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Abstract: Accurate wind speed prediction is a premise that guarantees the reliable operation of the
power grid. This study presents a combined prediction model that integrates data preprocessing,
cascade optimization, and deep learning prediction to improve prediction performance. In data
preprocessing, the wavelet soft threshold denoising (WSTD) is employed to filter the blurring noise
of the original data. Then, the robust empirical mode decomposition (REMD) and adaptive varia-
tional mode decomposition (AVMD) are adopted to carry out a two-stage adaptive decomposition.
Spearman correlation is used to quantify the mode that need to be decomposed for the second
time. In the cascade optimization, the hybrid grey wolf algorithm (HGWO) is employed to optimize
the parameters of the VMD and the gated recurrent unit (GRU), which overcomes the problem of
empirical parameter adjustment. The HGWO is also adopted in the prediction strategy to optimize
the GRU model to predict the grouped intrinsic mode functions (IMFs). Lastly, the final wind speed
prediction result is obtained by superimposing the values of all the predicted models. The proposed
model was validated with the measured wind speed data of the four quarters in the Bay area of
China and was compared with 20 models of the classic method to further evaluate the effectiveness
of the model. The results show that the whole process of the proposed model is adaptive, the final
multi-step prediction performance is good, and high prediction accuracy can be attained.

Keywords: wind speed prediction; wavelet soft threshold denoising; robust empirical mode decomposition;
cascade optimization strategy; deep gated recurrent unit; adaptive model

1. Introduction

Wind energy is a highly efficient and renewable energy. Its development and utiliza-
tion have been widely recognized [1]. The intermittent and randomness of wind speed
bring stern challenges for the stable operation of power systems [2,3]. Accurate prediction
of wind speed will benefit the exploitation of wind energy. Wind speed prediction is a
hot research topic, and a number of prediction methods have been proposed over the past
decades which can be classified into physical models, statistical models, machine learning
models, and combination models [4].

As wind is a multi-scale physical phenomenon, numerical weather predictions (NWP)
provide straightforwad wind speed predictions with physical advantages [5]. The physical
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model based on NWP applies historical meteorological factors such as temperature and
barometric pressure to predict the wind speed over a long period [6]. Additionally, wind
speed prediction is applied using physical approximation and spatial correlation fluid
dynamics models [7,8]. However, the physical model is complex in modeling, poor in
prediction accuracy, and its scope of application is limited. It is not suitable for short-term
wind speed prediction. Recently, a data-driven method based on stacked bidirectional
long short-term memory (BiLSTM) for wind turbine wake prediction was proposed by
Geibel and Bangga [9], and satisfactory prediction accuracy was achieved, indicating that a
data-driven approach can offer an alternative to conventional prediction methods.

Statistical models use the linear mapping relationship between historical weather
conditions and wind speed and utilize series data to predict the future wind speed se-
ries through this relationship [10]. Traditional statistical modes such as auto-regression
(AR) [11], auto-regressive moving average (ARMA) [12], auto-regressive integrated moving
average (ARIMA), and auto-regressive conditional heteroskedasticity (ARCH) are widely
used in the field of time series prediction [13]. For instance, the ARCH model was used to
predict the revenues of the financial stock market [14]. Radziukynas adopted a classical
ARIMA model to predict short-term wind speed series [15]. Tian and Wang et al. proposed
a prediction method based on ARMA and echo state network (ESN) compensation to deal
with the statistical characteristics of wind speed series, which can obtain accurate prediction
results [16]. As mentioned above, the statistical models often uses the historical wind speed
data to establish linear wind speed prediction models, but due to the strong nonlinearity
of data, the model parameters are difficult to determine, and the prediction accuracy is
not satisfied.

To improve the accuracy of the wind speed prediction, statistical models based on
artificial intelligence were proposed. Compared with statistical models, artificial intelli-
gence prediction models have outstanding capabilities in processing nonlinear wind speed
time series. With the rapid development of artificial intelligence, great effort has been
made to improve the accuracy and universality of wind speed prediction. Nair and Jisma
presented ANN and ARIMA to predict the wind speed at three different locations in India
in different time periods, which reduces the nonlinear characteristics of the wind speed
series [17]. In another work, Shukur and Lee proposed the Kalman filter (KF) and an
ANN hybrid model based on ARIMA to deal with the nonlinearity and uncertainty of
wind speed [18]. Machine learning models based on neural network have became popular
in short-term wind speed prediction [19]. For example, the prediction models based on
back-propagation neural networks (BPNN) [20], least square support vector machines
(LSSVM) [21], support vector regressions (SVR) [22], extreme learning machines (ELM) [23],
Elman neural networks (ENN) [24], adaptive wavelet neural networks (AWNN) [25], and
recurrent neural networks (RNN) [26] perform well when dealing with time series with
nonlinear characteristics. However, these techniques are all built with single neural network
models, which may result in local optimization or over-fitting problems in short-term wind
speed prediction.

To improve the prediction performance, researchers introduced combination models
to integrate the advantages of every single model. The combination prediction model
combines data preprocessing, an optimization algorithm, a and predictor, which shows out-
standing performance in wind speed prediction. The data preprocessing strategy composed
of outlier detection and data decomposition can greatly ameliorate the prediction perfor-
mance of the whole model [27]. The missing original data and outlier problems caused by
human, weather, and other factors are the primary problems to be addressed in the field
of wind speed prediction. After outlier processing, taking into account the nonlinearity
and noise characteristics of wind speed [28], the data decomposition method can drop
the instability of wind speed correlation series and abandon redundant information and
combine with a machine learning model to enhance the predictability of wind speed [29].
For instance, Mi and Zhao [30] applied the singular spectrum analysis (SSA) model to
denoise the original wind speed data to capture the complex dynamic characteristics of
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wind speed, which combines the adaptive structure learning of neural networks with long-
and short-term memory networks (LSTM) to predict wind speed in three wind farms in
Xinjiang, China. The proposed model has good prediction performance. A hybrid method
of empirical mode decomposition (EMD) and ARIMA-ANN is proposed to improve the
prediction accuracy of time series [31]. Zhan and Tian et al. [32,33] studied the two-stage
decomposition model of the complementary ensemble empirical mode decomposition
(CEEMD) and local mean decomposition (LMD) to achieve intrinsic mode functions (IMFs)
of different regularity degrees, which was applied to (support vector machine) SVM and
T-S fuzzy neural network (FNN) prediction. Duan et al. [34] proposed variational mode
decomposition (VMD) to extract the local characteristics of the original wind speed se-
ries and constructed an integrated prediction model using deep belief network (DBN)
optimized by particle swarm optimization (PSO), which overcomes the shortcomings of
linear weighted combination, and the performance of the prediction model is better than
many traditional models. Meanwhile, the wavelet transform (WT) [35] method shows
advantages in extracting and studying the characteristics of wind speed in the time domain
and frequency domains and solves the randomness and complexity of wind speed signals.
Liu et al. [36] designed a hybrid model combining wavelet decomposition (WD) and LSTM
to predict China’s wind power generation in the next two years. The experiment showed
that this model effectively improves the accuracy of the prediction.

In addition to the above models, the decomposition-based method may contribute
to large differences in prediction performance. For the decomposed models, in terms of
generalization performance, sometimes they cannot capture the characteristics of wind
speed. As such, the prediction accuracy and training speed of the model are affected because
the advantage of parameter optimization is not considered. To avoid these problems, an
adaptive short-term wind speed predictor is formed based on the model of optimization
algorithm [37], which reduces the prediction error and achieves good prediction results. As
an example, Bai et al. [38] proposed a dynamic integrated wind speed prediction model, a
hybrid model composed of VMD and a genetic algorithm (GA)-optimized double-layer
staged training echo state network (DESN), which used the DESN to process nonlinear
series and capture time information of different time scales, and the model has better time-
varying and robustness through nonlinear weighted combination mechanism. Wu and
Wang et al. [39], considering the accuracy and stability of the model, applied multi-objective
grey wolf optimization (MOGWO) to optimize ELM to form a new integrated global wind
speed prediction method. Neshat [40] combined effective hierarchical decomposition
technology and deep learning optimization methods to develop a combined model with
deep feature selection and optimal intrinsic mode functions to predict the forward time
step of wind speed data from Baltic offshore wind farms. Tian et al. [41] utilized EMD to
decompose the original wind speed data into IMFs with different frequencies, and then
embedded multiple IMFs into the enhanced network of improved sparrow search algorithm
(ISSA) optimized LSTM for prediction, which solved the problem of slow convergence
speed of previous models and being easy to fall into local optimum. The results indicate
that the model of EMD and ISSA optimization LSTM has good predictive ability. The
literature review shows that using the diversity of optimization algorithms to predict the
wind speed prediction model with the best parameters, which can improve the prediction
accuracy and stability of the model to a certain extent.

