
Citation: Nie, D.; Li, Y.; Li, X.;

Zhou, X.; Zhang, F. The Dynamic

Spillover between Renewable Energy,

Crude Oil and Carbon Market: New

Evidence from Time and Frequency

Domains. Energies 2022, 15, 3927.

https://doi.org/10.3390/en15113927

Academic Editors: Wing-Keung

Wong, Aviral Kumar Tiwari,

Faridul Islam and Husam Rjoub

Received: 21 April 2022

Accepted: 18 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

The Dynamic Spillover between Renewable Energy, Crude Oil
and Carbon Market: New Evidence from Time and
Frequency Domains
Dan Nie 1,*, Yanbin Li 1, Xiyu Li 2, Xuejiao Zhou 1 and Feng Zhang 1

1 School of Economics and Management, North China Electric Power University, Beijing 102206, China;
liyb@ncepu.edu.cn (Y.L.); zhouxuejiao@ncepu.edu.cn (X.Z.); ncepuzf@ncepu.edu.cn (F.Z.)

2 School of Environment, Education & Development, The University of Manchester, Manchester M13 9PL, UK;
im.xiyuli@gmail.com

* Correspondence: dan.nie@ncepu.edu.cn

Abstract: To obtain the price return and price volatility spillovers between renewable energy stocks,
technology stocks, oil futures and carbon allowances under different investment horizons, this paper
employs a frequency-dependent method to study the dynamic connectedness between these assets
in four frequency bands. The results show that, first, there is a strong spillover effect between these
assets from a system-wide perspective, and it’s mainly driven by short-term spillovers. Second,
in the time domain, technology stocks have a more significant impact on renewable energy stocks
compared to crude oil. However, through the study in the frequency domain, we find renewable
energy stocks exhibit a more complex relationship with the other two assets at different time scales.
Third, renewable energy stocks have significant spillover effect on carbon prices only in the short
term. On longer time scales, other factors such as energy prices, climate and policy may have a
greater impact on carbon allowance prices. Fourth, the spillover effect of the system is time-varying
and frequency-varying. During the European debt crisis, the international oil price decline and the
COVID-19 pandemic, the total spillover index of the system has experienced a substantial increase,
mainly driven by medium, medium to long or long term spillovers.

Keywords: time-frequency connectedness; renewable energy stocks; technology stocks; crude oil price;
carbon allowance; spillover effect; COVID-19

1. Introduction

Growing concerns about energy security, climate change, and energy shortage have
aroused people’s awareness of increasing the proportion of low-carbon energy in total en-
ergy consumption, and the renewable energy sector has become one of the fastest-growing
energy sectors. As of the end of 2018, the estimated share of renewable energy power gener-
ation in the total global power generation exceeded 26%, and renewable energy accounted
for more than one-third of the global installed power generation capacity [1]. The renewable
energy sector has attracted remarkable investment, with more than $280 billion invested in
renewable power and fuels each year during 2015–2018, and with more renewable energy
net capacity additions than fossil and nuclear energy combined [1]. In addition, renewable
energy sources will play an increasingly important role in meeting the world’s growing
energy needs [2]. According to the International Energy Agency’s (IEA) 2019 World Energy
Outlook, under the Stated Policies Scenario, more than half of the increase in global energy
demand by 2040 will be met by low-carbon energy sources [3].

The rapid development and promising prospects of the renewable energy industry
have stimulated the interest of private investors in renewable energy stocks. Research on
the relationship between renewable energy stocks and other assets has grown in recent
years, focusing on issues such as interdependence, causality, or spillover effect between
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renewable energy stocks, crude oil, or technology stocks. First, as crude oil plays an im-
portant role in global energy supply and substitutes with renewable energy, many studies
have been conducted on the relationship between crude oil and renewable energy stocks.
Henriques and Sadorsky, Kumar et al. and Ahmad et al., stated that rising oil prices
have a positive impact on renewable energy stock prices [4–6]. Reboredo and Ugolini
and Song et al., studied the relationship between various fossil energies and renewable
energy stocks, and found that crude oil price is the main factor affecting the price fluc-
tuation of renewable energy [7,8]. Pham further analyzed the relationship between the
stock performance of clean energy subsectors and the prices of crude oil, and they came
to conclusion that the correlation between different sub-sectors and the price of crude oil
varies. It is worth noting that some scholars have found that the correlations between crude
oil prices and renewable energy stock prices or technology stocks have different features in
different time periods or time scales. Managi and Okimoto introduced Markov-switching
framework and found that there is a structural break in the system composed of crude oil,
clean energy stocks and technology stocks at the end of 2007. Before the structural break,
crude oil price had no significant impact on clean energy stocks, but the oil price shock after
the structural change has a significant positive impact on renewable energy stocks [9].
By employing Detrended Cross-Correlation Analysis (DCCA) framework, Paiva et al.
found that crude oil and renewable energy are highly correlated only from mid-2008 to
mid-2012 [10]. Reboredo et al. used wavelet method to find that the interactions between
crude oil prices and renewable energy stock prices are weak in the short term, and there is
no linear Granger causality, but the dependence between the two increases in the longer
time scale [11].

Second, some scholars use different econometric methods and find that compared with
the price of crude oil, there is a stronger correlation or spillover effect between technology
stocks prices and renewable energy stock prices. Henriques and Sadorsky built a four-
variable VAR model and found that the volatility of technology stocks has a greater impact
on renewable energy stocks than that of crude oil prices [4]. By constructing a multivariate
GARCH model, Sadorsky found that the dynamic correlation between clean energy stocks
and technology stocks is higher than that between clean energy and oil prices [12]. Ahmad
took more asset types into account based on Sadorsky’s research and came to a similar
conclusion [13]. Inchauspe et al., constructed an asset pricing model with time-varying
parameters and found that the price returns of renewable energy stocks are much less
affected by oil prices than those of technology stocks [14]. Zhang and Du established
a TVP-SV-VAR model to study the dynamic relationship between the stock prices of
renewable energy, high-tech and fossil fuel companies, and found that renewable energy
companies stock prices have a stronger correlation with high-tech stocks [15]. Tiwari et al.,
investigated the tail dependence between crude oil, clean energy and technology stocks
in different market scenarios and discovered that oil price volatility is not a key factor
affecting the profitability of clean energy and technology companies, while clean energy
and technology companies are strongly correlated [16]. In addition, some scholars further
find that there are differences in the correlations between crude oil, renewable energy stocks
and technology stocks at different time scales. Ferrer et al., believed that the correlation
between crude oil prices and renewable energy stock prices is low in both the short and long
term, while there is a significant volatility spillover effect between technology stock prices
and renewable energy stock prices in the short term [17]. Through threshold cointegration
test, Bondia et al., found that in the short run, alternative energy stocks are affected by
technology stocks, oil prices, and interest rates; in the long run, alternative energy stocks are
not affected by these factors [18]. By constructing a cointegrating nonlinear auto-regressive
distributed lag (NARDL) model, Kocaarslan and Soytas found that a rise in oil prices in the
short term leads to an increase in clean energy investment, but in the long run, the price of
crude oil has a negative impact on clean energy; in both the short and long term, there is a
significant two-way positive effect between technology stocks and clean energy stocks [19].
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Third, carbon pricing policies aimed at mitigating climate change can also stimulate
interest in renewable energy, but only a small number of studies have taken the carbon
allowances price into account when exploring the volatility of renewable energy stock
prices. Dutta et al., found that, by building the VAR-GARCH model, in Europe, the
correlation between carbon allowances and the price return of clean energy stocks is not
significant, but there is a significant volatility correlation between them [20]. Xia et al.,
stated that electricity, coal or oil prices contribute more to changes in renewable energy
earnings than carbon allowance prices [21]. Lin and Chen, Jiang et al., took China’s carbon
emission trading (CET) market as an example to study the correlation between carbon
prices and renewable energy stock prices. Lin and Chen found that there is no significant
volatility spillover effect between China’s carbon market and renewable energy stocks
market, while Jiang et al., believed that renewable energy stocks have an impact on carbon
allowance prices in the short and middle term [22,23].

