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Abstract: Motivated by the growing demand for distributed energy resources (DERs), peer-to-peer
(P2P) electricity markets have been explored worldwide. However, such P2P markets must be
balanced in much smaller regions with a lot fewer participants than centralized wholesale electricity
markets; hence, the market has inherent problems of low liquidity and price instability. In this
study, we propose applying a market maker system to the P2P electricity market and developing an
efficient market strategy to increase liquidity and mitigate extreme price fluctuations. To this end,
we construct an artificial market simulator for P2P electricity trading and design a market agent
and general agents (photovoltaic (PV) generators, consumers, and prosumers) to perform power
bidding and contract processing. Moreover, we introduce market-maker agents in this study who
follow the regulations set by a market administrator and simultaneously place both sell and buy
orders in the same market. We implement two types of bidding strategies for market makers and
examine their effects on liquidity improvement and price stabilization as well as profitability, using
solar PV generation and consumption data observed in a past demonstration project. It is confirmed
that liquidity and price stability may be improved by introducing a market maker although there is a
trade-off relationship between these effects and the market maker’s profitability.

Keywords: P2P electricity market; market maker; liquidity; price fluctuation; bidding strategy;
artificial market simulation

1. Introduction

Since environmental issues have been attracting worldwide attention, the Japanese
government declared that it would achieve a decarbonized society by 2050. However,
feed-in tariffs, which have been functioning as incentives for the introduction of renewable
energy, are now being scaled down or abolished. Therefore, as a new incentive system,
decentralized peer-to-peer (P2P) power trading based on microgrids is being actively ex-
plored in many countries. Various studies on P2P trading have already been conducted in
the form of proof-of-concept experiments and numerical simulations [1–9] as well as in-
vestigating market mechanisms [10–14] and social implementations [15–17]. These studies
have verified the effectiveness of P2P electricity trading from technical, environmental, and
profitability perspectives; however, at the same time, they revealed some potential problems
inherent in this market. One is extreme price fluctuation (or price volatility) caused by low
market liquidity, where liquidity refers to the bidding amount in an order book. If liquidity
is sufficiently high, the market price is robust to a large market order, which could signifi-
cantly influence market situations because the accumulated bidding amount buffers the
impact of market orders. However, liquidity tends to decrease in the P2P market because of
the market’s specific characteristics. First, the entire market comprises consecutive 30-min
markets divided by region and time slots. Furthermore, the trading volume per participant
is much smaller than that in the wholesale market because the P2P market participants are
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normal households or non-electric companies. For these reasons, large price fluctuations,
attributed to low liquidity, can easily arise. During a proof-of-concept demonstration of
P2P power trading conducted in the Urawa-Misono District, Japan (see [18] for a summary
of the project and its results), excessive price fluctuations in a short time period were often
detected (see Section 2). Price volatility problems are becoming a prime concern across the
entire electric power industry owing to various factors, such as system shifts, abnormal
climates, and soaring resource prices. Moreover, in infrastructural industries, a stable
supply is of utmost importance; therefore, this volatility problem should be handled on a
highest-priority basis. In this study, we introduce market makers into the P2P electricity
market. Market makers are market participants who contribute to liquidity improvement
and price stabilization in an exchange market (see, e.g., [19] for a market maker program
introduced in the Japan Exchange Group, Inc. (Tokyo, Japan)) while securing their own
profit. The objective of this study is to design bidding strategies for market makers and test
them through several simulations.

Here, we introduce related studies on the application of financial functions to elec-
tricity markets. Electricity markets have stricter restrictions than other assets; for instance,
electricity cannot be stored and must be generated at the time of demand. Hence, electricity
market-specific solutions can be invented as follows. First, optimal bidding strategies for
electricity markets have been developed in several studies [20–29]. In these references,
Baltaoglu et al. [29], for example, proposed a type of arbitrage called “virtual bidding”. In
existing wholesale electricity markets, participants have two different markets for one spe-
cific product or a 30-min electricity delivery period: a day-ahead market and an hour-ahead
market. Virtual bidding aims to make profits through buying in a day-ahead market and
selling in an hour-ahead market or selling in a day-ahead market and buying back in an
hour-ahead market. If the same amounts are executed for selling and buying, that is, a posi-
tion is established between the two markets, then the price difference would be the profit for
this strategy. Next, electricity and weather derivatives (including forwards/futures) may
be considered practical applications of derivatives theory for real businesses in electricity
markets [30–43]. Among them, Yamada and Matsumoto (2021) [41] and Matsumoto and
Yamada (2021) [42,43] advocated weather derivatives, the payments of which depend on
weather data at a predetermined place and time. Electricity utilities are constantly exposed
to fluctuation risks in solar power generation and electricity demand, which are associated
with solar radiation, temperature, etc. These factors greatly influence electricity prices and,
in turn, their profits; therefore, implementing measures against weather forecast uncer-
tainty is a major focus for the power industry. With a system that allows these businesses to
receive insurance coverage for losses incurred by the deviation of a weather index from a
predetermined range, they can hedge profit risks and stabilize their management. This type
of electricity insurance has already been developed and commercialized. Finally, there are
several studies on market makers in the context of enhancing liquidity and price stability
for electricity markets [44–48], which are the focus of this study. For example, Bose et al.
(2014) [47] explore market makers’ impacts on social welfare, residual social welfare, and
consumer surplus at the general Nash equilibrium in a Cournot competition model. In
addition, Worthmann et al. [48] examine market makers’ effect to mitigate the negative
influences that come with the development of distributed electricity generation using real
data from Australia.

