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Abstract: Modern power systems have experienced large increases in intermittent and non-dispatchable
sources and a progressive reduction in the size of hydro reservoirs for inflow regularization. One
method to mitigate the high uncertainty and intermittency of the net load is by Demand Response (DR)
mechanisms, to allow a secure and reliable system dispatch. This work applied a mixed integer linear
programming formulation to model DR as a dispatchable resource in the day-ahead hydrothermal
scheduling problem, taking into account minimum load curtailment constraints, minimum up/down
load deduction times, as well as piecewise linear bid curves for load shedding in eligible loads. The
methodology was implemented in the official model used in Brazil and tested in large-scale problems
to obtain the optimal daily dispatch and hourly pricing. The results show the positive impact of
dispatchable DR loads in cost reduction and in mitigating peak values of energy prices, even for
predominantly hydro systems, helping to preserve the reservoir levels and increasing the security of
the supply in the future.

Keywords: day-ahead dispatch; demand response; hydrothermal scheduling; mixed integer
programming; unit commitment

1. Introduction

Modern power systems have experienced a large increase in intermittent and non-
dispatchable sources–such as wind and solar plants, as well as increasing difficulty in
building new hydro plants with large reservoirs for inflow regularization. Therefore, many
methods of mitigating the high uncertainty and intermittency of the net load have been
proposed in power generation systems to allow a secure and reliable system dispatch
in power generation systems. Some resources work on the generation side of the grid,
such as pumped storage power plants [1], energy storage devices [2], and, more recently,
green hydrogen technology [3]. In such cases, the aim is to store the excess of renewable
generation—wind and solar plants in offpeak hours, where energy demand and prices are
low, to use them in hours with peak energy and prices, thus yielding a smoother net load
pattern and a reduction in generation costs.

Another method of mitigating the high volatility of prices and net load is Demand Side
Management (DSM) mechanisms [4], which involves encouraging consumers to reduce
their energy consumption without leaving aside the comfort or stimulating a gradual
reduction in consumption by performing the same activities. In terms of the power system
operation, the main goal is to motivate a shift in the load consumption behaviour of
consumers from peak hours to low level hours, or even a load reduction in exchange for
lower energy prices.

In general, DSM can be divided in two main categories: Energy Efficiency (EE) and
Demand Response (DR). The main purpose of EE is to reduce energy net consumption
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while accomplishing the same tasks, while DR refers to load profile adjustments, as, for
example, load shifting and load shedding, which are driven by market incentives [5]. An
extensive literature survey is provided, for example, in [6], which presents, among other
things, recent developments of the DSM of electrical power systems, as well as in [7], which
shows a survey on methods for optimization of the demand response. Figure 1 presents
the main categories of DSM, separated by EE and DR, which represent only some of the
many existing DSM programs in the energy markets around the world [8,9].

Figure 1. Classification of mainly DSM programs.

DSM mechanisms are widely considered in several energy markets, such as the US,
Spain, and France [10,11], and represent an important tool to provide adequate expansion
of the electricity system as well as to help increasing the reliability and security of the
energy supply system in many countries. The work [12] studies the application of DR in
security constrained problems, while [13] assesses the application of DR in the context
of profit maximization in electricity markets. In [14], some methodological and practical
aspects of the inclusion of DR in energy optimization problems are discussed.

Contributions of This Work

This work presents a thorough and realistic analysis of a mixed integer linear pro-
gramming (MILP) formulation to model DR as a dispatchable resource, taking into account
minimum load curtailment constraints, minimum up/down load deduction times, as well
as piecewise linear bid curves for load shedding in eligible loads. Although the situation of
demand retrieving the decreased consumption in later hours is an important analysis, this
possibility was not considered in this work.