Short-term prediction is to predict wind speed from 10 min to 30 min in advance. It
is conducive to the timely and reasonable dispatching of the power grid, maintenance of
power quality, and the stable operation of the power system. Because of the uncertainty
of wind speed, short-term wind speed prediction has great practical significance and
application value. In the field of short-term wind speed prediction, wind speed is an
important indicator that affects wind power generation. However, due to many uncertain
factors, the integrity of the original wind speed data has been destroyed. The rapid change
in wind speed leads to the nonlinear and nonstationary characteristics of wind speed series.
EMD is an adaptive data decomposition method [42] suitable for processing nonlinear
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and unstable time series, but its decomposition has the problem of model-mixing and the
uncertainty of the maximum number of iterations in the sifting process, which affects the
performance of the wind speed data decomposition method. Hence, VMD has a better
decomposition effect and is more robust when dealing with complex wind speed time
series [43]. What is undesirable is that VMD requires artificial parameters and lacks rigor.
Therefore, in consideration of the completeness and predictability of wind speed data,
data preprocessing strategy plays an important role in the study of short-term wind speed
prediction.

Reviewing the above-mentioned methods, the combined method based on the decom-
position denoising method and the optimization parameter method are discussed, and the
research contributions of these methods and their shortcomings are summarized. To this
end, this study considers the generalization ability and stability of the prediction model
and develops a short-term multi-step wind speed prediction method with adaptive robust
decomposition characteristics that combines a data-processing strategy, a cascade optimiza-
tion strategy, and a prediction strategy [44]. The method includes a data preprocessing
strategy based on wavelet soft threshold denoising (WSTD), robust empirical mode decom-
position (REMD) and variational mode decomposition (VMD), cascade optimization based
on the hybrid grey wolf optimization algorithm (HGWO) strategy, and a prediction strategy
based on deep gated recurrent unit (DGRU), which is achieved satisfactory results in the
field of short-term wind speed prediction. The primary innovations and contributions of
this research are as follows:

(1) Data preprocessing strategy: A novel and efficient two-stage data preprocessing
technology is proposed. WSTD filters out the redundant noise of the original wind
speed series. One-stage REMD decomposes to obtain a series of IMFs to eliminate
random fluctuations. To reduce the error, Spearman correlation analysis is used to
analyze the correlation between each IMF and the original wind speed time series,
group reconstruction, reduce the accumulation of errors, and prepare high-quality
data for prediction purposes.

(2) Cascade optimization strategy: The cascading optimization strategy based on
HGWO, which is used for the first time, and the optimized VMD is used to de-
compose the IMFs with strong correlation in the wind speed correlation series in
the second stage to further explore the potential characteristic information of the
wind speed. On this basis, it is more robust to deal with time series of complex
characteristics.

(3) Prediction strategy: The strategy of cascading optimization is adopted to dynami-
cally analyze the optimal input parameters and optimal network structure of the
GRU deep learning model, and the reorganized wind speed correlation sub-series
are predicted and superimposed in the future time step to complete deeper wind
speed characteristic extraction and learning, which greatly enhance the stability and
generalization of the model.

(4) The combined multi-step wind speed prediction method of WSTD, REMD, and
HGWO-VMD-GRU is proposed, which integrates the advantages of each single
model. The wind speed datasets of different seasons in the Shanghai Bay area are
selected to verify the validity of the model, and the final conclusion is reached
by testing and analyzing three different benchmark models with the classic single
models, the decomposition optimization models, and other combined models.

The paper is organized as follows. In Section 2, we introduce the basic theory of the
relevant methods and the framework of the proposed prediction system. Section 3 gives a
comprehensive discussion on the experimental results from various prediction models. In
Section 4, we draw the conclusion.

2. Related Methodology

An adaptive decomposition integrated combined wind speed prediction system has
been developed in this study. The basic framework of the proposed model is shown in
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Figure 1. First, a wind speed data preprocessing strategy based on WSTD and REMD
is proposed. Meanwhile, the Spearman correlation coefficient is used to quantitatively
analyze the wind speed component after pretreatment to reduce the accumulation of errors.
Secondly, the cascade optimization strategy of VMD and GRU is optimized based on
HGWO. Finally, the prediction strategy based on GRU is proposed. It can be observed
that each integrated model has adaptive characteristics, which makes the whole prediction
system more robust and accurate. The strategies adopted for data preprocessing, cascade
optimization and building prediction modeling are introduced in detail in the following.
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Figure 1. Overall block diagram of the proposed combined model.

2.1. Data Preprocessing
2.1.1. Data Collection

The wind speed series used in this study are measured from the Shanghai Bay area
in China in 2019 and were provided by Fengxian Meteorological Bureau. Four different
short-term wind speed samples in the four seasons are selected as datasets. The four
datasets are termed as dataset A, B, C, and D. The data sampling interval is 10 min, and
there are 2000 data in each dataset, as shown in Figure 2. The average, standard deviation,
median, variance, and box plot are shown in the figure as well. The difference among the
four datasets are reflected from the statistics.
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Dataset Numbers Mean Std Median Var

A 2000 2.235 1.322 2.200 1.747

B 2000 2.740 1.543 2.500 2.382

C 2000 2.128 1.304 1.900 1.700

D 2000 2.026 1.125 2.000 1.267

Data  collection

 Boxplot of data set

Figure 2. Basic information of the four datasets used in this study.

2.1.2. Data Denoising Based on WSTD

WSTD is a time-frequency domain signal processing method based on wavelet trans-
form (WT) [45]. WT is usually used for denoising or filtering of strongly nonstationary
signals. There are a variety of criteria for selecting wavelet bases and thresholds in WT,
and an inappropriate selection will disrupt the performance. Suppose the measured noisy
wind speed data are f (t). They can be decomposed as:

f (t) = x(t) + δe(t), (1)

where t is the time interval, x(t) is the real wind signal, e(t) is the Gaussian white noise, δ
represents the correlation coefficient of the noise.

WSTD generally includes three steps, i.e., WT, threshold function, and wavelet recon-
struction. In WT, the denoising effect is quantified by the signal-to-noise ratio (SNR) and
the RMSE. The larger the SNR or the smaller the RMSE is, the better the noise reduction.
The denoising effect of WT was tested on dataset C. Table 1 demonstrates the SNR and
RMSE obtained with different wavelet basis functions. The results suggest that WT with
db4 wavelet basis function shows the best noise reduction.

Table 1. Comparison of WT with various wavelet basis functions.

Wavelet Basis Function SNR/dB RMSE

db4 12.8588 0.5677
haar 11.3318 0.6768
db3 12.5165 0.5905

sym2 12.3492 0.6020

Threshold function is used to quantify the high-frequency coefficients at different
scales obtained by WT. The selection of the threshold function has a great influence on the
denoising results. The two well-known threshold functions are the hard threshold function
and the soft threshold function. The hard threshold function is not continuous, which leads
to additional oscillations in the signal reconstruction. On the contrary, the soft threshold
function maintains good continuity by flexibly managing the discontinuity of the hard
threshold in various threshold estimation methods and enhances the effect of denoising in
the wind speed prediction models. The soft threshold function is:

ŴX =

{
sign(WX)|WX |, |WX | ≥ λ

0, |WX | < λ
(2)
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where WX is the WT coefficient, ŴX is the calculated WT coefficient, λ indicates the
threshold, sign denotes the symbolic function.

Finally, the denoised wind speed time series is obtained by wavelet reconstruction,
which reconstructs the processed high- and low-frequency wavelet coefficients.

Overall, the denoising effect of WSTD is better than the traditional denoising methods.
The denoised datasets by WSTD are shown in Figure 3, and it is observed that the wind
speed time series are smoother than the original ones.
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Figure 3. The four datasets denoised by WSTD. The vertical dashed lines denote the separation of
training data and test data.