In this study, we propose introducing market makers to solve the price volatility
problem inherent in P2P markets by improving liquidity. Market makers always quote both
selling and buying prices and are willing to trade at those prices at any time. Their main
purpose is to make a profit; however, by repeatedly trading in large volumes, they provide
liquidity to the market. This system has already been introduced in conventional markets
such as stocks and commodities, e.g., [19], and its role is undertaken primarily by securities
companies. To evaluate the market maker system’s effectiveness against the price volatility
problem, we develop an artificial P2P electricity market simulator in Python, emulating
the market and participant specifications employed in the Urawa-Misono proof-of-concept
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project [11]. We compare and evaluate the results of three simulation case studies with and
without a market maker, in which two types of market maker agents are adopted based on
the market maker rules developed in [49,50] for stock trading.

This paper is organized as follows: In Section 2, we provide a detailed explanation of
the motivational Urawa-Misono demonstration project and the market rules adopted in
this study; in Section 3, we explain the basic configuration, information flowchart, and role
of each agent in the artificial market simulation conducted in this study; in Section 4, we
perform artificial market simulations based on the actual generation and demand data and
compare the cases with and without market makers; Section 5 provides a comprehensive
discussion based on the results of our analysis; and Section 6 provides concluding remarks
and describes future research directions.

2. Motivative Experiment and Market Rules
2.1. Motivative Demonstration Project and Potential Problem

This study is motivated by the results of a P2P electricity trading demonstration project
conducted in the Urawa-Misono District, Japan, from August 2019 to March 2020, which
was summarized in [18]. Figure 1 shows the system used in the demonstration experi-
ment. The market participants are photovoltaic generators (PVGs), convenience stores
(consumers), residences (prosumers), and the power grid agent, which offers electricity at
a price of 30 JPY/kWh or higher than that of the wholesale electricity market (JEPX). In
the project, each facility with a digital grid controller (DGC) is supposed to submit orders
to the market via 3G networks, where DGCs are programmable devices for reading smart
meters and scheduling orders. The order schedules for the PVGs and convenience stores
are determined based on the forecasted generation and demand, whereas those for the
residences are decided by referring to the state-of-charge (SoC) of their battery storage. The
selling and buying of orders are executed in the market according to the principle of time
and price priority, and all of these activities are automatically processed and registered by
the Ethereum-based blockchain ledger using smart contract programs [51,52].
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This project was successful in the sense that it proved by quantitatively analyzing
transaction data that both the selling and buying sides can benefit from trading in the
P2P market. The project also showed that holding storage batteries enables owners to
make advantageous contracts. However, some challenges that need to be addressed to
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implement the P2P electricity market in real society have also been identified. One of these
potential problems is low market liquidity and the subsequent high price volatility. The
proof-of-concept demonstration project in Urawa-Misono often denotes this tendency in
the automatically collected data. Figure 2 shows the execution price trend for a 30-min
electricity delivery period and illustrates that the electricity price sharply increases and
decreases in the last two hours of the bidding period.
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To observe that low liquidity can result in substantial price volatility, we consider an
illustrative example of order books for electricity trading shown in Figure 3, in which the
left order book has low liquidity, which means that there are few limit orders, and the
right order book has high liquidity, with many orders around the current market price
of 25 JPY/kWh. If someone attempts to purchase 50 kWh at once as a market order, the
market electricity price soars up to 30 JPY/kWh in the low liquidity case; on the other
hand, in the right high-liquidity case, all of the 50 kWh power can be procured at the same
price of 25 JPY/kWh. Therefore, the difference in liquidity cost, or the cost caused by low
liquidity, is 183 JPY. If liquidity costs remain high, as in the left-side case, this would be an
obstacle for households and companies to enter the P2P electricity market, which, in turn,
would prevent the growth of the renewable energy industry.
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Figure 3. An illustrative example of order books for electricity trading. The left order book has low
liquidity, which means that there are few limit orders, and the right order book has high liquidity,
with many orders around the current market price of 25 JPY/kWh. If someone attempts to purchase
50 kWh at once as a market order, the market electricity price soars up to 30 JPY/kWh in the low
liquidity case; on the other hand, in the right high-liquidity case, all of the 50 kWh power can be
procured at the same price of 25 JPY/kWh.
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To solve this liquidity problem, some stock or commodity exchanges introduce
liquidity-supplying market players called “market makers” by specifying market maker
programs (see, e.g., [19] for the market maker program introduced by the Japan Exchange
Group, Inc.). The market maker role is typically undertaken by financial institutions, and
they are supposed to quote both selling and buying orders and accept deals with any other
market participants while following predetermined rules, such as volumes and prices. If
market makers are introduced into the left-side market in Figure 3, the market environ-
ment will become closer to the right side. In this study, we propose bringing this market
maker system into the P2P electricity market to enhance liquidity and mitigate extreme
price fluctuations.

2.2. Market Rules

In general, the most important rule that must be fulfilled in electricity markets is
“balancing”. Balancing means that supply must always be matched with demand at any
time interval. In this study, we assume that supply (i.e., power generation) and demand
(i.e., electricity consumption) are balanced in every 30-min window. To implement this
principle, a day is divided into 48 time slots (see Figure 4), and power sales contracts are
traded between a seller and buyer for each 30-min time span. Thus, 48 products can be
defined per day, and the market for each product opens 24 h before the start of the 30-min
period and closes 10 min before the end of the window; that is, all participants can bid for
24 h and 20 min for each time frame.
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Next, we introduce the market rules adopted in our P2P market simulation, which
is inspired by the demonstration project stated in the previous subsection and emulates
actual electricity markets, such as the Japan Electric Power Exchange:

• The market for each product is assumed to open 24 h before the start of the 30-min
electricity delivery period and close 10 min before the end of the time interval. In other
words, the market accepts orders from participants for 24 h and 20 min.

• Orders in the book are executed in continuous sessions or according to the principle of
price and time priority. Specifically, offers with prices lower than those of bids and
bids with prices higher than those of offers are executed immediately, whereas other
orders remain on the board.

• If the matched offer and bid volumes are different, the executed amount is adjusted to
a smaller value.