The methodology was implemented in the network-constrained hydrothermal unit
commitment model named DESSEM, which is officially applied in Brazil for the day-ahead
scheduling and hourly price setting [15]. In this sense, the contributions of this work are
twofold: (i) to show the benefits of the application of DR programs even in predominantly
hydro systems, by assessing the impact on energy prices and generation cost in real and
official cases of day-ahead scheduling and pricing in Brazil. To the best of the authors’
knowledge, the few works that apply DR models to generation scheduling problems are
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restricted to pure thermal systems or to hydrothermal systems with a configuration much
smaller and/or a representation of hydro, thermal, or network constraints less accurate as
compared to [15]. The work [16] studied the hydrothermal generation scheduling with the
inclusion of pumped storage-hydraulic units with DSM. In [17], an optimization model is
proposed to smooth frequent local load fluctuations, and [18] studied the minimization of
wind energy curtailment by scheduling DR, in such a way that higher values of demand
match high wind generation values. The work [19] proposes an integrated stochastic
scheduling model to dispatch resources considering both gas operation and the demand
side to meet renewable energy intermittence; (ii) to present a MILP-based DR model that
is able to provide results in reasonable CPU times in a real large-scale system, with over
160 hydro plants and 12,000 transmission lines, and taking into account 60 DR units grouped
in 4 aggregators. The results assessed the amount of reduction in operational costs and
the positive impact in mitigating peak values of energy prices, as well as reducing hydro
generation, helping to preserve the reservoir levels.

2. Demand Response Programs

According to the International Energy Agency (IEA), DR programs have the potential
to substantially improve power market flexibility and efficiency, delivering a range of
benefits including more efficient market clearings, lower system prices, a decrease in
peaking plant investment requirements, and greater flexibility with the potential to improve
power system security [20].

The participation of several customer classes (residential, industrial, commercial, and
transportation) in DR programs, which is facilitated by the large penetration of smart
meters, combined with the high requirement for energy, have made the DR market in USA
the largest in the world. According to the Federal Energy Regulatory Commission’s (FERC)
2019 report [10], in 2018, the USA had a participation in DR programs of around 29.7 GW
among its System Operators (SO), representing 6.0% of the average peak load.

In Europe, many countries had already adopted consumer policy to be included
as a mechanism to mitigate peak demand and delay the system expansion. France has
consolidated DR mechanisms, such as balance mechanisms, capacity markets, among
others, and had a total share in DR market in 2018 of around 48.9 GWh [21]. DR mechanisms
in Spain are mostly composed of real-time pricing and interruptibility programs, where the
latter is aimed at emergency situations when energy supply is insufficient to meet demand,
and had a capacity to a reduce peak hour demand of 2000 MW in 2017 [11]. Norway
encouraged specific programs aimed at delaying network expansion with the following
results: a 10% reduction in peak demand in Oslo, increased knowledge about consumer
behavior, and model development for DSM mechanisms [22].

DR mechanisms are structured in different regions of the world. In [23], an overview of
the demand reaction in developing countries such as Chile and Colombia is presented. The
DR market in countries such as Japan, China, and North Korea, as well as continents such
as Africa and Oceania, has an extensive survey carried out in [24], indicating, in addition to
the current panorama, the main barriers for introduction of DR programs in these regions.
A study of the DR programs associated with renewable energies was analysed in [25] to
explore an appropriate instrument to help system operators considering the increase in
sustainability of worldwide electrical systems.

As can be seen in the DR literature and illustrated by Figure 1, DR programs can be
proposed mainly in two ways [11,20]:

• dispatchable DR programs: allow the system operator to decide the dispatch of these
loads based on bid curves for remuneration of loads according to the amount of
load deduction. They are also known as an incentive-based DR program, in which
consumers can receive payments to change their consumption patterns triggered by,
for instance, high clearing market prices.
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• non-dispatchable DR programs: where loads provide a long-term reduction in their
pattern according to the behavior of prices (price-based DR program). Consumers can
respond to wholesale market price variations or dynamic grid fees.