2.1.3. One-Stage Decomposition Based on REMD

The nonlinearity and nonstationarity of wind speed seriously affect its forecast accu-
racy. The proper decomposition of the original wind speed data can effectively alleviate
the complex characteristics of the wind speed and improve the prediction accuracy. The
usually used decomposition methods such as EMD and EEMD require manually preset
thresholds, which are not adaptive, resulting in mode-mixing problems after decomposition
and affecting the prediction results.

The implementation of EMD is mainly based on three parameters: envelope estimation,
boundary condition and sifting stop criterion (SSC). The classical cubic spline interpolation
method and mirror extension method are adopted for envelope estimation and boundary
condition. Among them, the SSC parameter has the greatest impact on the accuracy
and efficiency of EMD. This parameter directly affects the sifting iterations number and
then controls the decomposition component of EMD, but it opts to cause the ‘under-
sifting’ or ‘over-sifting’ phenomenon. Therefore, the study of SSC is essential to deal
with the mode-mixing problem in EMD. The definition of SSC parameter is as follows:
(1) the number of extreme points and zeros must be equal or no more than one, i.e.,
|Nzores − Nextreme| ≤ 1; (2) if the envelope mean signal mik[n] of EMD is 0, the sifting
process stops, that is, limk→∞ mik[n] = 0. The objective function is designed to describe
the envelope mean signal, and the RMS and EK are taken into account, so that all sample
points of the signal uniformly tend to zero. Based on this, Liu et al. [46] exploited SSC for
adaptive control of the sifting process, which is used to ease the mode-mixing phenomenon
and improve the decomposition results, so as to improve the accuracy of wind speed
prediction. The improved EMD performs robust decomposition of wind speed data owing
to its adaptability. The original wind speed series is written as:

x(t) =
i

∑
k=1

IMFK(t) + ri(t) (3)
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The detailed processes of robust empirical mode decomposition (REMD) are as follows:

Step 1: Initialize parameters k and i, set the maximum number of sifting iterations Imax;
Step 2: Find the maximum and minimum values of the wind speed signal hik−1[n]. The

upper and lower envelopes are obtained by cubic spline interpolation. Then,
calculate the average value of the upper and lower envelopes mik[n]:

hik[n] = hik−1[n]−mik[n] (4)

where hik[n] indicates the signal after the ith IMF sifting k times;
Step 3: Apply the objective function of SSC to calculate the objective value fik. The objec-

tive function is defined as follows:

fik = RMS(mik[n]) + |EK(mik[n])| (5)

RMSik =

√√√√ 1
Ns

Ns

∑
n=1

(mik[n])2 (6)

EKik =
1

Ns
∑Ns

n=1(mik[n]− m̄)4

[ 1
Ns

∑Ns
n=1(mik[n]− m̄)2]2

− 3 (7)

where m̄ stands for the arithmetic mean of mik[n];
Step 4: Execute SSC to determine the sifting stop process. If it is satisfied at the same

time, stop and output; otherwise, return to step 2 and continue to iterate until
the maximum number of sifting iterations Imax is received, and output the k-2nd
hik−2[n] as IMFi. The two criteria are expressed as follows:{

fik−2 < fik−1, fik−1 < fik

abs(Nzores − Nextreme) ≤ 1
(8)

2.2. Cascade Optimization
2.2.1. The Hybridizing Grey Wolf Optimization Algorithm

The HGWO uses the differential evolution (DE) to carry out population mutation in
order to maintain the diversity of the population and then takes it as the initial population
of the GWO to find the optimal individual [47]. The crossover and selection operation of
DE are used to update the positions of other grey wolf individuals, and the cycle process is
used to obtain the optimal solution. Step 4 in Figure 1 shows the flow chart of hybrid grey
wolf algorithm. The process of DE and GWO are presented below.

DE is a random selection model that simulates biological evolution, which is used
to solve global optimization problems. The implementation of DE includes initialize
population, mutation, crossover, and selection operations as explained below.

Initialize population: Randomly generate population individuals.
Mutation: The operation of the mutated individual is implemented as follows:

ht+1
ij = Xt

p1 + F(Xt
p2 − Xt

p3) (9)

where F is the scaling factor; t is the current iteration number; p1, p2, and p3 are a random
unequal integers in N that are not equal to t; and N is the population size.

Crossover: Crossover operation can increase the diversity of the population, the
operation is applied as below:

Ut+1
ij =

{
ht+1

ij , rand(j) ≤ CR or j = rand(1, n)

Xt
ij, rand(j) > CR or j 6= rand(1, n)

(10)

where CR represents the crossover probability between 0 and 1, j is a random integer
between 1 and D, and D is the dimension of the solution.
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Selection: Utilize a greedy strategy to select the offspring of an individual, as de-
fined below:

Xt+1
i =

{
Ut+1

i , f (Ut+1
i ) < f (Xt

i )

Xt
i , f (Ut+1

i ) ≥ f (Xt
i )

(11)

where Xt+1
i is the ith current population individual in the t+1 generation population, and

Ut+1
i is the ith crossover individual in the t+1 generation population.

According to the DE algrithm, the superiority of the progeny population can be
guaranteed, and the average performance of the population can be improved.

GWO is an intelligent optimization algorithm inspired by the predation behavior of
grey wolves in nature. With its advantages of simple mechanism, strong global search
ability, and few adjustable parameters, it achieves parameter optimization based on the
mechanism of wolf group cooperation. Wolves have a very strict social hierarchy. As shown
in Figure 4, the wolf pack is divided into four levels to simulate leadership levels. The
social hierarchy of grey wolves plays an important role in pack hunting. The predation
process is completed under the leadership of Wolf α , Wolf β, and Wolf ζ, and the existence
of Wolf ω maintains the stability of the pack hierarchy. The hunting of grey wolves includes
the following three main components:

α

β

ω

ζ

Figure 4. The hierarchy of the grey wolf pack.

Pursuing prey: The behavior of grey wolves chasing prey is defined as follows. The
distance D between the two is expressed as:

~D = |~C · ~Xp(t)− ~X(t)| (12)

~C = 2~r1 (13)

where t denotes the current iteration, ~A and ~C are coefficient vectors, ~X(t) represents the
position of the grey wolf after iteration t, ~Xp(t) stands for the position of prey after iteration
t, and ~C is the swing factor.

The grey wolves’ position update formula is described as follows:

~X(t + 1) = ~Xp(t)− ~A~D (14)

~A = 2~a~r2 −~a (15)

where~r1 and~r2 are random vectors in [0, 1], ~A is the convergence factor, and~a decreases
linearly from 2 to 0 as the number of iterations increases.

Rounding up prey: Grey wolves identify the location of their prey and encircle their
prey. This behavior is depicted as follows:

~Dα = |~C1~Xα(t)− ~X(t)| (16)

~Dβ = |~C2~Xβ(t)− ~X(t)| (17)

~Dζ = |~C3~Xζ(t)− ~X(t)| (18)
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Attack prey: Prey stops moving, and the grey wolf attacks to complete the hunt:

~X1 = ~Xα(t)− ~A1~Dα (19)

~X2 = ~Xβ(t)− ~A2~Dβ (20)

~X3 = ~Xζ(t)− ~A3~Dζ (21)

~Xp(t + 1) =
~X1 + ~X2 + ~X3

3
(22)

where ~Xα, ~Xβ, and ~Xζ indicate the position vectors of α, β, and ζ wolves, respectively, and
~Dα, ~Dβ, ~Dζ are the distances from the current wolf to the three optimal solutions, respectively.

To avoid the defects of local optimization and poor stability of DE and GWO, the
hybrid of the two algorithms, namely, DE-GWO, improves the global search ability and
shows the adaptive and fast convergence ability in wind speed prediction.

