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Abstract: Economic load dispatch (ELD) provides significant benefits to the operation of the power
system. It appears to be a complex nonconvex optimization problem subject to several equal and
unequal constraints. The greedy sine-cosine nonhierarchical gray wolf optimizer (G-SCNHGWO)
is introduced in this study to solve complex nonconvex ELD optimization problems efficiently and
robustly. The sine and cosine functions assist the search agents of the grey wolf optimizer (GWO)
algorithm in avoiding trapping in a local optimum. In addition, the greedy nonhierarchical concept
is integrated into GWO to enrich the optimization power of the conventional GWO algorithm. Simu-
lations are implemented to validate the capability of the suggested algorithm in solving the different
ELD problems. According to the results, the algorithm demonstrates very suitable performance
compared to other state-of-the-art methods.

Keywords: economic load dispatch; sin-cosine function; optimization; grey wolf optimizer; power
system operation

1. Introduction

Optimal generation planning is an important topic to address in the operation of
power systems. One approach to such planning is solving the economic load dispatch
(ELD) problem to minimize the cost. The objective function of the ELD problem aims to
minimize the fuel cost while observing constraints and limits of generators, prohibited
operating zones (POZs), valve point effects (VPE), and power loss in the transmission
section [1].

Although significant progressive steps have been taken concerning renewable energy
sources (RESs), especially in the field of photovoltaics (PV) and wind turbines (WT), to
supply the demand, most of the demand is met using traditional thermal plants [2]. Thermal
units operate based on fossil fuels. One way to reduce the operation cost of such units is
to apply a suitable planning method and this is known as the ELD problem [3]. In this
problem, the power output of generation units (GUs) is scheduled in a planning horizon,
and the demand is supplied appropriately. Additionally, the operation limits of GUs and
the power system are observed simultaneously [4,5].

The ELD problem is nonlinear, non-smooth, nonconvex, and non-differentiable be-
cause of including the VPE, POZs, and multi-fuel (MF) conditions. Hence, the problem
becomes so complex that conventional techniques fail to find the global optimum [6,7].
The problem of ELD requires algorithms with superior exploration and exploitation ca-
pabilities [8–10]. Popular optimization algorithms inspired by the nature and behavior of
animals and plants have been incorporated in recent decades to solve ELD problems. Some
of the significant works are briefly reviewed in the following.

Many researchers have focused on developing new modifications to particle swarm
optimization (PSO) to solve ELD problems. PSO’s algorithmic simplicity and fast conver-
gence are its most attractive features. When applied to a strongly multi-modal optimization
problem, PSO tends to suffer premature convergence. PSO algorithms have been enhanced
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by incorporating a revalued mutation (RVM) operator to enhance global search capabil-
ity [11]. The Modulated Particle Swarm Optimization (MPSO) has been presented in [12]
by modulating the particle velocity of the conventional PSO. In [13], a new PSO (NPSO)
method was developed. Additionally, NPSO was coupled with a local random search
(LRS) procedure to explore the promising solution region. This new method allows for
a thorough exploration of the search space. A novel self-organizing hierarchical particle
swarm optimization (SOH_PSO) of nonconvex ELD problems has been proposed in [14] for
treating premature convergence. The HICA-PSO method, which uses a combination of the
imperialist competitive algorithm (ICA) and imperative stochastic optimization (PSO), can
determine the feasible optimal solution to the nonconvex economic dispatch (ED) problem
by taking into account valve loading effects [15]. A new PSO, called IODPSO-G, is pro-
posed in [16] for addressing nonconvex/non-smooth problems in singles and multi-areas.
A chaotic tent map was used to adapt the acceleration coefficients to improve the proposed
algorithm’s robustness and global search capabilities. A challenge with the PSO-based
methods is determining the control parameters for solving the optimization problems.