We considered in this study the first case, where the load can be deducted based on
piecewise linear bid curves for load shedding in eligible loads.

3. Network-Constrained Hydrothermal Unit Commitment Problem (Nchtuc)

We considered a MILP-based NCHTUC problem on a cost minimization basis, whose
formulation is summarized below. Due to space limitations, we refer to [15] for mathemati-
cal details and a richer description of constraints of the model, which is the one officially
used for dispatch and price setting in Brazil and which was used in this work to model the
DR as a dispatchable resource.

The objective Function (1) is to minimize total system operation costs Z, given by:

minZ =
T

∑
t=1

[
nt

∑
i=1

(cstt
i(u

t−1
i , ut

i) + ctt
i gtt

i) +
NCI

∑
i=1

cit
i Eimt

i−

NCE

∑
i=1

cet
i Eext

i

]
+ αFCF(Vi + Ri)

(1)

where nt is the number of thermal units, each one with a generation gtt
i subject to linear

or piecewise linear fuel costs given by ctt
i . The “status-change” cost cstt

i for thermal
units comprises both startup and shutdown costs, which are a function of units status
ut. The terms Eimt

i and Eext
i refer to imported and exported energy, respectively, with

neighborhood systems, whose unitary prices are given by cit
i (cet

i ) for each of the NCI
(NCE) import (export) contracts. The term αFCF is the expected future operation cost, which
depends on the vector of end storages Vi and the amount of water in the river courses Ri
at the end of the time horizon (see [26] for details). Such a function is provided by the
mid-term model [27].

The electrical network is represented by a linearized dc model, where reactive power
is neglected and line flows are given by taking into account the first and second Kirchhoff
laws, based on the reactance values for each transmission line, which are given data. The
network model considered in this study includes, besides the energy balance constraints
in each node, line flow limits in each transmission lines (2) as well as additional security
constraints (3) [28].

− fl ≤
NB

∑
i=1

kBl
i
[gt

i − dt
i ] ≤ fl (2)

SCt
i ≤ ∑

b∈SCBi

kSCBb
i
(gt

b − dt
b) + ∑

l∈SCLi

kSCLl
i
f t
l ≤ SCt

i (3)

where fl is the flow limit in each line l, (gt
i − dt

i) represents generation and load in each bus,
and kBl

i
are the participation factors that depend on the network topology. The parameters

SCBi , SCLi, kSCBl
i
, and kSCLl

i
of security constraints are provided by the system operator.

The symbols with lower and upper bars in the left and right hand sides of (2) and (3)
represent minimum and maximum values for the corresponding expressions. Additionally,
additional security constraints given by tables or piece-wise linear functions are included
in the model, as described in [15].
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The hydro balance in the reservoirs is formulated as (4):

Vt
i −Vt−1

i + ζt

[
Qt

i + St
i + Qevt

i + ∑
j∈Mpi

Qbt
j − ∑

j∈Jpi

Qpt
j

− ∑
j∈Mi

(Qt
j + St

j)− ∑
j∈Mtvi

(Qt−τ ji
j + S

t−τji
j )

]

= ζt[It
i −Qoutt

i
]

(4)

where the known values are the natural inflows It
i to reservoirs and water intakes Qoutt

i for
other uses of water. Variables Qt

i and St
i are the turbined (discharge) and spilled outflows,

and Qevt
i is the evaporation function of the reservoir, which is described in [15]. The

sets Mpi/Jpi indicate upstream/downstream pumping stations that take water from/to
reservoir i, and Mtvi/Mi are the set of upstream plants j with/without water delay time to
reservoir i, with a value of τji in the first case. The factor ζt converts the average values of
the variables in m3/s during interval t in the total amount of volume of water in interval t,
hm3, taking into account the duration of the interval.

The hydro generation GH for plant i is a concave piecewise-linear function GH(V, Q, S),
whose expression is presented in [15], and the method of construction is presented in [29].