2.2.2. Two-Stage Decomposition Based on VMD

VMD is a signal decomposition method for nonlinear and nonstationary characteristics
proposed by Dragomiretski et al. [48]. It has the characteristics of being adaptive, quasi-
orthogonal, and completely nonrecursive, the essence of which is to construct and solve
the variational problem. The VMD method is as follows:

To obtain a unilateral spectrum, the means of the Hilbert transform are adopted to
calculate the associated analytic signal for each mode:

(δ(t) +
j

πt
) ∗ uk(t) (23)

The center frequency of each mode is assessed:

[(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt (24)

The L2 norm of the gradient for the demodulated signal is employed to calculate the
bandwidth of each mode. The variational constraint problem is constructed as follows:

min
uk ,ω2

∑
k
‖∂t[(δ(t) +

j
πt

) · uk(t)]e−jωkt‖2
2 (25)

∑
k

uk(t) = f (t) (26)

where f (t) represents the original signal, uk is each modal component, ωk indicates the
central frequency of each modal, δ(t) denotes the unit impulse function, and K is the total
number of modal components.

Solving variational problems: Introduces the Lagrange multipliers λ and quadratic
penalty factors α, so that the constructed constrained variational solution problem becomes
an unconstrained variational decomposition problem. The augmented Lagrange function
of the original constrained variational solution problem can be expressed as:

L(uk, ωk, λ) = α
K

∑
k=1
‖∂t[(δ(t) +

j
πt

) · uk(t)]e−jωkt‖2
2+

‖ f (t)−
K

∑
k=1

uk(t)‖2
2 + 〈λ(t), f (t)−

K

∑
k=1

uk(t)〉
(27)

The Alternating Direction Multiplier Method (ADMM) is used to search the saddle
point of the augmented Lagrange function to solve the variational problem, where each
mode uk, center frequency ωk, and Lagrange operator λ are iteratively updated as follows:
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ûn+1
k (ω) =

f̂ (ω)∑i<k ûn+1
k (ω)−∑i>k ûn

k (ω) + λ̂(ω)
2

1 + 2α(ω−ωn
k )

2 (28)

ωn=1
k =

∫ ∞
0 ω|ûn+1

k (ω)|2dω∫ ∞
0 |û

n+1
k (ω)|2dω

(29)

λ̂n+1(ω) = λ̂n(ω) + τ(ω̂−∑
k

ûn+1
k (ω)) (30)

where τ is the update parameter.
If the following discriminant formula is met, stop the iteration; otherwise, repeat the

above operation:

∑
k

‖ûn+1
k (ω)− ûn

k (ω)‖2
2

‖ûn
k (ω)‖2

2
(31)

VMD exhibits some advantages over traditional recursive mode decomposition in
signal decomposition problems, and the decomposition result is determined by the number
of modal components and the secondary penalty factor. The remaining parameters have
weak effect on the decomposition result and are generally set with default values. However,
the choice of the two key parameters is empirical. Usually, the optimal combination of the
parameters is not adopted. The adaptive decomposition of VMD optimized by HGWO
overcomes this deficiency, which provides the best decomposition as well as sufficient
feature mining of the data.

In this study, the decomposition performance of VMD is measured with the minimum
envelope entropy (MEE). Taking the MEE as the fitness function of HGWO algorithm,
under the influence of a set of modal decomposition parameters and the combination of the
secondary penalty factor parameters, the one with the smallest entropy value is selected
as the MEE, which is recorded as the best fitness function MEE. Therefore, the parameter
combination corresponding to the global optimal component is obtained, namely, K and α.
The steps to solve the MEE are as follows:

bj =
aj

∑M
j=1 bj

, j = 1, 2, · · · , M (32)

IMFEE(k) = −
M

∑
j=1

bj log2(bj) (33)

MEE = min(IMFEE(1), · · · , IMFEE(k)) (34)

where M is the length of the modal component of the wind speed time series by VMD, bj
is the normalized envelope of the modal components, aj is the envelope amplitude of the
jth point of the modal component after VMD, and IMFEE(k) is the envelope entropy of a
modal component.

The parameter determination algorithm based on the MEE is used to find the op-
timal combination of VMD parameters and the fitness function set by HGWO, which
solves the problem of the under-decomposition and over-decomposition of the modal
caused by the improper selection of VMD parameters, and forms an adaptive wind speed
decomposition method.

VMD is commonly used to perform data preprocessing in the field of wind power
prediction, which can extract abundant characteristic information from wind speed signals.
In this study, the local characteristics of the wind speed time series are extracted through
the secondary decomposition of VMD with the purpose of tracking wind speed change
information in real time.
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2.3. Prediction Model
Deep Gated Recurrent Unit

GRU is a network model for processing time series. It is a variant of RNN [49], which
simplifies the network structure while ensuring the original accuracy of LSTM, has strong
learning ability and efficiency, and can selectively forget or retain the input historical
information through the update gate and reset gate, so as to realize the prediction of
future data.

The GRU model can control the degree of the state information of the previous moment
by updating and resetting the gate. The GRU network structure is shown in Figure 5. The
parameters that the entire model needs to be trained are Wz, Wr, and Wh, and the forward
training process is:

zt = σ(Wzhht−1 + Wzxxt) (35)

rt = σ(Wrhht−1 + Wrxxt) (36)

h̃t = tanh(Whh(rt
⊙

ht−1) + Whxxt) (37)

ht = (1− zt)
⊙

ht−1 + h̃t
⊙

zt (38)

where Wzh, Wzx is the weight matrix of the updated gate, Wrh, Wrx is the weight matrix of
the reset gate, Whh, Whx is the weight matrix when calculating the output candidate value
ht, and

⊙
is the product of the elements of the matrix.

tanh

1-


thtz

tr

1th−

tx

ty

th

 

Figure 5. GRU structure.

The concrete procedures of HGWO-GRU (DGRU) are described as follows:

Step 1: Define the parameters of HGWO, such as population size N , maximum number
of iterations tmax, and crossover probability parameters CR.

Step 2: Initialize the parameters a, A, C , implement DE mutation and competitive selec-
tion on the population individuals according to the formula, and generate the
initial population.

Step 3: Apply formula (12)–(21), calculate the objective function value of each grey wolf
individual in the population, and select the positions of the three individual grey
wolves ~Xα , ~Xβ, and ~Xζ with the optimal value. Then, calculate the distance
between other grey wolves in the population and the optimal individual position,
and update the current position.

Step 4: According to the formula (9)–(11), cross the positions of individuals and screen
out new individuals.

Step 5: Perform formula (22), calculate the target fitness value of all grey wolf individuals, and
update the grey wolf individuals in the three optimal positions of ~Xα , ~Xβ, and ~Xζ .

Step 6: Cycle process, judge whether the maximum number of iterations is reached; if so,
save the global optimal solution and exit. Otherwise, return to step 3 to continue
the iterative update.
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Step 7: Output the optimal position, that is, ~Xα. The GRU network determines the optimal
combination parameters (GRU-size, Learning-rate).

For the construction of prediction model, the rolling prediction mechanism is used
in training set and test set. Each input of 3 measured data corresponds to 1 output as the
predicted value. Accordingly, 2000 data are formed into 1997 datasets, of which the first
1800 sets of data are used as training sets. The remaining 197 sets of data are used as the test
set. In addition, before entering the model, the wind speed time series are normalized, and,
finally, the future wind speed data are predicted by one, two, and three step ahead. The
expressions of the one-step and multi-step predictions are as follows. Assuming the wind
speed series is (x1, x2, . . . , xn), the length of Moving Window is h. In m-step prediction, the
moving step length of the Moving Window is m. Note that the length h = 3 is adopted in
our following predictions based on multiple trials.

The prediction formula at time t in one-step prediction is:

(x1, x2, · · · , xh)⇒ (yh+1), t = 1 (39)

(x2, x3, · · · , xh+1)⇒ (yh+2), t = 2 (40)

(x1+k−1, x1+k, · · · , xh+k−1)⇒ (yh+k), t = k (41)

The prediction formula at time t in m-step prediction is:

(x1, x2, · · · , xh)⇒ (yh+1, · · · , yh+m), t = 1 (42)

(x1+m, x2+m, · · · , xh+m)⇒ (yh+m+1, · · · , yh+2m), t = 2 (43)(
x1+(k−1)m, x2+(k−1)m, · · · , xh+(k−1)m

)
⇒
(

yh+(k−1)m+1, · · · , yh+kn

)
, t = k (44)

3. Experimental Results and Discussion

This section introduces the Evaluation index, Denoising verification, Model parameters
selection, and Experimental results.