• If multiple orders at the same price exist on the board, the earliest order is prioritized.

In P2P electricity trading markets, there exist several types of market participants:
“generators,” who simply sell electricity and do not consume it, “consumers,” who only
buy electricity and do no generate it, and “prosumers,” who both generate and consume
electricity themselves and offset the surplus or shortage by trading as sellers and buyers.
These roles are primarily played by ordinary households and corporations. As they are
not professional traders, the quantity and price of their orders cannot be determined
manually. Instead, these numbers are automatically calculated based on power generation,
demand data, contract history, and so on. Once bidding information is set, it is submitted
to the market.

In addition, we introduce “market makers” as additional liquidity-supplying players.
They themselves do not generate or consume electricity, but they continue quoting both
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sell and buy order prices with a specified spread while following regulations set by the
market administrator (or a managing organization of an exchange). Market makers are
usually introduced into a market in which investors do not need to hold real assets, such
as stock markets, because they ultimately close their positions and make profits through
the price spread mentioned above. However, in the P2P electricity market, participants
must deliver and receive actual electricity every 30 min. Therefore, to apply this system
to the P2P market, we assume that market makers own storage batteries to carry surplus
electricity to the later product periods on the same or the next day.

In addition, agents can bid on up to 48 products at every bidding turn, as shown
in Figure 5. Moreover, in this simulation, all orders are formally sent to the market as a
limit order, but when the order matches another at the same time as bidding, it is virtually
regarded as a market order.
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3. Development of Artificial Market Simulation System

In this section, we explain the basic configuration, information flowchart, and role of
each agent in our artificial market simulation.

3.1. Basic Configuration and Information Flow

Figures 6 and 7 illustrate the basic configurations and the bidding procedures with
and without market makers, including the order of agents’ bids in the simulators. In the
case without market makers shown in Figure 6, its components can be divided into two
categories. The first is the “market agent”, in which orders are collected and executed.
The second are the “participant agents”, which automatically determine order quantities
and prices and send orders to the market agent. We design both the market agent and the
participant agents and construct P2P power market simulators that perform power bidding
and contract processing. In the simulation, time proceeds by 10 min, and each general
agent (or supply and demand agent) updates its order once every 10 min (per product) in
random order, one after another.

In addition, the configuration of the simulators after the introduction of market maker
agents is shown in Figure 7. In this case, general agents place their orders once every 10 min
(per a product) just as the case described above, and every time one of the general agents
bids, the market maker agent immediately cancels their unfilled previous orders and rebids
limit orders with reference to the latest board status. This is because actual market makers
update their order prices at high speed while continuously referring to limit orders in the
market and conducting high-frequency trading.

In this paper, we introduce two types of market maker agents, namely the simple
market maker and the flexible market maker, focusing on profitability improvement. Then
we compare several simulation results with and without the market maker agents and
examine their impact on the market as well as their profitability. The market maker agents
are explained in detail in later subsections.
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Figure 8 shows the information flowchart of this simulation. This design concept is
based on the artificial market simulator constructed by Waseda and Tanaka [53], in which
all agents repeat the process of determining and placing orders for all products available at
each point in time. The final output of the simulation includes the final order board status,
the order record, the execution record, and the bid/ask spread record during the entire
simulation period.
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The blue portion, called the “market agent” in the simulation diagram below, plays a
role in market management. It opens and closes markets for all products and accepts and
processes orders following the market rules described in Section 2. The main functions of
the market agent are as follows:

Function (1): Update the time in the simulation and open/close markets.
Function (2): Shuffle the bidding order of general agents as time proceeds to ensure

fairness among them.
Function (3): Send market information, such as order data and contract records to each

general agent.
Function (4): Receive orders from general agents, perform contract processing sequen-

tially, and write the results on the order board, order record, contract record, etc.
Next, we describe the general (market participant) agents shown in yellow in Figure 8

which reflect the actual demand and supply data. These agents may be referred to as
“generators”, “consumers”, or “prosumers. Their main functions are as follows:

Function (1): Each agent must estimate its photovoltaic (PV) power generation or elec-
tricity consumption from the weather forecast data and/or past power consumption history.

Function (2): Determine the order quantity and price for each product by considering
the contract record and the elapsed time from the market opening received from the
market agent.

Function (3): Update order information and send it to the market agent.
Note that information types and values used as initial parameters may be different

according to agent types (i.e., generator, consumer, or prosumer) and preferences (i.e., price-
oriented type, moderate type, or certainty-oriented type). This reflects the diverse needs of
general market participants. In addition, regarding Function (3), each agent is programmed
to cancel the unfilled previous bids and renew their orders at every turn. Appendix A
provides a detailed explanation of the bidding strategies of general agents.

Finally, we explain the market maker agent shown in the green portion in Figure 8.
Generally, market makers provide liquidity to markets by continuously placing both sell
and buy orders while complying with various rules set by market administrators. As a
result, liquidity costs are kept lower even when a large order is placed at once. Due to
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reduced risk, investors would be able to enter the P2P market more easily, resulting in
increased trading volume and further market development. As this research focuses on
how liquidity and price stability improve when market makers are introduced, we have
to compare them before and after the introduction of market makers. For this reason, the
strategies of general agents are kept unchanged in all cases. However, in reality, it is quite
possible that the existence of market makers influences the bidding strategies of general
agents. Therefore, the development of reactive bidding strategies of general agents towards
the introduction of market makers could be research topics in future studies. In this paper,
we first introduce the bidding strategy of the simple market maker and then describe that
of the flexible market maker.