Despite the growing body of research on the relationship between renewable energy
stocks and assets such as crude oil, technology stocks or carbon allowances, there are still
some research gaps. One of them is that few scholars pay attention to the interaction be-
tween renewable energy stocks and other assets in different frequency domains. However,
given that different institutions differ in how they respond to and pay attention to informa-
tion over different time horizons, we believe it is important to understand the frequency
dynamics between renewable energy stocks and other assets. For market investors, due to
different goals, preferences and risk tolerance, they often have different investment hori-
zons. Specifically, short-term investors, such as day traders or hedge funds, will pay more
attention to the short-term performance of the market, while long-term investors, such as
large investment institutions, will more focus on the long-term performance of the market
and adjust their investment strategies. Another research gap is that there are few studies
on the relationship between carbon allowance prices and renewable energy stock prices.
However, as the importance of global carbon emission reduction becomes increasingly
prominent, it is of theoretical and practical significance to study the relationship between
carbon allowance and renewable energy stocks. This paper introduces a recently developed
connectedness approach to study the price return and price volatility among renewable
energy stocks, global stock index, technology stocks, crude oil futures, carbon allowances,
and the 10-year US Treasury note both in time domain and frequency domain.

The contributions of this research are mainly lie in the following four points:
First, this paper may be the first study to examine the spillover effect between renew-

able energy stocks, crude oil, technology stocks, and carbon allowances from a systematic
perspective. To our knowledge, there are no studies on renewable energy spillovers that
consider both technology stocks and carbon allowances. We believe it’s necessary to con-
sider both assets because: (i) some studies show a stronger correlation or spillover effect
between technology stocks and renewable energy stocks compared to crude oil; (ii) carbon
pricing policies can stimulate interest in renewable energy, and some studies have shown
that there is a positive correlation between carbon allowances and clean energy stocks.

Second, this paper uses a newly developed network connectedness approach to study
the dynamic spillovers among renewable energy stocks and other assets over different
investment horizons. Investors tend to choose different horizons due to their different
objectives, preferences, and risk tolerance, yet there is a lack of research on the frequency
dynamics between renewable energy stocks and other assets. The connectedness method
proposed by Barunik and Krehlik, which adds the investigation on the frequency dynamics
of connectedness on the basis of the connectedness network method proposed by Diebold
and Yilmaz, and has been gradually applied to the fields of energy and finance in recent
years [17,24–26]. Many existing studies on the relationship between renewable energy
stocks and other assets use VAR and GARCH models and investigate the relationship
between variables in the time domain through these types of econometric models, while
this paper investigates the interactions between renewable energy stocks and other assets
in both time and frequency domains.
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Third, this paper studies both price return and price volatility spillovers, and research
on these two channels can help investors and policy makers better understand the interac-
tions between markets. In theory, renewable energy stocks can be linked to other financial
markets, energy markets or carbon allowance markets through two ways. One is price
return spillovers that occur during price discovery process, during which a price change in
one market has an impact on the value of an asset in other markets, resulting in changes
in their prices [27–29]. The other is price volatility spillovers, in which the willingness of
market participants to hold assets in other markets may change when one market fluctuates.
To our knowledge, the spillovers of these assets under both channels have not been studied.

Fourth, this paper covers the period from the 2008 financial crisis to the 2021 COVID-19
pandemic, and separately studies the dynamic spillovers between renewable energy stocks
and other assets during European debt crisis, oil price drop, and COVID-19 pandemic.

This paper can provide some implications to policy makers and investors for market
or asset management, which will be conducive to maintain the stability of energy market
or financial market, promote the development of renewable energy industry, and improve
the risk management strategies of market investors. For policy makers, first, by studying
the connectedness between the volatility of the renewable energy sector and the crude
oil market at different scales, it is possible to assess the risk spillovers between markets
and improve the price mechanism to prevent the market from violent turmoil. Second,
by investigating the strength of the spillover effect between the returns of the renewable
energy sector and crude oil and technology industries, it helps policy makers to evaluate
the impact of other industries on the asset value of the renewable energy industry and to
formulate corresponding policies to promote the development of the renewable energy
industry. Third, studying the dynamic spillover effect between carbon allowances prices
and the renewable energy sector is conducive to measuring the impact of carbon trading
on the renewable energy sector in a quantitative and dynamic manner, and helps to assess
the role of emission trading scheme in promoting the development of renewable energy.
For market investors, the study of returns and volatility spillovers between various assets
such as renewable energy stocks, crude oil, technology stocks and carbon allowances
over different investment horizons will help investors to adjust the asset allocation of
their portfolios in a timely manner. Investors can effectively reduce the market risk of
investment by selecting assets with a certain hedging effect in an investment portfolio.
In addition, portfolio management by investors is more difficult in times of turmoil in
financial or energy markets. This paper analyzes the interactions between a large set of
assets during the European debt crisis, the international oil price decline and the COVID-19
pandemic, which can provide a reference for investors in developing an asset diversification
strategy. The remainder of the paper is organized as follows: The Section 2 introduces
the connectedness network approach proposed by Barunik and Krehlik; The Section 3
describes the variables and makes a preliminary analysis of the data; In the Section 4, we
represent the empirical results of the connectedness analysis in time and frequency domain;
The Section 5 summarizes the main findings and makes implications for market investors
and policy makers.

2. Empirical Methodology

This study applies the frequency-dependent connectedness methodology given by
Barunik and Krehlik to estimate the spillovers among renewable energy stock prices,
technology stock price, world stock market price, oil price, carbon price, and bond price [26].
By extending the connectedness approach proposed by Diebold and Yilmaz in 2014, this
technique can measure the connectedness both in the time and frequency domains [25].
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2.1. Measuring Connectedness in the Time Domain

The connectedness network approach recently proposed by Diebold and Yilmaz
in 2014 is based on a VAR model approach and has been widely used to measure the
linkages between financial or energy markets in time domain [30–36]. Within the vector
autoregressive (VAR) framework, all variables are assumed to be endogenous, and the
dynamics of each variable are affected by the lags of all variables and an error term. In our
analysis, we assume the price series are modeled as a VAR model of order p,

Xt = Φ1Xt−1 + Φ2Xt−2 + . . . + ΦpXt−p + εt (1)

where Xt is an N × 1 vector of endogenous variables, and εt is an N × 1 vector of indepen-
dently distributed errors. Φi is an N × N matrix of regression coefficients to be estimated
and Φ(L) =

[
IN −Φ1L− · · · −ΦpLp] with IN is an N × N identity matrix. Given the

assumption of stationarity of the VAR model, Equation (1) can be converted into an infinite
order vector moving average (VMA) representation as,

Xt = Ψ(L)εt (2)

where matrix lag-polynomial Ψ(L) can be calculated recursively from Φ(L) = [Ψ(L)]−1.
Based on the generalized variance decomposition framework proposed by Koop et al., and
Pesaran and Shin, Diebold and Yilmaz define the contribution of the jth variable to the
variance of forecast error of the element i at horizon h as [37,38],

θij(H) =
σ−1

j,j ∑H
h=0

(
(ΨhΣ)i,j

)2

∑H
h=0 (ΨhΣΨh

′)i,i
(3)

where σjj = (Σ)j,j, H is the forecast horizon and Ψh is an N × N matrix of moving average
coefficients at lag h. Thus, a connectedness matrix can be constructed with N× N elements.
The contributions of θij(H) in the matrix can be normalized as,

θ̃ij(H) =
θij(H)

∑N
j=1 θij(H)

(4)

and ∑N
j=1 θ̃ij(H) = 1 and ∑N

i.j=1 θ̃ij(H) = N.
The total spillover in the whole system can be measured as,

C(H) =
∑N

i,j=1, i 6=j θ̃ij(H)

∑N
i,j=1 θ̃ij(H)

× 100 =
∑N

i,j=1, i 6=j θ̃ij(H)

N
× 100 (5)

To determine how much one variable contributes to the system and how much infor-
mation it gains from the system, the total directional connectedness is computed as,

Toi(H) =
∑N

j=1, i 6=j θ̃ji(H)

∑N
i,j=1 θ̃ij(H)

× 100 (6)

Fromi(H) =
∑N

j=1, i 6=j θ̃ij(H)

∑N
i,j=1 θ̃ij(H)

× 100 (7)

Furthermore, the net directional connectedness can be constructed as,

Neti(H) = Toi(H)− Fromi(H) (8)
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If Neti(H) > 0, it means variable i contributes more than it gains from the system
and variable i is a net information transmitter of the system, otherwise, variable i is a net
information receiver of the system.