3.1. Evaluation Index

To evaluate the performance of the prediction model, five evaluation indicators are
used in this paper, which are the Mean absolute error, Root mean square error, R-squared,
Theil inequality coefficient, and Square sum error. The indicators are listed in Table 2,
where yi is the ith actual value of short-time wind speed, ŷi is the corresponding predicted
value from the prediction model for performance estimation, and ŷ is the mean value of
the short-time wind speed.

Table 2. The performance evaluation index.

Index Meaning Equation

SNR Signal-to-noise ratio SNR = 101g(
∑N

i=1 y2
i

∑N
i=1(yi − ŷi)2

)

MAE Mean absolute error MAE = 1
N ∑N

i=1 |yi − ŷi|
RMSE Root mean square error RMSE =

√
1
N ∑N

i=1(yi − ŷi)2

R2 Coefficient of determination R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ŷ)2

TIC Theil inequality coefficient TIC =

√
1
N ∑N

t=1(yi − ŷi)2√
1
N ∑N

t=1 y2
i +

√
1
N ∑N

t=1 ŷi
2

SSE Square sum error SSE = ∑N
i=1(yi − ŷi)

2
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3.2. Denoising Verification

In order to verify the improvement in wind speed prediction by denoising, the pre-
dicted results by BPNN from the original data and the WSTD denoised data are compared.
BPNN is a classical neural network with adaptive learning and an error feedback mech-
anism. The four datasets are trained and tested by BPNN, and the prediction results are
shown in Figure 6. It can be seen from the figure that the data quality after WSTD process-
ing is significantly improved, the data become smoother, and the redundant information is
filtered out. Moreover, the noise inhibited in the datasets reduces the prediction accuracy,
whereas the the prediction performance is significantly improved after denoising. This
experiment suggests that WSTD is essential to the hybrid wind speed prediction model.
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Figure 6. Comparison of BPNN prediction results of four wind speed series with and without
denoising: (a) without the WSTD denoising; (b) with the WSTD denoising.

3.3. Experimental Results

In this section, three simulation experiments based on a decomposition optimization
model, a decomposition model, and a classical model are presented. The four wind speed
datasets measured in the bay area of Shanghai, China, are used to train and test the
developed model. The one-step, two-step, and three-step predictions are performed. More
specifically, the REMD, VMD, CEEMD, and WD models are used as benchmark models for
comparison. Furthermore, the results of one-stage decomposition of REMD in Section 2.1.3
and two-stage decomposition of HGWO-VMD in Section 2.2 are analyzed in more detail.
The dataset C is taken as an example for demonstration and discussion.

3.3.1. Validation of REMD Method

Proper decomposition can effectively reduce the random fluctuation in the original
wind speed series and improve the performance of wind speed prediction. By taking
the advantages of the REMD method with SCC, the mode-mixing problem is avoided,
and the adaptive robust decomposition is utilized. Then, REMD is used to decompose
the original wind speed series into IMFs of different frequencies for subsequent model
analysis and prediction. Figure 7 shows the decomposition results of REMD. With the data
preprocessing of the REMD method, each IMF is separated to maintain different degrees of
non-stationary. Using these separated IMFs can reduce the impact of strong data volatility
on the predicting process. Meanwhile, it can be further shown from the figure that from
IMF1 to IMF7, the complexity of each modal decreases, which is more conducive to the
analysis and processing of wind speed data. Moreover, in Section 3.3.3, the improvement
in prediction accuracy with REMD will be focused on.
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D 

 Figure 7. REMD decomposition results of the four wind speed series. (A–D) are REMD decomposi-
tion results of four datasets in spring, summer, autumn and winter respectively.

3.3.2. Rationality of Adaptive VMD Method

The Spearman correlation coefficient is generally used to establish the correlation
between each time series, analyzing the correlation level with the original wind speed
series, and perform a secondary decomposition of the modal components according the
correlation. At the same time, to reduce the calculation time and error accumulation and to
improve the real-time correlation of wind speed characteristics, the components with high
correlation are selected for the secondary decomposition to carry out reconstruction, which
is convenient for feature mining.

Figure 8 shows the heat map of Spearman correlation coefficients between the wind
speed series from dataset C and each IMF from the REMD. It can be recorded intuitively
from the figure that the correlation index between IMF1 and the dataset C is 0.6438 with the
positive correlation, which reflects that IMF1 has more detailed intrinsic wind characteristic
information, indicating incomplete first decomposition. The correlation coefficient between
the dataset C and IMF5 is −0.06734, showing a negative correlation, and the absolute
value is close to 0, indicating that IMF5 is completely decomposed and few wind series
characteristics are retained. According to the Spearman correlation analysis, the AVMD
mode that has the highest correlation when the wind speed series is chosen to perform the
secondary decomposition. The resulting parameters [K,α] are shown in Figure 9, where K
is 2, 4, 10 and 4 and α is 200,684,336 and 452.

The characteristic of wind speed determines that it is not suitable to be decomposed
into too many levels. The adaptive VMD method does not require a predetermined
number of decompositions, based on the parameter optimization ability of the meta-
heuristic algorithm, to achieve the purpose of adaptive decomposition. When the number
of decomposition levels increases, the characteristic information of the wind speed is
more detailed, and the high- and low-frequency characteristics of wind speed are clearly
identified, which can reflect the change in wind speed series from a long period to a
short period. The IMFs left over from the first decomposition of REMD still retain some
information of the original data. Through the secondary decomposition of the IMFs, the
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local characteristics of the original data are highlighted, which is conducive to exploring
the internal variation features of the original wind speed data.
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Figure 8. Heat map of Spearman correlation coefficients between the original wind speed series from
dataset C and each IMF from the REMD.
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Figure 9. Combination of K and α parameters after AVMD. A, B, C and D are the combined parameters
of AVMD decomposition of the four datasets in spring, summer, autumn and winter respectively.

3.3.3. Prediction Results

In this section, the combined model WSTD-REMD-AVMD-DGRU proposed in this
study is trained and verified on the four datasets. Figure 10 shows the visualization of the
single-step prediction of the four wind speed datasets, including a prediction curve, an
error distribution, and an error box plot, and each dataset is depicted with a different color.
The prediction curve of the WSTD-REMD-AVMD-DGRU model on the test set fits well
with the edge of the actual value in each dataset. The prediction error is distributed near
the ‘0’ baseline, illustrating that the error of the prediction system is controllable, especially
on the datasets A and D. Furthermore, the effectiveness of the model is verified by various
performance indices. The specific values are shown in the Tables 3–6. The predicted results
from various other models are also given in the tables for comparison, including prediction
in one step, two steps, and three steps ahead. The comparison models include single
models such as GRU, LSTM, and RF; the decomposition optimization models such as
WD-HGWO-SVR, WSTD-REMD-GRU, and VMD-HGWO-SVR; and the combined models
of REMD-HGWO-GRU, WD-GWO-SVR and CEEMD-HGWO-GRU based on WSTD. The
evaluation indicators MAE, RMSE, R2, TIC, and SSE are used to measure the prediction
results and comprehensively test the effectiveness of the proposed model.
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Figure 10. Single-step prediction results of the four wind speed series.

Table 3. The prediction performance from various models on dataset A.