3.2. Market Maker’s Bidding Strategies
3.2.1. Bidding Strategy of the Simple Market Maker

Recall that the original objective of introducing a market maker is to enhance liquidity
and stabilize electricity prices. This may be achieved by adopting the simple market
maker outlined below (see [49,50] for the introduction of a simple market maker into stock
markets). The bidding price determination method, including its assumptions of this
market maker, is illustrated in Figure 9 and is described as follows:

• The market maker derives the best quotes on the order board in each bidding turn,
that is, the lowest selling quote and the highest buying quote. The selling and buying
prices are then calculated using the middle price between the two best quotes. More
exactly, the selling (buying) price is shifted up (down) by half of the specified spread
value, θsm, from the middle price.

• If either or both sell/buy orders do not exist on the board of the market, the middle
price cannot be determined. Therefore, in this case, we assume that the middle price is
given a priori as an initial parameter. Specifically, we set the initial setting parameter
at 25 JPY/kWh in our simulation, which is the mean value of the upper limit price of
50 JPY/kWh and the lower limit price of 0 JPY/kWh.

• In addition, since market makers are supposed to keep quoting both sell and buy
prices, they are programmed to always place a limit order, not a market order, in this
simulation. Therefore, in case the bidding price of our strategies may result in a market
order, it is shifted up or down such that it becomes a limit order.

• That is, sell and buy prices are adjusted in the same direction by the same amount so
that the spread is kept constant at the value of an initial parameter in this case as well.
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Note that the simple market maker determines buying and selling order prices based
on the middle price and a specified spread size θsm as “middle price ± θsm/2”. If a bid (buy
order) and an offer (sell order) are executed in equal quantity, the margin between the two
prices, given by θsm, becomes a source of profits for the simple market maker.

3.2.2. Bidding Strategy of the Flexible Market Maker

As mentioned at the end of the previous subsection, a market maker can profit from
the difference between selling and buying prices, whereas there is a risk of loss if the selling
and buying executed amounts are unbalanced. For example, if a market maker has a larger
sales position than their purchase position, they may need to buy additional electricity at a
relatively high price and compensate for the shortage during the delivery period, which is
called “imbalance charges” in the system. On the other hand, a larger buying position may
also lead to an opportunity loss for the market maker. Hence, market makers always need
to maintain their net positions close to zero and try to avoid the position imbalance. This is
the reason why we introduce a new bidding price determination algorithm into the flexible
market maker, based on price adjustment according to its net position of the moment.

Figure 10 illustrates the bidding algorithm when both buy and sell orders are quoted
on the order board. The horizontal axis denotes the net position possessed by the flexible
market maker, that is, the total of buying contracts minus that of selling contracts when
bidding, and the vertical axis denotes the bidding price of the flexible market maker. The
bidding price determination method, including its assumptions, is described as follows:

• The price adjustment is conducted according to the term
(

1− w f m

(
st

f m

)3
)

, where st
f m

is the market maker’s net position at time t (i.e., total executed buying volume minus
total executed selling volume for all products up to time t) and w f m is a weighting
term. The effect based on the net position is reflected when w f m 6= 0. For instance, if
the selling contract amount is greater than the buying amount, both selling and buying
prices are shifted up. When the market maker’s position is net long, both selling and

buying prices are shifted down according to the term
(

1− w f m

(
st

f m

)3
)

.

• If the market maker’s bid price (buying order price), given by the blue line in Figure 10,
were shifted beyond the best selling quote on the board, shown by the horizontal
dotted line on the upper side, the order would be executed as a market order. To avoid
this and make the bidding a limit order, the buying order price will be fixed just below
the best selling quote by ∆P. Similarly, the selling order price will be fixed just above
the best buying quote to avoid the selling order becoming a market order.

As a result of introducing the price determination strategy in Figure 10, sell orders
are less likely and buy orders more likely to be executed, and the market maker’s position
may revert to net zero. Note that this strategy is based on the position market-maker
strategy described in [49,50]. However, in this paper, we propose a P2P-electricity-market-
specialized market maker’s strategy using storage batteries. The P2P electricity market,
whose power source is largely PV (photovoltaic) generation in Japan, usually has a supply
and demand imbalance both in the daytime (when PV generation is larger than demand)
and nighttime (when no PV generation occurs). Therefore, market makers have to bear
a high risk of not being able to sell and buy in equal amounts. One of the solutions to
this problem is installing storage batteries. They could function as a buffer and transfer
electricity generated during daytime hours to nighttime periods. At the same time, market
makers could avoid imbalance charges by evening up sales and purchase amounts across
electricity delivery time intervals. However, storage batteries are still expensive, and the
costs could be a heavy burden on market makers.
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the flexible market maker when both sell and buy orders are quoted on the order board.

Considering the above discussions, this study adds the following assumptions for
market makers to introduce storage batteries:

• To incentivize market makers, we assume that market makers may place an order at
a favorable price when there is no other selling or buying order on the board. For
example, when no other selling orders exist, which often happens at night or in the
early morning with no solar power generation, the market maker can make a sell order
at a relatively high price (e.g., 33 JPY/kWh in our simulation) because the market
maker is the sole seller in the entire market.

• For the opposite-side order, a buy order in this case, the market maker is assumed

to use the same price as the previous bidding, Pt−1,buy
f m,j . On the other hand, with no

other buying orders, the market maker places a buy order at a relatively low price
(e.g., 17 JPY/kWh in our simulation) while using the same selling price as the previous
bidding, Pt−1,sell

f m,j . In either case, the spread between the selling and buying prices may
become wider than θ f m.

• When calculating st
f m in Figure 10, the executed volume at the above two particular

prices, i.e., the selling amount at the price of 33 JPY/kWh and the buying amount
at 17 JPY/kWh, is excluded to avoid the effects of the extreme imbalances during
these periods.

4. Artificial Market Simulation Using Supply and Demand Data

In this section, we demonstrate the artificial market simulation using actual solar PV gener-
ation and consumption data. The entire simulation was performed in a Python environment.

