 4 Thousand yuan/ton
c2 2 Thousand yuan/ton/quarter
q 5 Ton
T 1 Quarter
p 8 Thousand yuan/ton

Figure 6a shows that, although sales incentives are strengthened with the increase of
the relative error of price forecasting and weakened with the increase of the relative error
of demand forecasting, the strengthening effect of the above sales incentives will mask
the weakening effect when the relative errors of price and demand forecasting increase
simultaneously. As a result, sales incentives generally show a rising tendency. Figure 6b
shows that the production quantity of refined oil enterprises increases with the increase
of relative errors in price and demand forecasts, and growth in the direction of demand
is slower, while it is faster in the direction of price. Figure 6c shows that expected profits
increase with the increase in the relative error of price and demand forecasts, and growth is
slower in the direction of demand and faster in the direction of price. The reason behind
these conclusions is that the greater the relative error in price and demand forecasting, the
higher the price and demand.

5.4. Summary

According to the above theoretical and numerical analyses, four main findings can be
summarized below.

(1) In optimal decision-making for any period, refined oil enterprises would rather
be out of stock than leave the inventory in the next period if prediction is 100% accurate.
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Because the inventory is left over to the next period, it is impossible to generate any revenue
from it in the current period, but it raises the cost of inventory. However, this does not
mean that refined oil enterprises will never leave inventory for the next period because
predictions cannot be 100% accurate. In addition, the optimal inventory replenishment
time point is increases monotonically regarding production costs, inventory costs, and the
total duration of any period, but is independent of sales incentives. This is because the
primary role of the optimal replenishment point is to adjust the total inventory cost, so
decision on it are mainly focused on the unit profit margin and the total duration of the
ith, regardless of sales incentives. The response to sales incentives is mainly reflected in
production quantity.

(2) On the impact of price forecasts on sequential optimal decision-making, refined oil
enterprises will advance the ordering time point with the increase of the forecast value of
the refined oil price. That is, the out-of-stock period will be shortened or even disappear
after the residual inventory is used up and before the replenishment comes. If the actual
value of the refined oil price is higher than the predicted value, the enterprise will advance
the ordering time point, and the higher it is, the more obvious the advance effect. Similarly,
if the actual value of the price is lower than the predicted value, the refined oil enterprises
will delay the ordering time point; the lower it is, the more obvious the delay effect. The
sales incentives and expected profits of refined oil enterprises increase with the increase
of the price forecast value, and this increasing effect is marginal. The production quantity
of enterprises also increases monotonically with the increase of the forecast value and the
relative forecast error of the refined oil price. The sales incentives and expected profits
increase with the increase of the relative error of price prediction, and this increasing effect
is marginal.

(3) On the impact of demand forecasting on sequential optimal decision-making, the
optimal inventory replenishment time point of refined oil enterprises is independent of the
forecast value and forecast error of market demand. The sales incentives of the enterprise
weaken with the increase of demand forecast value and relative forecast error, and this
weakening effect is marginal. The production quantity and expected profits increase
monotonically with the forecast value of demand. Moreover, the production quantity and
expected profit also increase monotonically with the relative error of demand forecasting.

(4) On the joint effect of price and demand forecasting on sequential optimal decision-
making, sales incentives strengthen with increasing prices and weaken with increasing
demand, but when the price and demand increase at the same time, the enhanced effect of
the above sales incentives will mask their weakening effects, leading to an overall upward
trend in sales incentives. The production quantity of refined oil enterprises increases with
the increase of price and demand; the growth in the direction of demand is relatively
conservative and the growth in the direction of prices is more aggressive. The profits of
enterprises also increase with the increase of price and demand; the growth in the direction
of demand is slower and the growth in the direction of price is faster. In addition, this
paper also finds that, although sales incentives strengthen with the increase of the relative
error of price forecasting and weaken with the increase of the relative error of demand
forecasting, when the relative errors of price and demand forecasts increase at the same
time, the strengthening effect of the above sales incentives will mask the weakening effect,
resulting in an overall upward trend in sales incentives.

6. Conclusions

In this paper, a prediction-driven sequential optimization method for production-sales-
stock decision-making problems in refined oil enterprises is investigated in detail. For the
sequential optimization decision-making problems, three dynamic nonlinear programming
models are first constructed. Then, the analytical solutions to sequential optimization
for production-sales-stock decision-making issues are presented. Finally, the effect of
price forecasting and demand forecasting on sequential optimization for production-sales-
stock decision-making are analyzed thoroughly. Numerical analysis results demonstrated
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the significant effect of forecasting results of refined oil price and market demand on
production-sales-stock decision-making, indicating that the prediction-driven sequential
optimization methodology can be used as a feasible solution to joint optimization for
production-sales-stock decision-making.