Thermal unit commitment constraints include: minimum generation (once turned
on), startup/shutdown curves, minimum up/down times, maximum up and down ramp
rates, and a detailed modeling of combined cycle units by a component-based model. The
formulation of all these constraints is presented in [15].

Finally, a large number of operating constraints for the reservoirs are included in the
model, as also detailed in [15].

4. Formulation of DR Constraints in the Nchtuc Problem
4.1. Bid Curves for Load Reduction

The bid curves for DR loads are price/quantity pairs, i.e., the revenue for load curtailment
is a piecewise linear function of the amount of load reduction, as shown in Figure 2.

Figure 2. Price–quantity bid curves for demand response loads.

4.2. DR Constraints for Each Individual Load

The following constraints are enforced for DR loads:
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• load reduction limits (once activated): the minimum and maximum DR reduction lim-
its (lDRi and lDRi ) are defined in (5), where uDRt

i
is the status (1: activated; 0: disabled)

for each DR load i in time t.

lDRi .uDRt
i
≤ lDRt

i
≤ lDRi .uDRt

i
(5)

• minimum on/off times for DR: once activated or disabled, expressions (6) and (7) impose
the minimum times Toni/To f fi, where the load reduction should remain on/off, respec-
tively.

t+Toni−1

∑
k=t

uDRk
i
≥ Toni.(uDRt

i
− uDRt−1

i
) (6)

t+To f fi−1

∑
k=t

(1− uDRk
i
) ≥ To f fi.(uDRt−1

i
− uDRt

i
) (7)

4.3. Aggregator Constraints

Load aggregators were considered in this work due to their recognized importance for
a secure stimulation and promotion of DR mechanism in a global context [30,31], since they
can centralize many consumers to build a portfolio of DR load. In this sense, loads with
small consumption can be aggregated and promote volumes that are large enough for their
load to participate in the market [32].

Constraints for NEC aggregators are mathematically represented in our model as
special electrical constraints (EC), according to (8). Each constraint i indicates an aggregator
with lower and upper limits ECt

i and ECt
i for time step t, and comprises a set ECLi of DR

loads, each one contributing with a load reduction DRt
j and a participation factor kEC,Li j.

ECi
t ≤∑ j∈ECLi

k
EC,Li j

DRt
j ≤ ECt

i

i = 1, . . . , NEC; t = 1, . . . , T.

(8)

5. DR Characteristics

The study was applied to the real data for the hydrothermal Brazilian system and
its pilot DR program. The system is divided into four subsystems: Southeast/Midwest,
South, Northeast, and North. We considered 15 DRs (DR loads) per subsystem, each one
with minimum and maximum reduction values (once activated) and Ton/Toff values given
in Table 1.

Table 1. Allowed reduction of each DR per subsystem.

Subsystem Max.Reduction/Min.Reduction Ton/Toff

Southeast/Midwest 108 MW/5 MW 1 h/1 h

South 31.5 MW/5 MW 1 h/1 h

Northeast 22.5 MW/5 MW 1 h/1 h

North 18 MW/5 MW 1 h/1 h

Aggregators were modeled according to the following criteria:

• For each subsystem, a maximum activation limit to the set of 15 DRs was settled,
reaching the limit value of 1.8 GW for a total reduction of all DRs in the system.



Energies 2022, 15, 3928 7 of 15

• This value corresponds to 10% of the Brazilian wholesale market, which can freely
negotiate their energy purchase contracts and represents the most prepared consumer
market to participate in demand response incentive programs.

This relatively large amount of DRs with a wide range of variation in load reduction
allows more flexibility for the results of the day-ahead dispatch model and enlarges its
decision-making capacity in determining the optimal dispatch. The lower/upper limit
constraints for the ECs of each aggregator are shown in Table 2.