4.1. Supply and Demand Data

The supply and demand data used in this study are the solar PV generation log and
the power consumption log of five residential households for one day (24 h), related to
the demonstration project explained in Section 2 (see Table 1 below for the description of
the data). From this dataset, both or either of the two types of logs is randomly assigned
to each agent (a generator, consumer, or prosumer agent). Note that these agents are
originally supposed to keep predicting their generation or consumption amount (or both
of them) while the market is open. However, the main focus of this study is to confirm



Energies 2022, 15, 4218 12 of 24

the effectiveness of the market-maker system, and thus, we assumed that the agents’
predictions are given by the same values as the actual observations, for simplicity.

Table 1. Data used in the artificial market simulation.

Items Content

Data category Generation and demand (kWh)
Category of participant Residencial household
Number of households Five

Weather Sunny
Period One day (24 h; 0:00–24:00)

Measurement interval 5 min
Amount of data 1440 for generation and 1440 for demand

Here, there are two important points to note. First, we normalized the total daily
power generation and consumption per household to 100 kWh. In addition, because
the power supply-demand ratio greatly affects the profitability of the market maker, we
prepared four patterns of the ratio to test this effect (see Section 5).

The second point concerns pre-processing of the data. In the simulation, the 30-min
value, which is the time interval of electricity delivery for a product, is required, although
the original data consisted of 5-min values of power generation and demand. Therefore,
the original data were appropriately adjusted to meet the specifications. Figure 11 shows
the PV generation and consumption of five households which are converted to 30-min
values and adjusted to a total of 100 kWh.
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In this study, P2P electricity market simulations are conducted for the following
three scenarios:

Case 1. P2P market simulation without market makers.
Case 2. P2P market simulation with the simple market maker that focuses only on market

liquidity and electricity price stability.
Case 3. P2P market simulation with the flexible market maker that considers its profitability,

not only market liquidity and electricity price stability.

4.2. Case 1: Without Market Makers

First, we describe the initial parameters of the P2P electricity market simulation before
introducing market makers. The initial parameters of the general agents (generators,
consumers, and prosumers) and the market agent shown in the INPUT section of Figure 8
are summarized in Table 2 below. In addition, because this study focuses on the comparison
between cases with and without market makers, these preconditions will be inherited in
the simulations of Cases 2 and 3.
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Table 2. Initial parameters in P2P electricity market simulation (see Appendix A for the definitions of
the three types of general agents: price-oriented type, moderate type, and certainty-oriented type,
and random variables added to base prices).

Items Values

General agents

Number of agents

18 agents in total
= 6 generators + 6 consumers + 6 prosumers

(6 agents for each = 2 price-oriented-type agents +
2 moderate-type agents + 2 certainty-oriented-type agents)

Total generation per day
and

Total demand per day

(Generator)
Generation: 100 kWh/day

Demand: 0 kWh/day
(Consumer)

Generation: 0 kWh/day
Demand: 100 kWh/day

(Prosumer)
Generation: 100 kWh/day

Demand: 100 kWh/day

Initial bidding price

For generators and prosumers’ sell orders
Price-oriented type: 35 JPY/kWh

Moderate type: 31 JPY/kWh
Certainty-oriented type: 27 JPY/kWh

For consumers and prosumers’ buy orders
Price-oriented type: 15 JPY/kWh

Moderate type: 19 JPY/kWh
Certainty-oriented type: 23 JPY/kWh

Bidding price
change rate

For generators and prosumers’ sell orders
Price-oriented type: −0.0139 JPY/kWh/min

Moderate type: 0.0083 JPY/kWh/min
Certainty-oriented type: −0.0028 JPY/kWh/min

For consumers and prosumers’ buy orders
Price-oriented type: 0.0139 JPY/kWh/min

Moderate type: 0.0083 JPY/kWh/min
Certainty-oriented type: 0.0028 JPY/kWh/min

Maximum bidding price/
Minimum bidding price

For generators and prosumers’ sell orders
Price-oriented type: 15 JPY/kWh

Moderate type: 19 JPY/kWh
Certainty-oriented type: 23 JPY/kWh

For consumers and prosumers’ buy orders
Price-oriented type: 35 JPY/kWh

Moderate type: 31 JPY/kWh
Certainty-oriented type: 27 JPY/kWh

Random variables
added to base prices

Mean: 0.0
Standard deviation: Normal distribution subject to

the conditions below
(In the case of “price-oriented-type agent” and

“within 10 h after the 30-min delivery period starts”)
6.0

(In the case of “moderate-type agent” and
“within 10 h after the 30-min delivery period starts”)

4.5
(Others)

3.0
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Table 2. Cont.

Items Values

Market agent

Unit of time elapsing
between orders of

a general agent
10 min

Electricity delivery period per
product 30 min

Trading hours
per product

(Starting time)
24 h before the 30-min delivery period starts

(Ending time)
10 min before the 30-min delivery period ends

Simulation period 2 days (1 day for bidding and 1 day for delivering)

Tick size 0.01 JPY/kWh

We first performed the artificial market simulation for Case 1, in which we demonstrate
the results of trading volume and the mean, maximum, and minimum values of bid-ask
spreads. A comprehensive and comparative discussion of all cases is provided in the
next section.

Table 3 lists the total volume information provided in the simulation. There, the
total tradable volume is 950.3 kWh, which means that if all the orders from the supply
and demand agents had been executed, the total executed volume would also have been
950.3 kWh. However, only 268.7 kWh were executed in the simulation without introducing
market makers; thus, the execution rate is 28.3%. This is because there are no sell orders at
night (from the evening to the early morning) due to a lack of solar power generation, and
on the other hand, in the daytime, solar power generation could greatly exceed demand. In
other words, PV generation is limited to only daytime, and its generation in the daytime
largely depends on weather and climate conditions. This can also be thought of as the
reason for low market liquidity in the P2P electricity market.