However, this paper only reports the impact results of prediction results on sequential
optimization for production-sales-stock decision-making; the effects of prediction results
on simultaneous optimization of production-sales-stock decision-making are not analyzed.
As one of the joint optimization methods, the results of simultaneous optimization are very
important for decision-makers in the joint decision-making of production-sales-stock task.
We will look into this issue in the near future.

Author Contributions: Conceptualization, J.Z. (Jindai Zhang) and J.Z. (Jinlou Zhao); methodology,
J.Z. (Jindai Zhang); software, J.Z. (Jindai Zhang); validation, J.Z. (Jindai Zhang); formal analysis, J.Z.
(Jindai Zhang); investigation, J.Z. (Jindai Zhang); resources, J.Z. (Jinlou Zhao); data curation, J.Z.
(Jindai Zhang); writing—original draft preparation, J.Z. (Jindai Zhang); writing—review and editing,
J.Z. (Jinlou Zhao); visualization, J.Z. (Jindai Zhang); supervision, J.Z. (Jinlou Zhao). All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The used data is simulated, there is no external data used in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Darvish, M.; Coelho, L.C. Sequential versus integrated optimization: Production, location, inventory control, and distribution.

Eur. J. Oper. Res. 2018, 268, 203–214. [CrossRef]
2. Zhong, R.Y.; Li, Z.; Pang, L.Y.; Pan, Y.; Qu, T.; Huang, G.Q. RFID-enabled real-time advanced planning and scheduling shell for

production decision making. Int. J. Comput. Integr. Manuf. 2013, 26, 649–662. [CrossRef]
3. Chien, C.F.; Dou, R.; Fu, W. Strategic capacity planning for smart production: Decision modeling under demand uncertainty.

Appl. Soft Comput. 2018, 68, 900–909. [CrossRef]
4. Tsai, W.H.; Jhong, S.Y. Production decision model with carbon tax for the knitted footwear industry under activity-based costing.

J. Clean. Prod. 2019, 207, 1150–1162. [CrossRef]
5. Wang, J.; Chang, J.; Wu, Y. The optimal production decision of competing supply chains when considering green degree: A

game-theoretic approach. Sustainability 2020, 12, 7413. [CrossRef]
6. Rodríguez, G.G.; Gonzalez-Cava, J.M.; Pérez, J.A.M. An intelligent decision support system for production planning based on

machine learning. J. Intell. Manuf. 2020, 31, 1257–1273. [CrossRef]
7. Canonico, P.; De Nito, E.; Esposito, V.; Fattoruso, G.; Pezzillo Iacono, M.; Mangia, G. Visualizing knowledge for decision-making

in lean production development settings: Insights from the automotive industry. Manag. Decis. 2022, 60, 1076–1094. [CrossRef]
8. Seifert, R.W.; Thonemann, U.W.; Sieke, M.A. Integrating direct and indirect sales channels under decentralized decision-making.

Int. J. Prod. Econ. 2006, 103, 209–229. [CrossRef]
9. Berger, J.; Sorensen, A.T.; Rasmussen, S.J. Positive effects of negative publicity: When negative reviews increase sales. Mark. Sci.

2010, 29, 815–827. [CrossRef]
10. Rad, M.A.; Khoshalhan, F.; Glock, C.H. Optimizing inventory and sales decisions in a two-stage supply chain with imperfect

production and backorders. Comput. Ind. Eng. 2014, 74, 219–227. [CrossRef]
11. Yang, L.; Jiang, A.; Zhang, J. Optimal timing of big data application in a two-period decision model with new product sales.

Comput. Ind. Eng. 2021, 160, 107550. [CrossRef]
12. Escudero, L.F.; Quintana, F.J.; Salmerón, J. CORO, a modeling and an algorithmic framework for oil supply, transformation and

distribution optimization under uncertainty. Eur. J. Oper. Res. 1999, 114, 638–656. [CrossRef]
13. Kulp, S.C. The effect of information precision and information reliability on manufacturer-retailer relationships. Account. Rev.

2002, 77, 653–677. [CrossRef]
14. Netessine, S.; Rudi, N. Centralized and competitive inventory models with demand substitution. Oper. Res. 2003, 51, 329–335.