Similarly, the net pairwise connectedness between variable i and variable j can be
written as,

Netij(H) =
(

θ̃ji(H)− θ̃ij(H)
)
× 100 (9)

If Netij(H) > 0, it means variable i contributes more than it gains from variable j and
variable i is a net information transmitter to j, otherwise, variable i is a net information
receiver from j.

2.2. Measuring Connectedness in the Frequency Domain

Barunik and Krehlik extend the connectedness network model proposed by Diebold
and Yilmaz by adopting spectral methods to investigate the spillover effect in the
frequency domain.

Consider a frequency response function Ψ
(
e−iω) = ∑h e−iωhΨh, h = 1, · · · , H, which

can be obtained as a Fourier transform of the coefficients Ψh, with i =
√
−1. The spectral

density of Xt at frequency ω can then be described as,

SX(ω) =
∞

∑
h=−∞

E(XtXt−h)e−iωh = Ψ
(

e−iω
)

ΣΨ′
(

e+iω
)

(10)

The power spectrum SX(ω) is a key quantity for understanding frequency dynamics
since it describes how the variance of the Xt is distributed over the frequency components
ω. Then, the generalized causation spectrum over frequencies ω ∈ (−π, π) is defined as,

θH
ij (ω) =

σ−1
j,j

∣∣∣(Ψ(e−iω)Σ)ij

∣∣∣2(
Ψ
(
e−iω

)
ΣΨ′

(
e+iω

))
i, i

(11)

where θH
ij (ω) measures how much the spectrum of the ith variable at a given frequency ω

due to shocks in the jth variable. To study economic problems in different time horizons, it
is more convenient to work with frequency bands that we define as the amount of forecast
error variance created on a convex set of frequencies. Given an arbitrary frequency band
d = (a, b), a, b ∈ (−π, π), a < b, the generalized variance decompositions on frequency
band d are defined as,

θd
ij =

1
2π

∫
d

Γi(ω)θH
ij (ω)dω (12)

where Γi(ω) =
(Ψ(e−iω)ΣΨ′(e+iω))i, i

1
2π

∫ π
−π(Ψ(e−iλ)ΣΨ′(e+iλ))i, idλ

. Suppose Xt is wide-sense stationary with

σ−1
j,j

∞
∑

h=0

∣∣∣(ΨhΣ)ij

∣∣∣ < +∞, ∀i, j. Then,

θ∞
ij =

1
2π

∫ π

−π
Γi(ω)θH

ij (ω)dω (13)

The scaled generalized variance decomposition on the frequency band d = (a, b) is
defined as,

θ̃d
ij =

θd
ij

∑j θ∞
ij

(14)
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Denote by ds an interval on the real line from the set of intervals D that from a
partition of the interval (−π, π), such that ∩dsεDds = φ, and ∪dsεDds = (−π, π), we have
θ∞

ij = mdsεDθds
ij . Based on the spillover measures proposed by Diebold and Yilmaz in 2014,

the overall spillover on frequency band d can be computed as,

CW
d =

1−
Tr
{

θ̃d

}
∑ θ̃d

× 100 (15)

where Tr{·} is the trace operator, and ∑ θ̃d denotes the sum of all elements of the θ̃d matrix.
CW

d only gives us the spillovers that occurs within the frequency band, and we refer to
CW

d as “within spillover”. To measure the contribution of a given frequency band d to the
aggregate measure, the “frequency spillover” is defined as,

CF
d = CW

d
∑ θ̃d

∑ θ̃∞
(16)

The “frequency spillover” decomposes the overall connectedness defined in Equation (5)
into distinct parts such that ∑ds∈D CF

ds
= C∞. Similarly, we can define for each variable i a

measure of variance contributed by variable j as,

Cd
ij =

N

∑
j=1,i 6=j

θ̃d
ij (17)

The directional connectedness on the spectral band d can be constructed as,

Tod
i =

N

∑
j=1,i 6=j

θ̃d
ji (18)

Fromd
i =

N

∑
j=1,i 6=j

θ̃d
ij (19)

and the net directional connectedness CNet
i and net pairwise connectedness CNet

ij can be
computed as,

CNet
i = Tod

i − Fromd
i (20)

CNet
ij = θ̃d

ji − θ̃d
ij (21)

3. Data

This paper uses daily prices of renewable energy stocks, high-technology stocks, global
stock index, crude oil futures, EUA carbon futures and 10-year US Treasury note. Except
for the global stock index, which is obtained from the DataStream database, all other data
are obtained from the Bloomberg database. The total sample period is from 25 June 2008 to
9 June 2021, containing a total of 3261 observations.

3.1. Data Description

This paper selects The Wilder Hill New Energy Global Innovation Index (NEX) for
renewable energy stock prices. NEX is an equal-dollar-weighted index to track important
companies whose innovative technologies and services focus on generation and use of
cleaner energy, decarbonization, and efficiency. The NEX is the first and leading global index
for clean, alternative, and renewable energy. As of the second quarter of 2021, NEX covers
125 stocks from a variety of countries in the Americas, Europe, Asia, and other regions.
These companies operate in a variety of renewable energy sectors with the following
weights: Energy Conversion (16%), Energy Efficiency (13%), Energy Storage (16%), Biofuels
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and Biomass (9%), Solar Energy (4%), Wind Energy (24%), and Others (18%) [39]. NEX is
widely used in research on renewable energy stocks performance [5,14,18]. We believe that
NEX is a good proxy for the financial performance of global renewable energy companies
due to its extensive coverage area and diversified sectors.

Some existing studies have found that the technology company stock is an important
factor influencing the stocks of renewable energy companies [4,5,9,12]. This paper considers
that the stock prices of technology companies is a factor that cannot be ignored in the
research of renewable energy companies. For the stock prices of technology companies, we
select The NYSE Arca Tech 100 Index (PSE). The NYSE Arca Tech 100 Index is designed
to provide a benchmark for measuring the performance of technology-related companies
operating across a broad spectrum of industries. The index is a price-weighted index
comprised of common stocks and American Depository Receipts (ADRs) of technology-
related companies listed on US exchanges. Companies from different industries that
produce or deploy innovative technologies to conduct their business are considered for
inclusion. Leading companies are selected from several industries, including computer
hardware, software, semiconductors, telecommunications, data storage and processing,
electronics, media, aerospace and defense, health care equipment, and biotechnology [40].

As for carbon price, this paper selects the future prices of European Union Allowances
(EUAs) of European Union (EU) Emission Trading Scheme (ETS). ETS is a cap-and-trade
scheme first introduced in EU to promote carbon emission mitigation and the development
of renewable energy technology, and has received attention in recent years on the research
of renewable energy stock prices [5,6,21].