Table 3. Total volumes in the simulation without market makers.

Total Tradable Volume Total Executed Volume Execution Rate

950.3kWh 268.7 kWh 28.3%

The mean, maximum, and minimum values of the bid/ask spread (which is the differ-
ence between the best sell and buy prices on the order board) are shown in Table 4. It should
be noted that there are time periods with no bid/ask spreads on the order board from the
evening to the early morning when PV generation does not occur (e.g., 00: 00–00: 30). In ad-
dition, when PV generation greatly exceeds the demand of consumers during the daytime,
buy orders may disappear shortly, and the bid/ask spreads cannot be observed afterward.

Table 4. Mean, maximum, and minimum values of bid-ask spreads (without market makers).

Mean Max Min

3.96 JPY/kWh 16.00 JPY/kWh 0.01 JPY/kWh

4.3. Case 2: Introduction of the Simple Market Maker

We then describe the initial parameters set in the simulation with the simple market
maker (see Table 5). Only the additional parameters with respect to the simple market
maker are shown because the items used in Case 1 remain unchanged.
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Table 5. Initial parameters in P2P electricity market simulation with the simple market maker.

Items Values

Simple market maker agent

Spread 3.00 JPY/kWh

Bidding volume

(Sell volume)
10.0Wh

(Buy volume)
10.0 kWh

Reference middle price between sell and buy orders
when neither bid nor offer is on the order book 25.00 JPY/kWh

The amount of price shift from the best quotes
to prevent market orders 0.01 JPY/kWh

As shown in Table 6, the total executed volume is 950.3 kWh, which is 3.54 times higher
than 268.7 kWh in Case 1 and indicates that all bids by general agents have been executed;
market liquidity has greatly improved from the perspective of the trading volume. This
is because the market maker is assumed to own storage batteries and plays the role of
balancing electricity between different points in time. In other words, the market maker
becomes a seller for the time periods during which there are no other sell orders and
becomes a buyer when the amount of power generation greatly exceeds the demand.

Table 6. Total volumes in the simulation with the simple market maker.

Total
Tradable Volume Total Executed Volume Execution

Rate

950.3 kWh

134.0 kWh + 1632.6 kWh/2 = 950.3 kWh
(Trading volume not involving

the simple market maker)
134.0 kWh

(Trading volume involving
the simple market maker as a seller or buyer)

1632.6 kWh

100.0%

The bid/ask spread is shown in Table 7. We first note that the maximum value,
3.01 JPY/kWh, has become much smaller than that in Case 1, 16.00 JPY/kWh. In addition,
the average value, 2.90 JPY/kWh, is also smaller than that in Case 1, 3.96 JPY/kWh, by
1.06 JPY/kWh. This shows that, because the simple market maker always holds limit orders
with a spread size of 3.00 JPY/kWh, the bid/ask spread does not widen further. We see that
market liquidity has improved from the perspective of bid/ask spreads, and the market
environment has become more preferable for participants to trade in.

Table 7. Mean, maximum, and minimum values of bid-ask spreads (with the simple market maker).

Mean Max Min

2.90 JPY/kWh 3.01 JPY/kWh 0.01 JPY/kWh

4.4. Case 3: Introduction of the Flexible Market Maker

Finally, we describe the initial parameters for the simulation using the flexible market
maker. Because the items in Cases 1 and 2 remain unchanged (except “Reference middle
price between sell and buy orders when neither bid nor offer is on the order book” in Case
2), only the additional parameters are listed in Table 8.
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Table 8. Initial parameters in P2P electricity market simulation with the flexible market maker.

Items Values

Flexible market maker agent

Price adjustment weight 0.00005

Bidding price when no reverse order
is on the order book

(Sell order price)
33.00 JPY/kWh

(Buy order price)
17.00 JPY/kWh

As shown in Table 9, the total executed volume is 470.4 kWh when the flexible market
maker is introduced. This is 1.75 times higher than the value in Case 1, 268.7 kWh, but
is about half of the value in Case 2, 950.3 kWh (in which all orders are executed). This is
because the flexible market maker adjusts their bidding behavior to avoid execution under
unfavorable conditions to improve their profit, although market makers need to keep limit
orders on the board. Nevertheless, market liquidity can be said to have improved to a
certain extent in terms of trading volume compared to the case without market makers.

Table 9. Total volumes in the simulation with the flexible market maker.

Total Tradable Volume Total Executed Volume Execution Rate

950.3 kWh

104.2 kWh + 732.5 kWh/2 = 470.4 kWh
(Trading volume not involving

the flexible market maker)
104.2 kWh

(Trading volume involving
the flexible market maker

as a seller or buyer)
732.5 kWh

49.5%

The mean, maximum, and minimum values of the bid/ask spreads are listed in
Table 10. Although the maximum and minimum values remain unchanged from those
before the introduction of market makers, the average value has become larger than that in
Case 1. This can be explained as follows. In Case 1, bid-ask spreads are observed only for
limited periods and are not calculated in the nighttime, when solar power generation does
not occur, or during the daytime, when the amount of PV power generation far exceeds
the demand. On the other hand, the flexible market maker continues to place limit orders
based on their bidding rules even in the time periods when no other buying or selling
orders exist on the order book (selling price: 33.00 JPY/kWh when there are no other sell
orders; buying price: 17.00 JPY/kWh when there are no other buy orders). As a result, the
mean value of the bid/ask spreads tends to be larger in Case 3, although that in Case 2
with the simple market maker is tighter than that in Case 1 without market makers.

Table 10. Mean, maximum, and minimum values of bid-ask spreads (with the flexible market maker).