[CrossRef]
15. Caro, F.; Gallien, J. Inventory management of a fast-fashion retail network. Oper. Res. 2010, 58, 257–273. [CrossRef]

http://doi.org/10.1016/j.ejor.2018.01.028
http://doi.org/10.1080/0951192X.2012.749532
http://doi.org/10.1016/j.asoc.2017.06.001
http://doi.org/10.1016/j.jclepro.2018.09.104
http://doi.org/10.3390/su12187413
http://doi.org/10.1007/s10845-019-01510-y
http://doi.org/10.1108/MD-01-2021-0144
http://doi.org/10.1016/j.ijpe.2005.06.006
http://doi.org/10.1287/mksc.1090.0557
http://doi.org/10.1016/j.cie.2014.05.004
http://doi.org/10.1016/j.cie.2021.107550
http://doi.org/10.1016/S0377-2217(98)00261-6
http://doi.org/10.2308/accr.2002.77.3.653
http://doi.org/10.1287/opre.51.2.329.12788
http://doi.org/10.1287/opre.1090.0698


Energies 2022, 15, 4222 19 of 19

16. Zong, S.; Yu, Y.; Shi, J. Stock management system based on principle of ERP and its algorithm design. In Proceedings of the 2010
IEEE International Conference on Intelligent Systems and Knowledge Engineering, Hangzhou, China, 15–16 November 2010;
pp. 569–571.

17. Chan FT, S.; Prakash, A. Inventory management in a lateral collaborative manufacturing supply chain: A simulation study. Int. J.
Prod. Res. 2012, 50, 4670–4685. [CrossRef]

18. Raviv, T.; Kolka, O. Optimal inventory management of a bike-sharing station. IIE Trans. 2013, 45, 1077–1093. [CrossRef]
19. Natarajan, K.V.; Swaminathan, J.M. Inventory management in humanitarian operations: Impact of amount, schedule, and

uncertainty in funding. Manuf. Serv. Oper. Manag. 2014, 16, 595–603. [CrossRef]
20. Moradi, S.; MirHassani, S.A. Transportation planning for petroleum products and integrated inventory management. Appl. Math.

Model. 2015, 39, 7630–7642. [CrossRef]
21. Ali, U.; Salah, B.; Naeem, K.; Khan, A.S.; Khan, R.; Pruncu, C.I.; Abas, M.; Khan, S. Improved MRO inventory management

system in oil and gas company: Increased service level and reduced average inventory investment. Sustainability 2020, 12, 8027.
[CrossRef]

22. Mishra, U.; Wu, J.Z.; Sarkar, B. Optimum sustainable inventory management with backorder and deterioration under controllable
carbon emissions. J. Clean. Prod. 2021, 279, 123699. [CrossRef]

23. Pun, H. Supplier selection of a critical component when the production process can be improved. Int. J. Prod. Econ. 2014, 154,
127–135. [CrossRef]

24. Che, Y.; Gale, I. Optimal design of research contests. Am. Econ. Rev. 2003, 93, 646–671. [CrossRef]
25. Xiao, W.Q.; Xu, Y. The impact of royalty contract revision in a multistage strategic research and development. Manag. Sci. 2012,

12, 2251–2271. [CrossRef]
26. Margarida, B.R.; Luz, L.F.L., Jr. Reaction analysis and simulation of fatty esters production from acid oil using a hybrid process.

Chem. Eng. Trans. 2021, 86, 1015–1020.

http://doi.org/10.1080/00207543.2011.628709
http://doi.org/10.1080/0740817X.2013.770186
http://doi.org/10.1287/msom.2014.0497
http://doi.org/10.1016/j.apm.2015.04.023
http://doi.org/10.3390/su12198027
http://doi.org/10.1016/j.jclepro.2020.123699
http://doi.org/10.1016/j.ijpe.2014.04.020
http://doi.org/10.1257/000282803322157025
http://doi.org/10.1287/mnsc.1120.1552

	Introduction 
	Literature Review 
	Prediction-Driven Sequential Optimization Model Construction for Production-Sales-Stock Decision-Making 
	Model Settings 
	Model Construction 

	Solution and Analysis of Production-Sales-Stock Sequential Optimization 
	Solution to Production-Sales-Stock Sequential Optimization 
	Decision Analysis of Production-Sales-Stock Sequential Optimization 

	Impact Analysis of Predictions on Sequential Optimization Decision-Making 
	Effect of Price Forecasting on Sequential Optimization Decision-Making 
	Effect of Demand Forecasting on Sequential Optimization Decision-Making 
	Joint Effect of Price and Demand Forecasting on Sequential Optimization Decision-Making 
	Summary 

	Conclusions 
	References