Model MAE RMSE R2 TIC SSE
1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

The proposed 0.0265 0.0531 0.0818 0.0338 0.0782 0.1273 0.9986 0.9957 0.9875 0.0080 0.0283 0.0296 0.0098 0.0184 0.0330
WSTD-VMD-HGWO-SVR 0.0873 0.0997 0.1105 0.0936 0.1203 0.1346 0.9942 0.9937 0.9902 0.0246 0.0287 0.0396 0.5648 1.6243 2.6591

WSTD-REMD-HGWO-GRU 0.1082 0.1394 0.1772 0.1257 0.1678 0.2177 0.9914 0.9821 0.9701 0.0296 0.0397 0.0515 2.3157 4.9175 7.8733
WSTD-CEEMD-HGWO-GRU 0.2381 0.3242 0.4317 0.3112 0.4662 0.5826 0.9459 0.8741 0.8050 0.0735 0.1106 0.1374 16.2923 39.2686 57.5463

WSTD-REMD-GWO-GRU 0.2029 0.2151 0.2266 0.2459 0.2569 0.2745 0.9740 0.9662 0.9595 0.0566 0.0597 0.0647 6.2862 9.9638 9.2274
WSTD-REMD-HGWO-SVR 0.1482 0.1554 0.4801 0.2364 0.2888 0.5893 0.9752 0.9461 0.7757 0.0542 0.0678 0.1417 7.3970 16.1000 59.1824

WSTD-WD-GWO-SVR 0.1631 0.2624 0.3381 0.2062 0.3430 0.4412 0.9758 0.9311 0.8829 0.0493 0.0809 0.1046 7.7958 20.7852 34.2191
WSTD-VMD–GRU 0.0289 0.0968 0.1045 0.0414 0.0916 0.1389 0.9970 0.9925 0.9866 0.0108 0.0219 0.0342 0.2666 0.9548 3.5586

WSTD-CEEMD-GRU 0.2256 0.2760 0.3255 0.3190 0.3605 0.3817 0.9366 0.9203 0.9132 0.0748 0.0850 0.0888 19.7238 25.5663 27.3503
WSTD-WD-GRU 0.2537 0.3061 0.4751 0.3380 0.4051 0.5911 0.9342 0.9058 0.8011 0.0826 0.0959 0.1314 22.5032 32.1648 68.1359

VMD-HGWO-SVR 0.1351 0.1786 0.1776 0.1634 0.2157 0.2160 0.9870 0.9774 0.9724 0.0383 0.0502 0.0509 3.3464 6.6253 7.0425
WD-HGWO-SVR 0.1634 0.2616 0.3354 0.2063 0.3396 0.4351 0.9867 0.9338 0.8917 0.0489 0.0799 0.1028 8.3818 22.6097 36.9103

WSTD-REMD-GRU 0.0510 0.1557 0.1725 0.0672 0.1883 0.2406 0.9970 0.9863 0.9654 0.0159 0.04433 0.0580 0.8734 4.0478 9.9962
WSTD-GWO-SVR 0.2002 0.2138 0.2258 0.2427 0.2560 0.2703 0.9732 0.9668 0.9577 0.0560 0.0595 0.0636 6.5164 7.8110 10.0248

GRU 0.5100 0.6724 0.7834 0.6597 0.8546 0.9884 0.7673 0.6078 0.4853 0.1541 0.1989 0.2262 55.3926 70.7938 69.7912
LSTM 0.5022 0.6801 0.7733 0.6515 0.8735 0.9701 0.7737 0.5942 0.4943 0.1526 0.2024 0.2241 53.0837 68.5102 79.3900

ARIMA 0.5056 0.6550 0.7655 0.6450 0.8205 0.9535 0.7722 0.6336 0.5084 0.1525 0.1930 0.2231 59.5121 74.0400 76.1862
BP 0.5153 0.6376 0.7578 0.6597 0.8394 0.9440 0.7632 0.6156 0.5191 0.1557 0.2015 0.2213 58.4474 82.8701 74.1387

LSSVM 0.5119 0.6616 0.7596 0.6499 0.8292 0.9538 0.7724 0.6317 0.5202 0.1537 0.1951 0.2233 53.9873 65.1392 61.5543
RF 0.5714 0.7492 0.8794 0.7190 0.9324 1.0929 0.7178 0.5325 0.3642 0.1700 0.2176 0.2562 79.6895 109.9353 119.3138
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Table 4. The prediction performance from various models on dataset B.

Model MAE RMSE R2 TIC SSE
1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

The proposed 0.0534 0.0748 0.0856 0.0758 0.1036 0.1246 0.9987 0.9977 0.9969 0.0115 0.0157 0.0173 0.7567 2.1019 2.5629
WSTD-VMD-HGWO-SVR 0.1390 0.1518 0.1626 0.1788 0.1861 0.2010 0.9901 0.9891 0,9843 0.0270 0.0279 0.0301 6.0389 4.9523 5.7395

WSTD-REMD-HGWO-GRU 0.1952 0.2454 0.3140 0.2387 0.3039 0.4096 0.9858 0.9730 0.9479 0.0360 0.0456 0.0611 7.8560 15.2756 30.4725
WSTD-CEEMD-HGWO-GRU 0.2891 0.3531 0.4867 0.3697 0.4552 0.6076 0.9613 0.9443 0.8993 0.0555 0.0688 0.0913 24.8642 32.8804 54.8275

WSTD-REMD-GWO-GRU 0.1972 0.2117 0.2952 0.2332 0.3947 0.4950 0.9895 0.9538 0.9232 0.0350 0.0603 0.0745 5.5570 27.4678 47.3507
WSTD-REMD-HGWO-SVR 0.2649 0.3818 0.4564 0.3185 0.4751 0.5583 0.9715 0.9354 0.9108 0.0474 0.0707 0.0831 18.7953 39.9718 53.7150

WSTD-WD-GWO-SVR 0.4010 0.4073 0.4079 0.4735 0.4783 0.4850 0.9639 0.9620 0.9618 0.0723 0.0735 0.0746 14.9314 15.3618 15.3963
WSTD-VMD–GRU 0.1387 0.2000 0.2849 0.1810 0.2160 0.5525 0.9934 0.9849 0.9078 0.0278 0.0325 0.0826 3.0832 8.8005 59.2937

WSTD-CEEMD-GRU 0.3969 0.5127 0.6638 0.6430 0.9566 1.0510 0.9234 0.8393 0.8288 0.1013 0.1513 0.1728 59.4176 156.9631 170.2382
WSTD-WD-GRU 0.2893 0.3905 0.5251 0.3994 0.5134 0.6400 0.9544 0.9250 0.8841 0.0597 0.0765 0.0990 31.4280 51.6582 79.8677

VMD-HGWO-SVR 0.2329 0.3986 0.4242 0.3178 0.4100 0.5365 0.9720 0.9689 0.9312 0.0472 0.0514 0.0763 6.9342 23.7923 36.5286
WD-HGWO-SVR 0.2691 0.3872 0.4514 0.3249 0.4809 0.5544 0.9701 0.9342 0.9130 0.0484 0.0715 0.0824 20.8039 45.3356 59.9384

WSTD-REMD-GRU 0.1197 0.2083 0.3410 0.1600 0.3150 0.4440 0.9945 0.9760 0.8813 0.0243 0.0464 0.1052 3.4960 16.6538 34.7916
WSTD-GWO-SVR 0.3983 0.4048 0.4108 0.4751 0.4802 0.4858 0.9654 0.9633 0.9636 0.0726 0.0733 0.0736 14.1472 14.7856 14.4973

GRU 0.5302 0.7081 0.8722 0.6819 0.9143 1.1275 0.8722 0.7722 0.6566 0.1032 0.1390 0.1731 75.5531 114.9054 160.5826
LSTM 0.5649 0.8180 0.9325 0.7485 1.0120 1.1752 0.8453 0.7275 0.6305 0.1127 0.1560 0.1766 99.0382 127.8319 213.4905

ARIMA 0.5125 0.7678 0.9572 0.7233 0.9730 1.1723 0.8542 0.7396 0.6236 0.1087 0.1462 0.1776 88.6792 151.3385 184.1856
BP 0.6498 0.7737 0.9624 0.8109 0.9660 1.1717 0.8435 0.7497 0.6239 0.1251 0.1478 0.1780 69.9745 117.8563 175.6531

LSSVM 0.5950 0.7953 0.9820 0.7468 0.9849 1.1870 0.8480 0.7362 0.6179 0.1130 0.1498 0.1817 82.4907 123.8675 152.3672
RF 0.6588 0.8508 1.0154 0.8397 1.0670 1.2544 0.8069 0.6898 0.5753 0.1277 0.1628 0.1929 106.3476 161.5313 188.5835

Table 5. The prediction performance from various models on dataset C.