Mean Max Min

8.03 JPY/kWh 16.00 JPY/kWh 0.01 JPY/kWh

It should be mentioned that our results above may be influenced by initial parame-
ters. However, we set them by referring to the Japanese electricity market and the past
demonstration project described in Section 2 and verified the effectiveness of the pro-
posed methodology. It would be interesting to investigate the robustness of the results by
changing some parameters with others fixed as a future study.
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5. Comparative Discussions

In this section, we present comparative discussions based on the artificial market
simulation results for the three case studies in Section 4 and summarize the contributions
of this study.

First, we summarize the executed volumes and execution rates for the three cases, as
shown in Table 11. Recall that the introduction of the flexible market maker did not tighten
the bid-ask spread on average as the spread observation period was quite limited in Case
1 without market makers, as mentioned at the end of the previous section. However, we
observe that the execution rate was improved by introducing market makers. In particular,
the introduction of the simple market maker significantly improved the execution rate.

Table 11. Comparison of executed volumes for the three cases.

Tradable Volume if
All Orders Are

Executed

Case 1:
without

Market Makers

Case 2:
with Simple

Market Maker

Case 3:
with Flexible

Market Maker

950.3 kWh 268.7 kWh
(28.3%)

950.3 kWh
(100.0%)

470.4 kWh
(49.5%)

A similar tendency was observed by computing and comparing the execution price
change rates for the three cases, where the execution price change rates are given by the
rate of change between the current and previous execution prices for the same product
(i.e., electricity for the same delivery period). Figure 12 compares three histograms of the
execution price change rates, where the vertical axis represents frequencies. The left-most
figure indicates the results of the case without market makers, the middle with the simple
market maker, and the right with the flexible market maker. Because higher change rates
mean larger price fluctuations, their variance (or standard deviation) provides execution
price volatility. We emphasize that high volatility in the P2P electricity market is the original
motivation for introducing market makers, who are expected to mitigate price fluctuations.
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To verify that the introduction of market makers actually achieves lower volatility, we
computed the mean, variance (standard deviation), maximum, and minimum values for
each case, as shown in Table 12. First, we see that the price volatility given by the variance
(standard deviation) is reduced in cases with market makers. Second, the improvement
effect is larger in the case with the simple market maker than in that with the flexible market
maker. Note that similar observation results were obtained from other statistics, such as
mean, maximum, and minimum values.
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Table 12. Comparison of change rates of executed prices for the three cases.

Mean Variance
(Standard Deviation) Maximum Minimum

Case 1: Without
Market Makers −0.0043 0.0085

(0.0922)
0.354

(35.4% up)
−0.267

(26.7% down)

Case 2: With
Simple

Market Maker
0.0001 0.0018

(0.0429)
0.295

(29.5% up)
−0.164

(16.4% down)

Case 3: With
Flexible

Market Maker
0.0027 0.0053

(0.0729)
0.231

(23.1% up)
−0.196

(19.6% down)

Considering the comparisons above, we can conclude that introducing a simple market
maker is the best among these three cases. This may be true if the profitability or risk of
loss for a market maker is not examined; however, when these points are also considered,
the flexible market maker is a better option. To clarify the relationship between the two
types of market makers and compare their profitability, we computed the total income
or loss for the simple/flexible market maker, as shown in Table 13, in which imbalance
charges of 50 JPY per 1 kWh shortage are deducted. Moreover, when the market maker
has a surplus position, an opportunity loss occurs due to the additional procurement cost.
With regard to the simulation results, when the daily generation and demand were even
(i.e., Generation/Demand = 100/100 = 1), the simple market maker’s profit was positive.
However, when the generation–demand ratio increased or decreased by 30%, the simple
market maker’s profit became negative, indicating that the simple market maker lost money
through transactions. On the other hand, the flexible market maker was profitable even
when generation and demand were unbalanced. Note that the market makers’ profitability
worsened when the generation–demand ratio was further decreased, but the loss of the
flexible market maker was not as large as that of the simple market maker.

Table 13. Profit/loss of market makers with respect to different supply–demand ratios.

Generation/Demand
= 100/100 = 1

Generation/Demand
= 130/100 = 1.3

Generation/Demand
= 70/100 = 0.7

Generation/Demand
= 40/100 = 0.4

Simple
Market Maker 2029.80 JPY −6281.62 JPY −7406.00 JPY −16773.05 JPY

Flexible
Market Maker 2900.04 JPY 520.54 JPY 453.72 JPY −3367.36 JPY

In addition, we computed the weighted average of sales/purchase prices for gen-
erators, consumers, and prosumers in all three cases and compared the results with one
another, although the details are omitted here for brevity. The introduction of market
maker agents affected sales/purchase prices of these general agents, but the difference
between with and without market maker cases was not large on average. On the other
hand, market makers provided new trading opportunities even when no PV generation
was performed at night, and as a result, the executed volumes of general agents largely
increased. In this sense, the market maker system could be embraced without resistance by
other market participants. Therefore, we can conclude that the proposed market maker
system would contribute to the development of the P2P electricity market, which could
serve as a new incentive for the further spread and establishment of renewable energy
power generation businesses.
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6. Conclusions

In this study, we proposed the application of a market maker system to the P2P
electricity market and developed an efficient market maker strategy to increase liquidity
and mitigate extreme price fluctuations. To this end, we constructed an artificial market
simulator for P2P electricity trading. We also designed and implemented both market
and participant agents that enabled us to virtually perform power bidding and contract
processes. The participant agent algorithms were built for PV generators, consumers, pro-
sumers, and market maker agents. We prepared two bidding strategies for market makers
and compared them before and after their introduction using actual solar PV generation
and consumption data observed in a previous demonstration project. We confirmed that
the effect of liquidity enhancement and price stability has a trade-off relationship with
market makers’ profitability, but all factors can be improved simultaneously without caus-
ing significant losses to other market participants. Therefore, we can conclude that the
market maker system could lower the barriers to entry into the P2P electricity market and
efficiently contribute to the growth of the renewable energy industry.