For global stock price index, this paper selects the MSCI World index. The MSCI World
index is a broad global equity benchmark designed to represent performance of the full
opportunity set of stocks. As of July 2021, It covers more than 1559 securities across large
and mid-cap size segments and across style and sector segments in 23 developed [41]. As
of 30 June 2020, the MSCI World index includes countries and their respective weights as
follows, the US (65.53%), Japan (7.96%), the UK (4.41%), France (3.41%), Switzerland (3.32%),
Canada (3.13%), Germany (2.90%), Australia (2.11%), Netherlands (1.35%) and Others
(Austria, Belgium, Denmark, Finland, Hong Kong, Ireland, Israel, Italy, New Zealand,
Norway, Portugal, Singapore, Spain, Sweden, and etc., accounting for 5.96%) [42].

Oil futures are the world’s most widely traded physical commodity and form the
benchmark for the oil market. Abundant studies have shown that there is a close relation-
ship between crude oil prices and renewable energy stock prices. This paper selects The
West Texas Intermediate (WTI) Crude oil Futures Contract and The Brent Crude Oil Futures
Contract. They are currently the two most important benchmarks in international crude oil
trade, and financial participants and corporate traders in the United States and Europe are
very active in the Brent and WTI crude oil futures markets.

Some studies have found that bonds are negatively correlated with stock prices and
are effective hedge assets for stocks [6,43]. For bond prices, this paper selects The daily
closing price of The 10-year US Treasury note futures contract on New York Stock Exchange.

3.2. Preliminary Analysis

All price data are converted to returns by taking log differences. Referring to previous
studies, price volatility is calculated as the absolute values of returns [29,44–46].

Table 1 shows the descriptive statistics of the price returns and price volatility, respec-
tively. It can be seen from Table 1 Panel A that the expected value of NEX price return is
positive, but close to 0, indicating that the renewable energy stock price generally shows a
slight upward trend. The standard deviation of carbon futures price returns is the largest,
which indicates that the carbon market is more volatile. The standard deviations of oil
futures, bond prices and carbon futures are higher than those of the NEX, MSCI World
and PSE indices, suggesting that investing in the former three assets is riskier than the
latter three assets. Table 1 Panel B shows that the volatility of crude oil futures, bond prices,
and carbon futures prices have higher expectations than the remaining three assets, which
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is consistent with the higher risk of investment in crude oil futures, bonds and carbon
futures shown in Table 1 Panel A. The Jarque–Bera test indicates that all sample variables
are deviating significantly from normality.

Table 1. Descriptive statistics of price returns and price volatilities.

NEX MSCI PSE WTI Brent EUA 10 YTN

Panel A: Descriptive statistics of price returns
Mean 0.003143 0.022832 0.054781 −0.01991 −0.0189 0.020422 −0.03222

Median 0.084921 0.076576 0.107949 0.06152 0.060356 0 −0.0912
Max. 12.07055 9.096657 10.0988 31.96337 19.0774 23.92297 40.59273
Min. −12.5407 −10.4412 −12.7364 −60.1676 −37.3399 −43.2421 −34.1459

Std. Dev. 1.555478 1.136851 1.379505 3.022231 2.485705 3.171374 3.037656
Skewness −0.59983 −0.81959 −0.4746 −2.22029 −1.3013 −0.8433 0.157663
Kurtosis 11.82942 15.47495 11.83082 66.39399 27.25795 18.09607 34.4649

Jarque-Bera 10,788.19 21,510.56 10,718.41 548,733.5 80,875.71 31,351.25 134,535.2

Panel B: Descriptive statistics of price volatilities
Mean 1.026961 0.720181 0.921661 1.815187 1.615483 2.181937 1.987256

Median 0.691197 0.464433 0.623592 1.205132 1.037256 1.583906 1.449854
Max. 12.54068 10.44119 12.73636 60.16758 37.33993 43.24209 40.59273
Min. 0 0.000229 0 0 0 0 0

Std. Dev. 1.168139 0.879848 1.027773 2.41627 1.889048 2.301244 2.297389
Skewness 3.29492 3.788933 3.218894 7.933581 4.88873 3.998018 6.243861
Kurtosis 20.35099 26.07892 21.16342 135.0959 60.18791 43.82444 78.66341

Jarque-Bera 46,806.62 80,174.46 50457.83 2405138 457362.8 235141.4 799,066.6

4. Empirical Results
4.1. Connectedness Analysis in Time Domain
4.1.1. Static Connectedness Analysis

Using the empirical methodology in Section 2, we obtain the connectedness matrix of
price return and price volatility system exhibited in Table 2.

Table 2. Static connectedness matrix over the full sample period.

NEX MSCI PSE WTI Brent EUA 10 YTN From

Panel A: price return system
NEX 36.01 25.88 20.94 5.20 6.30 1.77 3.90 63.99
MSCI 22.93 31.87 25.23 5.57 6.73 1.42 6.25 68.13
PSE 19.94 28.33 35.58 3.90 4.88 1.10 6.28 64.42
WTI 6.05 7.59 4.73 43.05 32.78 1.87 3.92 56.95
Brent 6.90 8.55 5.44 31.86 41.48 1.90 3.86 58.52
EUA 4.22 3.96 2.72 3.79 4.26 79.97 1.08 20.03

10 YTN 7.06 12.57 10.52 4.81 5.56 0.67 58.82 41.18
To 67.1 86.88 69.58 55.13 60.51 8.73 25.29 TSI =

53.32%Net 3.11 18.75 5.16 −1.82 1.99 −11.3 −15.89

Panel B: price volatility system
NEX 46.12 27.82 15.56 2.41 3.19 0.45 4.43 53.88
MSCI 24.07 38.46 23.47 3.06 4.13 0.46 6.34 61.54
PSE 17.13 28.67 40.33 2.80 3.51 0.43 7.13 59.67
WTI 5.04 8.02 5.59 44.92 30.04 0.39 6.00 55.08
Brent 5.79 8.69 5.46 31.11 44.30 0.26 4.39 55.7
EUA 1.08 1.86 1.37 0.64 0.52 92.72 1.82 7.28

10 YTN 5.06 9.96 8.64 4.19 5.30 0.42 66.42 33.58
To 58.17 85.02 60.09 44.21 46.69 2.41 30.11 TSI =

46.68%Net 4.29 23.48 0.42 −10.87 −9.01 −4.87 −3.47
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The total spillover index of the return system is 53.32% as presented in Table 2 Panel A,
which indicates that on average, 53.32% of the return changes of variables in the system are
caused by other variables. A higher spillover index indicates that the system has a strong
spillover effect of price returns, and the price returns of these markets are closely correlated.
By comparing the data of the From column and To row corresponding to each market, it
can be seen that the directional spillover of NEX, MSCI World index and PSE rank the top
three, indicating that these three markets interact with the system more actively and have
stronger information spillover in the system. According to the results of net spillovers,
NEX, PSE and Brent crude oil markets are net information transmitters, but Brent has a low
net spillover, while WTI crude oil market and carbon trading market are net information
receivers. According to Table 2 Panel B, the total spillover index of price volatility system
is 46.68%, which is slightly lower than that of price return system, but it shows that price
volatility system still has strong risk spillover effect. The directional spillovers received
by NEX, MSCI, PSE, WTI, and Brent from the price volatility system are 53.88%, 61.54%,
59.67%, 55.08% and 55.7%, respectively, which are all lower than the spillovers they receive
in the price return system. NEX, MSCI, PSE, WTI, and Brent all receive more than 50% of
directional spillovers from the price volatility system, meaning that the volatility spillover
effect is relatively strong among these markets, which indicates from a system perspective,
the contagion of investor sentiment between these markets is relatively strong. NEX and
PSE remain net information transmitters, while Brent oil market, WTI oil market and carbon
trading market are net information receivers.