Model MAE RMSE R2 TIC SSE
1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

The proposed 0.0440 0.0459 0.0462 0.0582 0.0615 0.0626 0.9983 0.9967 0.9921 0.0138 0.0146 0.0149 0.5298 0.7387 0.7675
WSTD-VMD-HGWO-SVR 0.0865 0.0901 0.1166 0.1047 0.1138 0.1458 0.9895 0.9887 0.9821 0.0250 0.0270 0.0343 1.9670 2.1397 3.2653

WSTD-REMD-HGWO-GRU 0.0991 0.1640 0.2186 0.1243 0.2013 0.2724 0.9879 0.9647 0.9313 0.0294 0.0475 0.0642 2.5469 7.4293 13.6527
WSTD-CEEMD-HGWO-GRU 0.1971 0.4087 0.4118 0.2605 0.5005 0.5159 0.9372 0.8014 0.7835 0.0627 0.1179 0.1230 14.6358 41.9232 48.0972

WSTD-REMD-GWO-GRU 0.1450 0.1610 0.1615 0.1745 0.1931 0.1971 0.9806 0.9751 0.9709 0.0406 0.0450 0.0462 3.7592 4.7490 5.4628
WSTD-REMD-HGWO-SVR 0.1307 0.2025 0.2095 0.1808 0.2626 0.2607 0.9777 0.9482 0.9303 0.0424 0.0613 0.0618 4.8231 11.6438 12.9346

WSTD-WD-GWO-SVR 0.1611 0.2712 0.3614 0.2100 0.3456 0.4450 0.9667 0.9041 0.8389 0.0481 0.0816 0.1043 7.5073 19.4635 32.5792
WSTD-VMD–GRU 0.0226 0.0678 0.0952 0.0370 0.0628 0.1785 0.9988 0.9967 0.9691 0.0089 0.0149 0.0424 0.2404 0.6309 6.1653

WSTD-CEEMD-GRU 0.0776 0.1957 0.2532 0.1272 0.3812 0.4456 0.9848 0.8644 0.8288 0.0304 0.0916 0.1064 3.1937 31.4186 38.9903
WSTD-WD-GRU 0.2212 0.2427 0.5399 0.3211 0.3155 0.7330 0.9148 0.9179 0.5567 0.0785 0.0773 0.1738 20.3076 19.5159 104.7591

VMD-HGWO-SVR 0.1149 0.1456 0.1680 0.1420 0.1765 0.2053 0.9894 0.9781 0.9640 0.0348 0.0431 0.0496 2.1390 4.2846 6.6573
WD-HGWO-SVR 0.1663 0.2757 0.3611 0.2111 0.3563 0.4448 0.9632 0.9271 0.8367 0.0504 0.0839 0.1042 8.7813 24.8823 38.5802

WSTD-REMD-GRU 0.0870 0.1813 0.2141 0.1224 0.2266 0.3163 0.9883 0.9653 0.9087 0.0289 0.0526 0.0761 2.4138 7.1025 19.0146
WSTD-GWO-SVR 0.1612 0.1599 0.1504 0.1968 0.1921 0.1819 0.9713 0.9758 0.9801 0.0461 0.0447 0.0422 5.3970 4.5678 3.8964

GRU 0.4571 0.5368 0.6011 0.5844 0.6870 0.7726 0.7350 0.6345 0.5386 0.1405 0.1637 0.1859 49.5267 55.2589 63.1174
LSTM 0.4524 0.5246 0.5916 0.5788 0.6620 0.7439 0.7402 0.6615 0.5716 0.1384 0.1577 0.1760 46.5672 61.7483 60.8625

ARIMA 0.4785 0.5895 0.6983 0.6028 0.7429 0.8610 0.7180 0.5722 0.4257 0.1445 0.1782 0.2060 52.9226 60.7234 59.1549
BP 0.4778 0.5902 0.6930 0.6106 0.7447 0.8580 0.7142 0.5699 0.4321 0.1480 0.1782 0.2067 56.9368 63.3287 55.3472

LSSVM 0.4818 0.5973 0.7148 0.6030 0.7487 0.8709 0.7178 0.5641 0.4122 0.1443 0.1789 0.2072 50.0967 61.7453 63.9388
RF 0.5319 0.6997 0.8122 0.6806 0.8910 1.0285 0.6471 0.4123 0.2503 0.1646 0.2163 0.2496 68.8850 94.6278 107.4784

It is clearly shown in Tables 3–6 that the performance of single models are all rank-
ing behind. The decomposition optimization model is improved on the basis of single
models, and it is recognized that proper decomposition can help improve the prediction
performance. The R2 and TIC indicators in the table explain the correlation between the
predicted data and the actual data. The larger the R2 value and the smaller the TIC value,
the higher correlation, which can effectively evaluate the model. For the dataset A as shown
in Table 3, the predictive performance of WSTD-REMD-GRU is much better than that of
WSTD-CEEMD-GRU. The average values of R2 are 0.9829 and 0.9234, and the average
values of TIC are 4.9725 and 24.2135, respectively. The prediction results suggest that the
data preprocessing with REMD can effectively improve the prediction accuracy.
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Table 6. The prediction performance from various models on dataset D.

Model MAE RMSE R2 TIC SSE
1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

The proposed 0.0309 0.0374 0.0444 0.0384 0.0467 0.0562 0.9973 0.9945 0.9873 0.0101 0.0124 0.0150 0.2902 0.4274 0.6168
WSTD-VMD-HGWO-SVR 0.0433 0.0663 0.0891 0.0522 0.0824 0.1101 0.9916 0.9808 0.9672 0.0139 0.0219 0.0291 0.4850 1.0614 1.7848

WSTD-REMD-HGWO-GRU 0.0436 0.0716 0.0905 0.0540 0.0904 0.1213 0.9886 0.9689 0.9453 0.0145 0.0243 0.0326 0.5424 1.3934 2.1183
WSTD-CEEMD-HGWO-GRU 0.2609 0.2667 0.3327 0.3548 0.3585 0.4742 0.7073 0.7018 0.5317 0.0957 0.0941 0.1248 18.6286 20.3429 35.7302

WSTD-REMD-GWO-GRU 0.0659 0.0860 0.1120 0.0831 0.1057 0.1368 0.9755 0.9566 0.9372 0.0223 0.0284 0.0371 1.0129 1.9540 2.7816
WSTD-REMD-HGWO-SVR 0.1647 0.1284 0.1945 0.2472 0.3176 0.3504 0.8809 0.6958 0.6593 0.0633 0.0845 0.0910 6.7752 19.6783 21.3897

WSTD-WD-GWO-SVR 0.1442 0.2172 0.2682 0.1870 0.2965 0.3525 0.9191 0.7941 0.7111 0.0502 0.0793 0.0946 5.8147 13.1518 18.5134
WSTD-VMD–GRU 0.0853 0.0952 0.2703 0.2217 0.2425 0.5223 0.8105 0.7838 0.4470 0.0595 0.0651 0.1397 9.5462 11.5238 53.1585

WSTD-CEEMD-GRU 0.1467 0.2385 0.2718 0.4163 0.5655 0.6323 0.5813 0.3350 0.2327 0.1103 0.1518 0.1715 34.6628 90.1783 137.5041
WSTD-WD-GRU 0.2199 0.2785 0.3247 0.3290 0.3685 0.4063 0.7460 0.6801 0.6134 0.0877 0.0989 0.1093 26.7563 21.2180 32.1939

VMD-HGWO-SVR 0.0610 0.0888 0.1199 0.0760 0.1131 0.1543 0.9876 0.9542 0.9206 0.0204 0.0385 0.0407 0.5707 1.8336 2.8740
WD-HGWO-SVR 0.1441 0.2173 0.2617 0.1860 0.2966 0.3405 0.9186 0.7936 0.7189 0.0498 0.0792 0.0928 6.8137 17.2469 23.4062

WSTD-REMD-GRU 0.0491 0.1258 0.1437 0.1049 0.2151 0.2820 0.9568 0.8595 0.7316 0.0281 0.0561 0.0748 2.1447 7.4762 15.1173
WSTD-GWO-SVR 0.0670 0.0843 0.1101 0.0840 0.1045 0.1358 0.9755 0.9573 0.9380 0.0225 0.0281 0.0368 1.0138 1.9295 2.7120

GRU 0.4448 0.5470 0.6011 0.5883 0.6957 0.7395 0.6546 0.5567 0.4347 0.1558 0.1824 0.1908 35.8524 37.3562 40.5836
LSTM 0.4490 0.5502 0.5809 0.5929 0.6935 0.7261 0.6436 0.5571 0.4912 0.1570 0.1800 0.1904 36.9078 36.6845 35.8163