Finally, we describe the possible future directions of this research theme from the
viewpoint of “improvement of bidding strategies for market maker agents”, “improve-
ment of bidding strategies for supply and demand agents”, and “feasibility issues when
introducing market makers”.

First, regarding the “improvement of bidding strategies for market maker agents”,
we must incorporate additional factors into the current price determination algorithms.
In this study, even the most sophisticated pricing method, the flexible market maker, was
simply shifting half the bid offer spread up and down from the midpoint between the best
quotes on the order board and adjusting them according to the net position of the moment.
However, market makers also consider technical factors, such as market trends. Therefore,
upgrading market-maker agents could be a topic for future research.

Second, with regard to the “improvement of bidding strategies for supply and demand
agents”, they should be made more flexible because, in this study, they were assumed to
be fixed regardless of changes in the external environment. However, in the real world, if
market makers are introduced into the P2P electricity market, supply and demand agents
will react by flexibly adjusting their bidding strategies. Furthermore, installing storage
batteries (such as solar storage batteries for households and/or electric vehicles) into
supply and demand agents could also change their strategies and may influence the market
maker’s as well. These points should be considered in future studies.

Third, we would like to point out “feasibility issues when introducing market makers”.
In this research, we do not consider many important elements that affect the feasibility of
this system, such as power loss caused by transmission, charge and discharge processes,
the ideal capacity of storage batteries for market makers, and cost-effectiveness considering
battery life. In our simulations, we assumed that the market maker agent was homoge-
neous regardless of their types and that their bidding strategy was fixed; however, it is
more reasonable to expect that multiple market makers with different strategies exist in a
single market.

Finally, there exist several issues related to the extension of the dataset. In this study,
we have assumed that the number of agents is 18 in total and assigned both or either
of the two types of logs (generation/consumption) randomly to each agent (a generator,
consumer, or prosumer agent) from the original dataset. Moreover, the total daily PV
generation and consumption per household were adjusted to reflect other conditions (such
as weather and/or yearly trends), and we performed various simulations based on these
adjusted data. A further investigation based on an enhanced dataset for a longer period and
with a wider variety of participants may be interesting. Consequently, when introducing
this market maker system into real-life P2P markets, discussing these issues is inevitable;
thus, they could be considered potential topics for further studies.

The work in this study was primarily conducted when the first author was a graduate
student in the School of Engineering at the University of Tokyo, Japan.
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Appendix A Bidding Strategies of General Agents

In this appendix, we explain the bidding strategies of general agents, that is, the
generators, consumers, and prosumers, used in our simulation.

Appendix A.1 Generators and Consumers

Generators are supposed to sell all the electricity they generate in the market without
consuming any. The bidding price determination strategy is as follows. Immediately
after the market opens, they place an order at a relatively high price and then gradually
lower the price as time passes toward the end of the bidding period. This represents the
behavioral principle that generators want to sell surplus power at the highest possible
prices but do not want to waste any electricity. At the same time, the minimum sale price
is predetermined, and generators will not sell below the price. This indicates that it is
financially more advantageous to sell to a grid than to sell at an excessively low price in the
P2P market.

Similarly, consumers do not generate or procure all the necessary amounts of electricity
from the P2P market. Their bidding price determination strategy is to place an order at a
relatively low price initially and then gradually increase the price over time. Consumers
want to purchase the required electricity at the lowest possible price but do not want to
experience a power shortage. In addition, the maximum purchase price is set, and no
purchase order is placed higher than the price. This implies that consumers find it more
profitable to purchase electricity from the grid than to buy it at an excessively high price in
the P2P market.

In addition, a random number term is added to the prices explained above because the
generation and demand conditions of each entity are not constant but, rather, are constantly
subject to many uncertain factors in the real world. Thus, bidding prices should be adjusted
flexibly. In the remainder of this paper, we refer to a bidding price without a random
number added as a “base price”.

Graphical representations of base prices for generators and consumers are shown
in Figure A1. In the actual market, there are various user preferences, such as the need
to sell at the highest possible prices (buy at the lowest possible prices) or the need to
secure necessary electricity amounts safely. To express these differences in preference,
market participants are divided into three segments: the “price-oriented type”, which puts
more emphasis on economic efficiency; the “certainty-oriented type”, which places more
importance on how fast they can ensure needed power; and the “moderate type”, which
falls somewhere in between these two. To differentiate all these segments, different values
are used for initial bidding prices, price change rates, and limits of bidding prices.
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Figure A2 shows the actual bidding price transition after random numbers are added.
This allows orders to be executed even in the first 400 min when no single contract is seen
in the case of bidding at base prices.

There is one more rule regarding bidding price: If the previous order was already
contracted at the next bidding timing, the base price (the price without a random number
added) remains the same even if some time has elapsed since the last bidding and only
the random number changes. The aim is to prevent sales prices from being excessively
lowered or purchase prices from excessively increasing over time, even though the market
environment is such that electricity can be sold at higher prices or bought at lower prices.
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Appendix A.2 Prosumers

Prosumers both generate and consume electricity, and they attempt to satisfy their de-
mand with their own generation as much as possible. They sell or buy electricity in the P2P
market only when there is a surplus or shortage. In other words, if the total procurement,
which is the sum of predicted generation and existing buy contracts, exceeds the necessary
quantity, which is the sum of the forecasted demand and existing sell contracts, the excess
amount is bid as sell orders; conversely, if the procurement volume is not sufficient to fulfill
the demand, a buy order is sent to the market. The bidding price determination strategy of
prosumers is a combination of generators‘ and consumers’ algorithms. Because prosumers
can be both sellers and buyers, the initial prices, price change rates, and limits of bidding
prices are set separately for the two sides. Furthermore, as in the case of generators and
consumers, if the previous order on the same bidding side (selling or buying) has been
executed by the next bidding turn, the base price remains unchanged, and only a new
random number is added to it.
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