As shown in Table 2 Panel A, the self-explanatory power of NEX is low at 36.01%. The
volatility of NEX price returns is mainly explained by other variables, among which the
MSCI World index makes the largest contribution at 25.88%. Second is PSE at 20.94%, which
is much higher than WTI and Brent, which contribute 5.20 and 6.30%, respectively. This is
consistent with the findings of Henriques and Sadorsky et al., that renewable energy stocks
are more closely correlated with technology stocks than crude oil prices [4,12]. 19.94% of
the price return changes of PSE can be explained by NEX, second only to MSCI World index,
which also shows the close relationship between renewable energy stocks and technology
stocks. The contributions of EUA to the price changes of both NEX and PSE are the lowest
at 1.77 and 1.10%, respectively. For EUA, its self-explanatory power is high at 79.97%,
meaning that only 20.03% is explained by other variables. The largest contributor is Brent
at 4.26%, probably because Brent crude oil in Europe has a greater impact on companies
in the European carbon trading market. The next contributors are NEX and MSCI World
index, which is consistent with the conclusion of Berta et al. on the financialization of
carbon trading markets [47]. Table 2 Panel B shows that for NEX, its self-explanatory
power is higher than it in the price return system. MSCI and PSE are the two variables that
contribute the most to the NEX spillover with 24.07 and 17.13%, respectively, indicating
that there are high risk spillovers between MSCI and NEX, as well as between PSE and
NEX. The connectedness between WTI and NEX and the connectedness between Brent
crude oil futures and NEX are 2.41 and 3.19%, respectively. This is much lower than the
connectedness between PSE and NEX, indicating that the volatility in the crude oil market
creates much less uncertainty in the renewable energy stock market than technology stock
prices. Compared with the price return system, EUA has higher self-explanatory power in
the price volatility system, and only 7.28% of its price volatility can be explained by the
changes in the price volatility of other variables. This suggests that the uncertainty in the
carbon trading market stems mainly from the volatility of the carbon price, rather than the
renewable energy stocks, technology stocks or crude oil market.

The net pairwise spillover between variables is calculated according to Equation (9),
and the results are shown in Figure 1. As shown in Figure 1a, MSCI is an information
transmitter for all other variables, which indicates that it has some leading effect on other
variables. NEX is a net information receiver for PSE, but a net information transmitter for
WTI as well as Brent, indicating that the impact of technology stocks on renewable energy
stocks is greater than the impact of renewable energy stocks on technology stocks, and
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the impact of renewable energy stocks on crude oil futures is greater than the impact of
crude oil futures on renewable energy stock companies. This means that renewable energy
companies need to pay more attention to the overall stock market and technology company
stocks than to crude oil futures. Renewable energy stocks and technology stocks are net
information transmitters for the carbon trading market. The net spillover of renewable
energy stocks to the carbon trading market is larger, and this slight difference may be due to
the fact that the PSE index is not able to cover a sufficient number of companies participating
in the European carbon trading market. As shown in Figure 1b, the NEX remains a net
information transmitter for WTI and Brent crude oil futures in the price volatility system.
In contrast with the price return system, the NEX becomes a net information transmitter
for PSE, suggesting that risks in the renewable energy stocks market can affect uncertainty
in the crude oil futures market and the technology stocks market.

Figure 1. The net pairwise connectedness over the full sample. (a) Price Return System. (b) Price
Volatility System. (Note: In the figure, blue nodes represent net information receivers, and orange
nodes represent net information transmitters. The heavier the color is, the stronger the overflow
is. The bands between the nodes represent the direction of pairwise connectedness, with orange
representing the outflow of spillovers and blue representing the inflow of spillovers. If the width of
the band is larger, the connectedness is higher.).

4.1.2. Dynamic Connectedness Analysis

To study how the system connectedness changes over time, we introduce the rolling
window method to research the connectedness of price return system and price volatility
system, respectively. We select a window length of 250 observations, because 250 obser-
vations roughly correspond to one natural year. In subsequent robustness tests, we prove
that the selection of window length does not change the results of the empirical study.
The total spillover indices of the price return system and the price volatility system are
shown in Figure 2. The date in the figure is the last day of each subsample. Taking the data
corresponding to 23 June 2009 as an example, it represents the total spillover index from
25 June 2008 to 23 June 2009. Figure 2 suggests that the total spillover indices for both the
return and volatility systems have time-varying features. The range of the spillover indices
for both systems is relatively close and both are at a high level, which indicates a strong
information spillover effect between variables. The difference is that in most cases, the total
spillover index of the return system is slightly higher than that of the volatility system, and
the total spillover index of the return system is smoother, while the total spillover index of
the volatility system sometimes rises or falls sharply in a short period of time.
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Figure 2. Total connectedness with rolling windows in price return system and price volatility system.

Figure 2 shows that the indices of the two systems have similar trends. From the
second half of 2009 to the end of 2010, the total spillover index is at a high level, which
may be caused by the global financial crisis of 2008–2009. During the financial crisis,
investors in the stock market, bond market, and energy market believed that the market
was full of uncertainty, and thus became more sensitive to the news they received. This
leads to stronger information spillovers in the system. After that, the total spillover index
experiences a short-term decline, until the second half of 2011, the index begins to climb
continuously, and reaches a higher level in July 2012. The rising index at this stage may
be caused by the European debt crisis from 2010 to 2012. The European Debt Crisis began
with the Greek debt crisis at the end of 2009 and then spread to the entire Europe. As a
result, investors were not optimistic about the prospects of the European economy, and the
level of risk spillovers between markets is greatly increased. Our finding that the spillover
indices increase significantly during the recession of 2007–2009 and the European debt
crisis of 2010–2012 supports the view of Li and Yin, Krehlik and Barunik et al., that when
financial markets are in turmoil, the interaction between commodity markets and financial
markets will be dramatically enhanced [48,49]. After the European debt crisis, the spillover
index shows a trend of gradual decline in the following two years.

From the second half of 2014 to the second half of 2016, there is long-term increase in
the spillover index. This is because starting from the second half of 2014, global crude oil
prices fell sharply due to factors such as the increase in global crude oil supply, the slow-
down in crude oil demand growth, the appreciation of the US dollar, and the weakening of
speculative demand. One possible explanation is that volatility in the oil market risk to
financial markets. This is in line with the previous research of Salisu and Oloko, Du and
He et al., that the oil market volatility will produce spillovers to the stock market [50,51].
The spillover index begins to decline in the second half of 2016 and reaches a lower level in
the second half of 2017. This may be because the world economy has been recovering, but
at a slower pace. Starting from the second half of 2017, the total spillover index indicates a
moderate upward trend, which may be due to the overall good recovery trend of the global
economy in 2017–2018.

In February 2020, the COVID-19 pandemic has gradually spread around the world,
causing a huge impact on the global economy. The financial markets and commodity
markets were full of uncertainty and fear, and the transmission of information between
markets has become more active. The total spillover index also increases rapidly from this
period and remains at a high level until early 2021. Starting in 2021, due to strong policy
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support, effective vaccination and the gradual recovery of economic activities, the global
economy has begun to slowly recover, and the total spillover index has fallen to a low level.

To acquire more findings from the study of dynamic connectedness, we analyze the
data of dynamic connectedness in the price return system and price volatility system,
respectively, and the results are shown in Table 3. We calculate the expected value and
standard deviation of received spillover, transmitted spillover, and net spillover for each
market, respectively, as well as the percentage of net spillover when it is positive. In Table 3
Panel A and Panel B, the proportions of net connectedness of NEX, MSCI and PSE all
exceed 50%, indicating that these three are net information transmitters of the system in
most cases, which is also in line with the conclusion of static connectedness analysis.

Table 3. Summary statistics of dynamic connectedness.