The cost of each DR offer was USD 62.3/MWh (currency conversion from real (R$)
to dollar (USD). 1 R$:USD 5.62 ) to all subsystems. The average marginal operational
cost to the simulated period was of around USD 55/MWh to the Southeast/Midwest and
South subsystems, USD 34/MWh to the Northeast subsystem, and USD 41/MWh to the
North subsystem.

Table 2. Maximum reduction limits to DR set per subsystem—reduction limits per aggregation.

Subsystem Max.Reduction (DR) Max.Reduction (DR Set)

Southeast/Midwest 108 MW 1080 MW

South 31.5 MW 315 MW

Northeast 22.5 MW 225 MW

North 18 MW 180 MW

6. Numerical Results

The MILP-based NCHTUC with DR constraints for the Brazilian system is a large-
scale mixed-integer linear program, with hundreds of thousands of binary variables, half
a million of continuous variables, and half a million constraints. The problem is solved
by a branch-and-cut algorithm that applies an interior point algorithm to solve the linear
sub problems and local branching/feasibility pump procedure to solve the problem in an
iterative way (see [15] and references therein). Marginal prices are obtained by solving a
LP problem at the end of the unit commitment solving procedures, where the status of the
units are fixed.

6.1. System Data

The system is composed by 162 hydro plants, 438 thermal units, and an electrical
network whose configuration varies around 9000 buses and 12,000 transmission lines. We
considered the official input data that were daily published by the Brazilian ISO during the
considered period (labeled as “base cases”), in which we included the DR data described
above to generate “DR cases” for comparison purposes. The scheduling horizon for each
case is up to 1 week, with 48 half-an-hour time intervals for the first day. Even though we
simulated all days from October 2020, the analyses were focused on the days where DRs
have been actually dispatched by the DESSEM model.

In Sections 6.2 and 6.3, we assess the impact of the inclusion of DR constraints in the
bus marginal costs (BMC) for the short-term hydrothermal scheduling problem. In this
sense, Figures 3 and 4 present the BMC values for some buses of the system without the
inclusion of DR, and Figures 5 and 6 present in more detail the BMC variations due to the
consideration of DR, in which the green bars represent the amount of DR activation.
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Figure 3. Southeast /Midwest BMC values on base case.

Figure 4. South BMC values on base case.

Figure 5. Southeast/Midwest BMC values and related buses with DR activation.
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Figure 6. South BMC values and related buses with DR activation.

6.2. Impact on Marginal Costs Along Buses

The results showed that when DR was activated the Bus Marginal Cost (BMC) was
considerably attenuated, especially on 1, 2, and 7 October, to the Southeast/Midwest and
South subsystems. Figure 3 presents the BMC in the buses where Southeast/Midwest DRs
are connected. The high values of BMC on 1 October can be highlighted, reaching values of
USD 458.6/MWh in bus 477 at 2:30 PM. The BMC damping results to this subsystem are
shown in Figure 5, with emphasis to the high dumping value that occurred on 1 October
and all BMC values below USD 106.8/MWh due to the activation of DRs.

6.3. Relation between DR Activation and Bus Marginal Costs

Figure 4 presents the BMC values for the base case of the South region. DR activation
helped to maintain the BMC values close to those of DR offers, as shown in Figure 6,
implying that the consumption reduction in these buses, together with the conditions
provided by the DRs activation in other subsystems, would be enough to reduce more
expensive generation to meet demand, with DR offers marginally meeting their loads.

6.4. Impact on Average System Marginal Costs for Each Subsystem

Based on the values of marginal costs for each bus, we obtained the energy prices that
are set by each subsystem SMCt

i for each subsystem k as an average of marginal costs of
the buses located in this subsystem, weighted according to their corresponding loads [15].