ARIMA 0.4511 0.5359 0.5850 0.6012 0.6955 0.7390 0.5479 0.4617 0.3526 0.1596 0.1834 0.1921 43.9867 42.9321 37.8196
BP 0.4532 0.5419 0.5760 0.6007 0.6946 0.7172 0.5454 0.4739 0.3015 0.1600 0.1812 0.1914 42.9672 43.8373 36.1058

LSSVM 0.4423 0.5255 0.5745 0.5861 0.6798 0.7194 0.4601 0.3772 0.2928 0.1555 0.1793 0.1886 37.8521 39.0385 32.8654
RF 0.5283 0.5863 0.6179 0.6826 0.7481 0.7985 0.5758 0.4455 0.3592 0.1806 0.1968 0.2082 63.2678 65.9756 66.6372

For the dataset B shown in Table 4, it can be seen from Figure 10 that the wind speed
trend is more volatile, and the comparison from Tables 3–6 also reflects that the prediction
accuracy on dataset B is generally lower than the other three datasets. Compared with
the classic decomposition models CEEMD, VMD, and WD, REMD can better reduce the
nonstationarity of the wind speed. When these decomposition algorithms are combined
with GRU and SVR, the prediction results of the GRU method are more accurate than SVR,
especially in RMSE. Table 4 gives the evaluation indicators of different models. Taking
the REMD-HGWO-SVR model as an example, the MAE value is improved by 35.71% in
one-step prediction, and the accuracy of the two-steps- and three-steps-ahead predictions
is improved by 55.53% and 45.35%, respectively. The large improvements indicate the
superiority of the REMD, HGWO, and GRU integrated model. Therefore, this approach is
considered as part of the proposed model.

For the dataset C shown in Table 5, the six single models of GRU, LSTM, ARIMA, BP,
LSSVM, and RF are predicted one step ahead, and the accuracy of the MAE is maintained
at about 50%. However, as the number of prediction steps increases, the performance of
the model decreases, making it difficult to capture wind speed information. The RF model
shows the worst performance. By comparing with single models, it reflects the advantages
of the proposed model. Among all models, the baseline model prediction performance of
REMD and VMD is better than the rest of the models. In terms of MAE and RMSE, the
multi-step prediction accuracy of the WSTD-REMD-AVMD-DGRU model is improved by
more than 50% compared with other models, and the value of SSE is basically close to 0,
indicating that the multi-step prediction error of the combined model is small. In addition,
the average value of each index predicted by the model in multiple steps is also optimal.

The prediction results on the dataset C is shown in Figure 11. The best performance
from the WSTD-REMD-AVMD-DGRU model can be observed. The performance shown
by histogram and spider graph is more straightforward. When the wind speed changes
rapidly, the model has excellent adaptability and good extrapolation performance of multi-
step prediction. The prediction performance of the decomposition optimization model is
not as good as that of the combination model, but the decomposition optimization model
fits the wind speed trend well in one-step-ahead prediction, and there are multiple spikes.
However, after the wind speed series is processed by WSTD and VMD, the wind speed
prediction accuracy is significantly improved, and the error between the actual value and
the predicted value is also reduced.
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For the dataset D shown in Table 6, the preprocessing of WSTD improves the quality
of the dataset. In VMD-HGWO-SVR and WSTD-VMD-HGWO-SVR, the noise filtering of
WSTD has a slight advantage for the construction of prediction models. The combination
of HGWO and GRU is compared with the combination of single GRU, GWO and GRU. The
MAE, RMSE, R2, TIC, and SSE values are improved in different degrees when the present
method is used to predict multiple steps ahead. Meanwhile, the improved GWO algorithm
also avoids the problem of parameters falling into local optimality. In addition, based on
the four experiments, the nonlinear processing capability of the VMD algorithm has always
performed well in the field of wind speed prediction with high accuracy and practicability,
and its robustness on different datasets is also good.

Generally speaking, the performance of the combined models is better than that of
the single models. The WSTD-REMD-AVMD-DGRU model proposed in this paper has
excellent robustness and adaptability. The model fits well in predicting the trend of wind
speed, and all indicators rank the first, of which SSE is significantly smaller than the
other models. The model has been decomposed twice, and the superiority of the model is
generally better than that of one decomposition and no decomposition, which is proven
by experiments on four datasets. Finally, the wind speed data decomposed by REMD and
AVMD reduce the difficulty of constructing the HGWO-GRU prediction model and further
improve the prediction accuracy. In summary, the present model has superior prediction
ability and adaptive ability.

Combined model

Decomposition 
optimization model 

Figure 11. The prediction results on the dataset C.

3.3.4. Error Analysis

The establishment of wind speed prediction model should take the stability and
universality of the model into consideration. Adopting the integration strategy to form a
suitable prediction model will improve the performance of the model as much as possible.
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Due to the complex characteristics of wind speed, errors are inevitable. Therefore, it is
necessary to avoid the generation of errors as much as possible, and effectively use the
errors to fully understand the potential characteristic information of the wind speed series
and feed it back to the prediction model to improve the accuracy of wind speed prediction.
As can be seen from Figure 12, when the combined model developed in this study performs
one-step-, twos-step-, and threes-step-ahead prediction on the wind speed datasets in
spring, summer, autumn, and winter, the prediction error probability plot conforms to the
rule of Gaussian distribution on the whole. However, there is an outlier phenomenon in the
tail of the prediction error distribution in summer B# and autumn C#, indicating that the
fitting effect of the tail of the two datasets is not good, but the overall error of the model is
controllable. The error distribution of one-step-ahead prediction is basically concentrated in
[−0.1 m/s, 0.1 m/s]. The error distribution of two-steps-ahead prediction is concentrated in
[−0.2 m/s, 0.2 m/s], and the error distribution of three-steps-ahead prediction is basically
concentrated in [−0.3 m/s, 0.3 m/s]. In particular, the WSTD-REMD-AVMD-DGRU model
has a good prediction effect on the performance of the dataset D. The error distribution
of the multi-step ahead prediction is concentrated in [−0.15 m/s, 0.15 m/s], and the error
distribution is more concentrated. The error analysis shows that the proposed model has
good generalization and accuracy, and the wind speed prediction error is controllable. The
prediction effect is the best among the compared models.

 

A 

 

B 

 

C 

 

D 

 Figure 12. Error probability plot of multi-step prediction for the WSTD-REMD-AVMD-DGRU model.
(A–D) are the prediction error probability plot of four data sets in spring, summer, autumn and
winter respectively.

4. Conclusions

Accurate wind speed prediction can effectively improve wind energy utilization. This
study proposes an adaptive two-stage decomposition integrated system for short-term
wind speed prediction. The system is based on a data preprocessing strategy, a cascade
optimization strategy, and a deep learning prediction strategy.

First, the wind speed is decomposed using WSTD and REMD into a series of compo-
nents that change smoothly and have obvious changing regularity, thus greatly reducing
the interference and coupling between different features and improving the quality of sub-
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sequent data. The VMD is employed for the secondary decomposition, and it is integrated
with the Spearman criterion to revise the accumulation of errors of the model during the
first decomposition, reduce the model complexity, and obtain the long-term, fluctuating,
trends of the wind power signal. The potential characteristics of wind speed series are
acquired, and their dynamic characteristics are captured by in-depth analysis.

Then, HGWO is adopted to optimize VMD and GRU, which effectively avoids the
limitation of empirically set parameters, and make up for the defect that the parameters
fall into the local optimum. Using the most advanced deep learning model, an adaptive
parameter selection process is advanced.

Finally, the improved GRU method strengthens the characteristic information and
inline relationships of wind speed data and can comprehensively mine the characteristics
of wind power, perform feature mining, and ensure the prediction accuracy and stability of
the model. Four datasets in different seasons are selected for multi-step ahead prediction of
the wind speed. The results show that the proposed WSTD-REMD-AVMD-DGRU model
developed in this study has robust and accurate prediction performance, which can provide
the best forecast results for wind series.

The present model realizes a whole adaptive process of wind speed prediction and
overcomes the problems of experience adjustment, incomplete wind speed information
mining, and inaccurate single-model prediction that inhibited traditional models. Moreover,
the present model is robust and generalizable, which can be easily extended to time series
prediction in meteorology, mechanical engineering, finance, biology, etc.
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