From To Net Proportion

Panel A: price return system
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

NEX 9.34 0.97 9.75 1.74 0.40 0.99 67.20%
MSCI 9.81 0.73 12.27 1.55 2.46 1.13 99.90%
PSE 9.37 0.74 10.54 1.28 1.17 1.07 92.10%
WTI 8.76 1.11 8.57 2.01 −0.19 1.83 44.12%
Brent 8.72 1.10 8.56 1.32 −0.15 0.84 45.39%
EUA 4.84 2.04 2.89 1.15 −1.95 1.26 1.16%

10 YTN 6.72 1.89 4.97 2.07 −1.74 1.25 2.99%

Panel B: price volatility system
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

NEX 7.61 1.37 7.73 2.37 0.12 1.62 50.07%
MSCI 8.68 1.01 10.68 2.02 1.99 1.56 96.08%
PSE 8.20 1.18 8.55 1.56 0.35 1.27 63.18%
WTI 7.62 1.10 7.80 2.46 0.17 2.45 49.34%
Brent 7.64 1.05 7.43 1.42 −0.21 1.29 40.31%
EUA 3.84 1.66 2.81 1.61 −1.03 1.93 18.56%

10 YTN 5.49 1.91 4.10 2.00 −1.40 1.30 6.21%

Note: “Proportion” refers to the share of positive value of net connectedness in the total net directional connectedness.

The summary statistics of the pairwise connectedness between renewable energy
stocks with other markets are shown in Table 4. Table 4 Panel A shows that in the price
return system, the proportion of NEX as net information transmitter for PSE is only 23.44%,
which means PSE is a net information transmitter to NEX in most of the time, and the
change of returns in the technology stocks market have a great impact on the returns in
the renewable energy stocks market. The proportions of NEX as net information trans-
mitter to WTI and Brent reach 83.37 and 85.03%, respectively, indicating that crude oil
market basically does not play a leading role in the renewable energy stocks market, which
is consistent with the conclusion of our static research. As shown in Table 4 Panel B,
PSE is also a net information transmitter for NEX in most cases under the price volatil-
ity system, indicating that uncertainty in the technology stocks market generates a risk
spillover to the renewable energy stocks market. In the price volatility system, for crude oil
markets, the percentage of NEX being a net information transmitter is slightly over 50%
(56.91 and 58.47%, respectively). It shows that although renewable energy stocks have a
certain leading role in the crude oil markets, the crude oil market is a key risk source that
the renewable energy stocks market needs to focus on.
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Table 4. Summary statistics of pairwise connectedness between renewable energy stocks and
other variables.

NEX-MSCI NEX-PSE NEX-WTI NEX-Brent NEX-EUA NEX-10YTN

Panel A: price return system
Mean −0.43 −0.24 0.19 0.17 0.38 0.33

Std. Dev. 0.24 0.33 0.34 0.20 0.28 0.30
Proportion 0.23% 23.44% 83.37% 85.03% 91.93% 94.02%

Panel B: price volatility system
Mean −0.48 −0.12 0.06 0.09 0.25 0.33

Std. Dev. 0.34 0.35 0.51 0.36 0.38 0.40
Proportion 2.06% 32.20% 56.91% 58.47% 81.57% 82.14%

Note: “Proportion” refers to the share of positive value of net pairwise connectedness between NEX with another
variable in the total net pairwise connectedness between these two variables.

4.2. Connectedness Analysis in the Frequency Domain

To study the frequency dynamics of the connectedness, we set four frequency bands
d1, d2, d3, d4 from high to low, and they correspond to time spans of one day to one week
(short term), one week to one month (medium term), one month to one year (medium to
long term), and over one year (long term).

4.2.1. Total Return and Volatility Connectedness

The total connectedness of return system and volatility system in different frequency
bands is shown in Figures 3a and 3b, respectively. We choose a rolling window with a width
of 250 observations and a forecast horizon of 100 observations. As shown in Figure 4, the
connectedness of the two systems in different frequency bands is time-varying. Figure 3a
shows that for price return system, the connectedness in the highest frequency band (d1) is
the highest. This shows that during the full sample period, the spillovers between markets
are mainly driven by information about price changes in the short term. However, the
spillover index during the COVID-19 pandemic has a different situation, and we will
examine this phase separately in the following. Figure 3b shows that, compared with the
price return system, the connectedness gap between different frequency bands in the price
volatility system is not as large as that in the price return system, and the connectedness
in the price volatility system is more volatile. This suggests that information related to
price volatility is more actively transmitted in the system between different markets than
information related to price return. In the price volatility system, the connectedness in the
highest frequency band (d1) is the highest. There are three periods in the figure where the
connectedness in d2, d3 or d4 exceeds that in d1. According to Figure 2, we find that these
three periods are exactly the periods when the total spillover index increases substantially
in a short period. Next, we will analyze these three time periods separately.

To take full advantage of the frequency decomposition method, we focus on the
connectedness decomposition during the European debt crisis from 2010 to 2012, the
international oil price decline from 2015 to 2016, and the COVID-19 pandemic in 2020.

The total connectedness of the return system and the volatility system during the
European debt crisis from 2010 to 2012 are shown in Figures 4 and 5, respectively. Figure 4b
shows that in the price return system, the connectedness at d1 is higher than that of other
bands, which indicates that during the European debt crisis, investors pay more attention
to the short-term information, that is, information about price returns within a week. As
shown in Figure 5b, connectedness within one year all shows varying degrees of decline,
while connectedness beyond one year increases sharply. Combined with Figure 5a, we
find that the growth of total connectedness during this period is mainly due to the growth
of long-term spillovers. This suggests that European debt crisis has changed investors’
long-term expectations of systemic volatility.
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Figure 3. Total connectedness at different frequency bands in price return system and price volatility
system. (a) Price Return System. (b) Price Volatility System.

Figure 4. Total spillover of the price return system during the European debt crisis. (a) total return
spillover. (b) frequency decomposition of return spillover.

Figure 5. Total spillover of the price volatility system during the European debt crisis. (a) total
volatility spillover. (b) frequency decomposition of volatility spillover.
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The total connectedness of the return system and the volatility system during the
international oil price decline in 2015–2016 are shown in Figures 6 and 7, respectively.
Figure 6b shows that in the price return system, the connectedness at d1 is the highest.
which suggests that the high-frequency price return information was a major concern for
investors during the 2015–2016 international oil price decline. Figure 7b shows that in the
price volatility system, the spillovers generated within one week experience two sharp
declines. In the period corresponding to these two declines, spillovers generated over
a period of one month to one year, or more than one year, have experienced significant
increases. This indicates that the sharp increase in the total spillover index shown in
Figure 7a is mainly driven by medium to long term and long-term connectedness. This
may be because the uncertainty in the oil market during the oil price crash significantly
increased the long-term volatility of the system.

Figure 6. Total spillover of the price return system during the 2015–2016 oil price decline. (a) total
return spillover. (b) frequency decomposition of return spillover.

Figure 7. Total spillover of the price volatility system during the 2015–2016 oil price decline. (a) total
volatility spillover. (b) frequency decomposition of volatility spillover.
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The total connectedness of the return system and the volatility system during COVID-
19 pandemic are shown in Figures 8 and 9, respectively. By comparing Figure 8a,b, we
observe that most of the total spillovers of the price return system during this period occur
within one week. As shown in Figure 8b, the spillovers generated over a period of more
than a week all rise to varying degrees, which is due to the change in market investors’
expectations of price returns over a period of more than a week as a result of the impact of
the pandemic. Comparing Figure 9a with Figure 9b, we see that the total spillover index
experiences two increases in early March and mid-April, during which connectedness at d1
falls significantly, while connectedness at all other bands increases to varying degrees. This
shows that the increases of total spillovers in these two time periods are mainly caused by
spillovers in more than one week. This is because the pandemic has had a far-reaching
impact on the uncertainty of the market.

Figure 8. Total spillover of the price return system during COVID-19. (a) total return spillover.
(b) frequency decomposition of return spillover.