The differential evolution (DE) algorithm has been improved using other metaheuris-
tics in hybridization. For example, the hybridization of harmony search (HAS) and DE algo-
rithms (called CSADHS) [17], improved DE (IL-SHADE) [18], a hybrid continuous GRASP
and DE algorithms (C-GRASP–SaDE) [19], a hybridization of DE and PSO (DEPSO) [20], a
neighborhood search-driven accelerated BBO (aBBOmDE) [21] have been applied to solve
ELD problems. The low convergence speed and computational complexity are the main
drawbacks of DE-based optimization algorithms.

Teaching-learning-based optimization (TLBO) has shown to be an efficient solution to
such complex problems, according to the authors of [22]. In [23], the TLBO’s convergence
characteristic has been improved by integrating the learning phase into the teaching phase.
Up to five students have considered interacting with each other to enhance the local optima
avoidance feature of TLBO. In [24], a new method to estimate the Lévy flight in chaotic
teaching-learning-based optimization (CTLBO) has been developed. A penalty function
was incorporated into this method to address the constraints.

The cuckoo search algorithm (CSA) [25] and its variants have been applied to solve
the ELD problems. A clustering cuckoo search optimization (CCSO) [26], an improved
version of the cuckoo optimization algorithm (θ-ICO) [27], and one rank cuckoo search al-
gorithm (ORCSA) [28] are some examples of improved SCA-based optimization algorithms.
Based on the social behaviors of spiders and humans, a new social spider optimization
(ISSO) [29], a modified social spider algorithm (MSSA) [30], and social optimization algo-
rithm (SOA) [31] have been analyzed in solving nonconvex ELD problems.

Other significant kinds of population-based metaheuristic algorithms that were re-
cently developed to solve the ELD problems, whose results are compared with the proposed
method, are listed below.

An effective algorithm is based on Franklin’s and Coulomb’s laws theory (CFA op-
timizer) [32], a civilized swarm [33], a multi-strategy ensemble biogeography-based op-
timization (MSEBBO) [34], an improved genetic algorithm (IGA) [35], exchange market
algorithm [36], bacterial foraging optimization (BFO) [37], a continuous quick group search
optimizer (CQGSO) [38], biogeography-based optimization (BBO) [39], a modified chaotic
artificial bee colony (MABC) [40], a fully decentralized approach (DA) [41], an evolutionary
simplex adaptive Hooke–Jeeves algorithm (ESAHJ) [42], a new disruption based symbiotic
organisms search (DSOS) [43], heat transfer search (HTS) algorithm [44], a new firefly algo-
rithm via non-homogeneous population (NhFA-Rnp) [45], an improved Jaya algorithms
IJaya [46], Jaya algorithm with self-adaptive multi-population and Lévy flights (Jaya-
SML) [47], a new and effective adaptive charged system search algorithm (ACSSA) [48], a
powerful full mixed-integer linear programming (FMILP) model [49], a granular comput-
ing method (GrC) [50], an improved chicken swarm optimization (ICSO) [51], a modified
ion-motion and crisscross search optimizer (C-MIMO-CSO) [52], a new and powerful
consensus-based distributed algorithm (CDA) [53], an improved Big Bang–Big Crunch
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optimization (HBB-BC) [54], ray optimization (RO) algorithm [55], orthogonal learning
competitive swarm optimizer (OLCSO) [56], θ-modified bat algorithm (θ-MBA) [57], ant
lion optimization algorithm (ALO) [58], an improved firefly algorithm (IFA) [59], real-coded
genetic algorithm (RCGA) [60], several new hybrid algorithms [61], a synergic predator-
prey optimization (SPPO) [62], a distributed auction based algorithm (AA) [63], a simplified
swarm optimization algorithm (SSOA) [64], a new honey bee mating optimization (CI-
HBMO) [65], and krill herd algorithm (KHA-I to KHA-IV) [66].

The gray wolf optimization algorithm (GWO) [67] has gained the attention of scholars
because of its magnificent features. For instance, in [68], the grey wolf optimizer (GWO)
has been improved with crossover and mutations, thus enhancing the performance of
conventional GWO. Four economic dispatch problems were solved in this work, including
prohibited operating zones, valve point loading, and ramp rate limit constraints. The
ELD problem with static and dynamic load conditions has been solved in [69] using GWO
without improving the algorithm’s performance. Nonetheless, as GWO works based on
three members with the best values of the objective functions, it may be trapped in local
optima. Its application in practical systems will be limited because the diversity of the
population becomes lost [70].