The average marginal cost of each subsystem (SMC) showed an attenuation profile
when DR was activated. Due to a more comprehensive composition of SMC, with the
load and buses of each area being weighted, the reductions in SMC values were more
subtle compared to values observed for BMC, even though they are still relevant. Mainly in
Southeast/Midwest and South regions, the differences were more noticeable on those days
when SMC values showed a peak value at some daily hours, following the BMC results.
Even though SMC has characteristics of lower volatility than BMC, a large reduction in
BMC can reflect significant differences in the SMCs. To the Southeast/Midwest region, this
reduction was more evident on 1, 2, and 7 October, as shown in Figure 7.

6.5. Variation on SMCs

The number of negative and positive differences in SMCs is shown in Figure 8, clus-
tered in the ranges of the SMC values.
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Figure 7. Southeast/Midwest SMC values.

Figure 8. Occurrences of SMC values—positive and negative differences.

In the same way as the results obtained for BMC, the SMC values of the DR cases in
October tended to concentrate below USD 62.3/MWh if compared to the corresponding
base case. Table 3 shows the percentage of times the SMC lied in three ranges of values. It
is possible to see that there was an increase in the frequency of SMC values in the second
interval (which is below the DR offer) and a reduction in the frequency of SMC values in
the last interval, which is above the DR offer.

Table 3. Distribution of SMC values (USD).

Region Scenery SMC ≤ 26.7 26.7 < SMC ≤ 62.3 SMC > 62.3

SE/Mid Base case 0% 71% 29%
With DR 0% 77% 23%

S Base case 0% 71% 29%
With DR 0% 76% 24%

NE Base case 30% 66% 4%
With DR 30% 68% 2%

N Base case 1% 94% 5%
With DR 1% 95% 4%
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6.6. Impacts on the System Dispatch

The thermal generation trend in the Southeast/Midwest region was different for each
simulated day, and on some days such as 27 October, there were increasing and decreasing
variations in the thermal generation of the DR case as compared to the base case, according
to Figure 9, reaching differences close to ±300 MW in some hours.

Figure 9. Total system thermal generation.

Differences in thermal generation results for each day and between subsystems, shown
in Table 4, are strongly linked to the unit commitment constraints that are considered in the
thermal dispatch, leading the optimization model to consider whether or not to dispatch a
thermal plant according to its operational cost and unit commitment constraints.

Table 4. Thermal generation differences between DR case and base case.

Region Therm.Gen. (MWh) Avg Therm.Gen. (MW)

SE/Mid. −247.77 −0.43

S −18.37 −0.03

NE 8070.13 14.01

N −205.20 −0.36

System 7598.79 13.19

Hydraulic generation in the Southeast/Midwest and South regions was significantly
reduced in the DR case as compared to the base case, as seen in Figure 10. This can be
explained by the fact that the reservoirs from that regions, at the time in which simulations
had been performed, had storage levels only around 27% of its total capacity, leading the
optimization model to keep the water storage of hydro plants in these regions. It can be
highlighted that, only on 1 October and 8 October, the average hydro generation in the DR
case was higher than the average values of the base case. This result may be associated
to the fact that, when comparing these same days, thermal generation was minimized,
indicating that the DESSEM model optimizes resources to meet demand according to the
associated costs of each source, without showing a tendency to favor only a certain type of
energy source.
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Figure 10. Total system hydro generation.

According to Table 5, hydro generation was reduced in DR cases as compared to base
cases for all subsystems, reaching a total decreasing value of around 115.5 GWh.

Table 5. Hydro generation differences between DR case and base case.

Region Hydro Gen. (MWh) Avg Hydro Gen. (MW)

SE/Mid −62,424.14 −108.38

S −43,095.04 −74.82

NE −417.92 −0.73

N −9563.78 −16.60

System −115,500.88 −200.52

6.7. Reduction in Total Operation Costs

The differences in total operational costs of DR cases as compared to the costs observed
for the base case are shown in Figure 11. The negative direction indicates that a reduction in
the total operational cost occurred when compared to the same parameter of the base case,
explained by the reduction in the present cost or the future cost, or even both, as shown
in Table 6. It is possible to notice that for every day the total operational cost obtained
with DR simulations was less than or equal to those obtained in the base case. The average
costs for both scenarios, the DR case and the base case, are shown in Table 7, resulting in a
average reduction in the total operational cost.