Figure 9. Total spillover of the price volatility system during COVID-19. (a) total volatility spillover.
(b) frequency decomposition of volatility spillover.
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4.2.2. Net Directional Return and Volatility Connectedness

We present summary statistics on the net connectedness in price return and price
volatility system in different frequency bands, as shown in Table A1. It is worth noting
that in the price return system, NEX plays different roles in different frequency bands.
The proportion of NEX as the net information transmitter of the system is 81.71% at
d1, much higher than the 17.96, 21.85 and 25.46% at d2, d3 and d4. This shows that at
the high frequency band, NEX is the net information transmitter, while in other lower
frequency bands, NEX is the net information receiver. By comparing Figure 10a,b, it
can also be found that the net connectedness of NEX is mainly driven by short-term net
connectedness. This may be because investors tend to take renewable energy stocks as a
short-term investment asset, as investors are more concerned about the change in returns
of renewable energy stocks within the week. In the price volatility system, NEX also plays
different roles at different frequency bands. At d3 and d4, the proportion of NEX as the net
information transmitter of the system is 65.77 and 67.30%, respectively, while at d1 and d2,
the proportion of NEX as the net information transmitter of the system is 38.71 and 41.27%,
respectively. By comparing Figure 11a,b, we observe that during the 2007–2009 financial
crisis, European debt crisis, oil price decline and COVID-19, net connectedness is mainly
driven by connectedness at d4, which suggests that macroeconomics or financial markets
have a profound effect on the net connectedness of NEX in price volatility system.

Figure 10. Net directional connectedness of NEX in the price return system. (a) net directional
connectedness. (b) frequency decomposition of net connectedness.

4.2.3. Pairwise Return and Volatility Connectedness

We analyze the pairwise connectedness between variables and summarize the statisti-
cal results as shown in Table 5.

In the price return system, the pairwise connectedness and frequency decomposition
between NEX and other variables are shown in Figure 12. MSCI is a net information
transmitter for NEX at all frequency bands, because the price return of renewable energy
stocks is closely related to the overall performance of the stock market. In the short term,
NEX is mostly a net information transmitter for PSE, while in the medium and medium to
long term, technology stocks are net information transmitters for renewable energy stocks.
This may be because in the short term, as an investment asset, the price return information
of renewable energy stocks has a greater impact on technology stocks, while in the medium
to long and long term, the development of renewable energy industry depends on the
development of related technologies. For WTI and Brent, in the short term, the proportion
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of NEX as a net information transmitter exceeds 80%, while in the medium, medium to
long, and long term, the proportion of NEX as a net information transmitter reaches about
50%. This shows that in the short term, the price return of crude oil futures hardly plays
a leading role in the price return of renewable energy stocks, but in the horizon of more
than one week, the price of crude oil futures still has a certain influence on the price of
renewable energy stocks. The connectedness between renewable energy stocks and carbon
trading markets is similar to that between renewable energy stocks and crude oil futures,
which means that within a week, the carbon price have a limited impact on renewable
energy stocks, while over a period longer than a week, the carbon price have some impact
on renewable energy stocks.

Figure 13 depicts the pairwise connectedness and frequency decomposition between
NEX and other variables in a price volatility system. As shown in Table 5 Panel B, in
the short term, MSCI is NEX’s net transmitter in more than 90% of the cases, and as the
time horizon increases, the proportion of NEX as a net transmitter increase. This shows
that with the increase of time range, the impact of the volatility of the renewable energy
stocks market on the global stock market cannot be ignored. The interaction between the
renewable energy stocks market and the technology stocks market is quite different in the
price volatility system and the price return system. In the short term, the volatility of the
renewable energy stocks market has a small impact on the technology stock market in the
price volatility system. As the time horizon expands, the proportion of renewable energy
stocks as net information transmitters for technology stocks gradually increases, and the
proportion of NEX as net information transmitters even exceeds 50% in the time horizon
of more than one month, which indicates that the uncertainty of the renewable energy
stocks market has a more significant impact on technology stocks as the time horizon
increases. For both WTI and Brent, the proportion of NEX as a net messenger is around 50%
at all frequency bands, suggesting that the uncertainty in the crude oil market is having
a non-negligible impact on the renewable energy stocks market. For the carbon trading
market, the proportion of NEX as a net transmitter exceeds 80% for a time horizon of one
week and is around 50% for a time horizon of more than one week, which indicatesthat the
volatility of the renewable energy stocks market has an important impact on the carbon
trading market.

Figure 11. Net directional connectedness of NEX in the price volatility system. (a) net directional
connectedness. (b) frequency decomposition of net connectedness.
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Table 5. Summary statistics on the pairwise connectedness of renewable energy stocks with other
variables at different frequency bands.

NEX-MSCI NEX-PSE NEX-WTI NEX-Brent NEX-EUA NEX-10YTN

Panel A: price return system

Proportion

day-week 5.44% 62.32% 83.80% 82.01% 95.39% 95.15%
week-month 8.93% 16.43% 40.04% 42.80% 46.38% 41.27%
month-year 13.75% 12.02% 50.73% 56.91% 45.25% 49.04%

over one year 15.47% 14.84% 51.73% 57.93% 46.61% 48.37%

Panel B: price volatility system

Proportion

day-week 8.03% 18.19% 52.89% 52.66% 82.64% 83.20%
week-month 31.37% 46.02% 45.78% 50.27% 56.51% 50.07%
month-year 53.62% 59.16% 59.56% 62.95% 55.21% 61.85%

over one year 55.35% 60.82% 59.66% 61.89% 52.09% 64.84%

Note: “Proportion” refers to the share of positive value of net pairwise connectedness between NEX with another
variable in the total net pairwise connectedness between these two variables.

Figure 12. Cont.
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Figure 12. Pairwise connectedness between NEX and other variables in price return system. (a) pair-
wise connectedness between NEX and MSCI. (b) frequency decomposition of pairwise connectedness
between NEX and MSCI. (c) pairwise connectedness between NEX and PSE. (d) frequency decompo-
sition of pairwise connectedness between NEX and PSE. (e) pairwise connectedness between NEX
and WTI. (f) frequency decomposition of pairwise connectedness between NEX and WTI. (g) pairwise
connectedness between NEX and Brent. (h) frequency decomposition of pairwise connectedness
between NEX and Brent. (i) pairwise connectedness between NEX and EUA. (j) frequency decompo-
sition of pairwise connectedness between NEX and EUA. (k) pairwise connectedness between NEX
and 10YTN. (l) frequency decomposition of pairwise connectedness between NEX and 10YTN.
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Figure 13. Cont.
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Figure 13. Pairwise connectedness between NEX and other variables in price volatility system.
(a) pairwise connectedness between NEX and MSCI. (b) frequency decomposition of pairwise con-
nectedness between NEX and MSCI. (c) pairwise connectedness between NEX and PSE. (d) frequency
decomposition of pairwise connectedness between NEX and PSE. (e) pairwise connectedness be-
tween NEX and WTI. (f) frequency decomposition of pairwise connectedness between NEX and WTI.
(g) pairwise connectedness between NEX and Brent. (h) frequency decomposition of pairwise
connectedness between NEX and Brent. (i) pairwise connectedness between NEX and EUA. (j) fre-
quency decomposition of pairwise connectedness between NEX and EUA. (k) pairwise connectedness
between NEX and 10YTN. (l) frequency decomposition of pairwise connectedness between NEX
and 10YTN.
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4.3. Robustness Check

To test the robustness of our empirical results, we examine the sensitivity of the total
spillover index to different rolling window widths. Figure 14a,b depict the time-varying
total spillover indices for rolling window lengths of 200, 250, and 300 observations in the
price return system and price volatility system, respectively. From the figures, we can
see that with the increase of the window lengths, the total spillover indices lines become
smoother and the values become smaller, which may be because some spillovers in the
short term cannot be captured as the window lengths increase, but the time-varying trends
of the total spillover indices are consistent. We conduct robustness tests on connectedness
in the four frequency bands, respectively, and obtain the same results, indicating that the
empirical results of this paper are unaffected by window size selection.

Figure 14. Dynamic total connectedness with window widths of 200, 250, 300 observations. (a) Price
Return System. (b) Price Volatility System.

5. Conclusions and Discussion

The renewable energy sector has grown substantially over the past decades, which
makes the renewable energy stocks become an investment asset attracting growing atten-
tion. Thus, the relationship between renewable energy stocks and other investment assets
has aroused wide interest of scholars, policy makers and market investors. To obtain the
frequency dynamics of spillovers between renewable energy stocks and other energy or
financial assets, this paper employs the connectedness method proposed by Barunik and
Krehlik (2018) to study the price return and price volatility connectedness among renewable
energy stocks, global stock index, technology stocks, crude oil futures, carbon allowances,
and the 10-year US Treasury note both in time and frequency domains. Through empirical
research, this paper has the following main findings:

First, in the system composed of renewable energy stocks, technology stocks, crude oil
futures, and carbon allowances, both price return spillovers and price volatility spillovers
are high and are mainly driven by short-term (within one week) spillovers. This shows
that the information about price return and price volatility in the system is transmitted
quickly, and market participants process the information efficiently. On a longer time
horizon (more than one week), the markets in the system may be mainly affected by its
own fundamentals, rather than by prices of other markets in the system. Scholars such
as Wang and Wang, Cui et al., and Umar et al., who also adopted the approach proposed
by Barunik and Krehlik (2018) to study the volatility spillover in the system consisting of
energy and financial markets, have different views on whether the overall risk spillover
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occurs mainly in the short run or in the long run [24,52,53]. We believe that this may be
related to the type of energy sources selected and the different regions studied. However,
these studies all point out that the overall volatility spillover level of the energy market
or financial market increases significantly during periods of economic or financial market
turbulence, which is consistent with the findings of this paper.

Second, we find something new about renewable energy’s relationship with crude oil
or technology stocks, respectively. We find that we cannot simply generalize to which asset
renewable energy stocks are more strongly associated with but should instead consider
the frequency dynamics of the relationship between assets. Our study in the time domain
has similar finding to that of Sadorsky, Ahmad, Inchauspe et al. in that technology stocks
have a more significant impact on renewable energy stocks compared to crude oil [12–14].
However, through the study in the frequency domain, we find that renewable energy stocks
show a more complex relationship with the two at different time scales.

i. In the price return system, only in the short term, renewable energy has a significant
spillover effect on the price of crude oil. In longer time scales, the impact of crude
oil on renewable energy stocks is enhanced. In the price volatility system, crude oil
has certain influence on the risk of renewable energy stock market in all frequency
bands, which means that renewable energy stock investors need to pay attention to
the volatility of crude oil prices and adjust the asset allocation in their portfolios in a
timely manner. In addition, policy makers should improve the price mechanism of
the crude oil market to prevent the violent fluctuation of crude oil prices from having
a huge impact on the renewable energy financial market.

ii. In the price return system, renewable energy stocks have a significant spillover effect
on technology stocks in the short term, while technology stocks have a significant
spillover effect on the renewable energy over a time scale of more than a week. This
may mean that the long-term return of renewable energy is more strongly influenced
by the return of the technology industry, and it’s an effective way to achieve sustain-
able development of the renewable energy industry by promoting the progress of
science and technology. In the price volatility system, only in the short term, tech-
nology stocks have a significant impact on renewable energy stocks. In longer time
scales, the dominant role of technology stocks diminishes. For short-term investors,
including technology stocks and renewable energy stocks in the same portfolio may
increase investment risk.

Third, only in the short term, renewable energy stock prices have significant price
return spillover effect and price volatility spillover effect on carbon allowance prices. In
longer terms, renewable energy stock prices have limited influence on carbon allowances
prices while other factors such as energy prices, climate and policies may have a greater
impact. Therefore, short-term investors in carbon markets should pay more attention to
renewable energy stocks, while other investors may need to focus more on other energy
prices, climate, or policies. In addition, over a time scale of more than a week, the carbon
price has a certain impact on the return and risk of renewable energy stocks.

There are few studies on the relationship between the price of carbon allowances and
the volatility of renewable energy stock prices, such as those by Dutta et al., Xia et al., Lin
and Chen and Jiang et al., among which only Jiang et al. consider the time scale factor. Dif-
ferent from the wavelet method used by Jiang et al., by introducing a frequency-dependent
connectedness network model, we not only consider different time scales, but also study
the dynamic relationship between carbon prices and renewable energy stock prices.

Fourth, during the turmoil in the financial market, macro economy or energy market,
the price return and price volatility spillover effect of the system composed of renewable
energy stocks and other assets will become stronger, especially the volatility spillover
effect. This is consistent with previous finding that major crisis events enhance the risk
transmission between energy and financial markets [24,30,52,53]. During the European debt
crisis, the international oil price decline and the COVID-19 pandemic, the total volatility
spillover of the system has increased substantially, which is not caused by spillovers within
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one week, but by spillovers in longer time scales. This suggests that risk transmission
between renewable energy stocks and other assets has been profoundly affected.

This research has made new findings on the relationship between the renewable
energy and investment assets such as technology stocks, crude oil futures and carbon
allowances, which can not only provide reference for investors to manage risks and optimize
asset allocation strategies, but also provide suggestions for policy makers to promote the
development of renewable energy industry and maintain market stability. The limitation of
this paper is that it only analyzes the spillover results between renewable energy stocks and
other investment assets in different frequency domains, and lacks research on the hedging
ratio between different assets, which will be the focus of our further research.
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Appendix A

Table A1. Summary statistics of net pairwise connectedness between NEX and other variables.

Mean Std. Dev. Proportion

Panel A: price return system

day-
week

week-
month

month-
year

over
one
year

day-
week

week-
month

month-
year

over
one
year

day-
week

week-
month

month-
year

over
one
year

NEX 1.00 −0.44 −0.13 −0.03 1.01 0.49 0.19 0.07 81.71% 17.96% 21.85% 25.46%
MSCI 2.18 0.15 0.10 0.03 1.09 0.31 0.20 0.09 99.80% 65.80% 72.08% 73.41%
PSE 0.52 0.46 0.16 0.04 0.94 0.44 0.18 0.07 73.44% 86.75% 90.90% 86.85%
WTI −0.31 0.09 0.02 0.01 1.52 0.38 0.50 0.23 40.07% 63.31% 57.24% 58.80%
Brent −0.09 0.00 −0.05 −0.01 0.92 0.29 0.18 0.08 56.74% 48.54% 42.86% 42.20%
EUA −1.66 −0.19 −0.08 −0.02 1.04 0.31 0.24 0.08 1.23% 24.07% 34.59% 37.72%

10
YTN −1.63 −0.07 −0.03 −0.01 1.18 0.41 0.25 0.08 2.16% 40.54% 41.24% 44.09%

Panel B: price volatility system

day-
week

week-
month

month-
year

over
one
year

day-
week

week-
month

month-
year

over
one
year

day-
week

week-
month

month-
year

over
one
year

NEX −0.23 −0.07 0.21 0.20 0.63 0.43 0.69 0.77 38.71% 41.27% 65.77% 67.30%
MSCI 1.20 0.26 0.32 0.21 0.70 0.33 0.64 0.59 93.86% 82.64% 77.62% 77.46%
PSE 0.50 −0.05 −0.08 −0.03 0.64 0.31 0.54 0.55 78.15% 39.31% 45.92% 49.20%
WTI 0.08 0.09 0.00 0.00 0.80 0.50 0.93 1.15 55.38% 64.24% 44.65% 46.68%
Brent 0.07 −0.07 −0.11 −0.10 0.67 0.33 0.47 0.68 57.40% 43.29% 48.57% 45.32%
EUA −0.70 −0.08 −0.16 −0.09 0.93 0.32 0.63 0.96 18.43% 37.78% 36.19% 37.98%

10
YTN −0.92 −0.09 −0.20 −0.19 0.66 0.34 0.63 0.56 10.33% 42.70% 39.74% 34.03%

Note: “Proportion” refers to the share of positive value of net pairwise connectedness between NEX with another
variable in the total net pairwise connectedness between these two variables.
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