Table 6. Differences between present and future costs considering the DR activation and base case.

Date Present cost
with DR

Present Cost
Base Case ∆ Future Cost

with DR
Future Cost
Base Case ∆

01 Oct 33.74 33.91 −0.171 39,206.39 39,206.48 −0.094
02 Oct 17.86 17.73 0.132 39,300.10 39,300.23 −0.132
06 Oct 37.36 37.32 0.035 49,332.99 49,333.03 −0.035
07 Oct 3.24 2.14 1.096 49,611.57 49,612.72 −1.153
08 Oct 67.22 67.31 −0.085 51,440.13 51,440.09 0.036
19 Oct 89.49 89.35 0.134 44,368.39 44,368.61 −0.227
20 Oct 56.54 54.68 1.857 44,345.73 44,347.65 −1.916
21 Oct 25.15 21.83 3.321 44,352.93 44,356.46 −3.530
22 Oct 84.06 80.84 3.216 44,405.35 44,408.65 −3.300
26 Oct 3.97 1.53 2.448 44,331.04 44,333.51 −2.465
27 Oct 63.80 62.12 1.676 44,286.42 44,288.12 −1.701
29 Oct 83.90 80.08 3.815 44,301.43 44,305.26 −3.834
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Table 7. Present, future, and total operational average cost (106 R$).

Scenery Present Cost Future Cost Total Operational Cost

Base case 45.74 44,941.73 45,054.14

With DR 47.19 44,940.21 45,054.07

∆ 1.46 −1.53 −0.07

Figure 11. Differences between total operational costs.

7. Conclusions

This study assessed the impact of considering demand response (DR) loads as dis-
patchable resources in hydrothermal dispatch, even for predominantly hydro systems.
Numerical experiments were performed for the real large-scale Brazilian system, where DR
loads and constraints were implemented in the mixed-integer linear programming-based
network-constrained hydrothermal unit commitment model officially used by the Inde-
pendent System Operator and the Market agency for the day-ahead system dispatch and
hourly price setting.

Based on the analysis results of marginal costs for each bus (BMC) and the average
marginal cost for each subsystem (SMC) in which the system is divided, we concluded that
the main benefit of the DR dispatch was to attenuate the peak values both for BMC and
SMCs, which occurred at hours where the DR activation was allowed and whose energy
requirements to meet demand proved to be more expensive. As a result, the DR dispatch
allowed a reduction in the system operation cost by decreasing the load curve in peak
demand hours.

Moreover, with the application of DR there was a systematic reduction in hydro
generation throughout the system, whereas the thermal dispatch varied from increasing in
one region and decreasing in another one, depending on the case and system conditions.
Finally, it was observed that the total operational cost of system was reduced, not only due
to a decrease in present costs along the day but also by reducing the expected value of
future costs, due to the higher storage in the reservoirs at the end of the day, yielded by the
application of DR program.

As a final conclusion, we confirmed the feasibility of representing DR as a dispachable
resource in the Brazilian system, with benefits in system operation cost and security of
supply. The main limitation of this study is that we considered only the possibility of
load reduction. For loads that are flexible in terms of the time window of application
but cannot be curtailed, load shifting should be modeled, which was beyond the scope
of the study. In this sense, in future works, we intend to assess the benefits/impacts
of alternative/additional rules that may be considered for the DR program, such more
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rigid constraints for load reduction and the possibility of load shifting. In the work [14],
modeling approaches for load shifting, either in a more flexible way or in fixed ”load
blocks” with the use of mixed integer linear programming techniques, are discussed and
can be included in hydrothermal scheduling problems, such as the one considered in this
study.
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