The shortcomings of the previous algorithm proposals can be broadly divided into
three types. In the first category, control parameters are numerous and computational
complexity is high, so they are time-consuming and complex to use, like PSO-based
algorithms. Unlike the first category, the second category has a low convergence rate, so it
takes longer to achieve an acceptable response range, such as DE-based algorithms. The
third group cannot reach a satisfactory outcome and is stuck in optimal local solutions
such as gray wolf and cosine sinus. Like the gray wolf, some methods also have these
drawbacks simultaneously.

In this paper, a modified sine-cosine function [71] is used to address this defect; this
enables a more robust exploration capability of the original greedy nonhierarchical GWO
(G-NHGWO); a counter monitors the convergence of the algorithm in order to identify traps
when convergent convergence occurs. Next, a learning strategy based on the sine-cosine
algorithm is used to find the tuned data of three randomly chosen wolves. It is possible
to guide the population to avoid being trapped in the local optimum. Our proposed
method in a comparative study has shown that all three defects have been significantly and
effectively eliminated.

The great importance of the ELD problem and the incredible complexity of this issue
has made us always look for a more robust and faster way to achieve the best choice for the
system under study. Therefore, in this article, following the progress of previous work, we
have proposed a simple and effective method obtained by combining two very new and
well-known algorithms. The proposed method provides a significantly wider population
diversity than the basic algorithm; hence, the chance of avoiding the trapping in the local
optimal is increased considerably. It also is applied to solve different ELD problems, where
different kinds of fuel, POZs, and power loss on transmission lines are considered.

The organization of the paper is summarized here. Section 2 formulates the ELD
problem. Section 3 introduces the GWO and G-SCNHGWO algorithms while presenting
the latter’s flowchart. The procedure of G-SCNHGWO for problem-solving is presented in
this section as well. Section 4 provides simulation results and the related discussion. In the
end, a summary of conclusions is presented in Section 5 of the paper.

2. Formulation of ELD Problem

An ELD problem tries to perform unit commitment while being subject to some non-
linearity limits relevant to the system and power plants. Noting that the objective function
used in this problem cannot be differentiated and has a nonconvex nature, traditional
algorithms based on gradient fail to solve it [72,73].
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2.1. Cost Function

Equation (1) describes the fuel cost function-which should be minimized-used in the
objective function of the ELD problem [74]:

Min FC =
N

∑
i=1

Fi(Pi) =
N

∑
i=1

(aiP2
i + biPi + ci) (1)

where N represents the number of generation units, and Pi denotes the output power of
unit i. Cost coefficients ai, bi, and ci are constants and vary concerning generators.

Cost function (1) can be modified as (2) to incorporate the effects of valve points
are considered, where the absolute value of a sinusoidal term and the cost function are
summed up:

FC =
N

∑
i=1

(
aiP2

i + biPi + ci + |ei sin( fi[Pi,min − Pi])|
)

(2)

Pi,min shows the lower boundary for output power of generator i, and ei and fi denote the
effects of valve points of that generator. An optimal plan of units may help reduce power
generation costs and enhance the security and efficiency of the power system.

In the cases several types of fuels are adopted for fueling generation units, the cost
function can be established using different quadratic equations. Each of the equations is
related to one specific type of fuel. Equation (2), as per this fact, is rewritten, as given in
(3) [75–78]. In (3), aik, bik, and cik are cost coefficients of generation unit i for fuel type k. eik
and fik show the coefficients related to valve point effect of generation unit i for fuel type k.

Fi(Pi) =


ai1P2

i + bi1Pi + ci1 + |ei1 sin( fi1[Pi,min − Pi])|; Pi,min ≤ Pi
ai2P2

i + bi2Pi + ci2 + |ei2 sin( fi2[Pi,min − Pi])|; Pi2 ≤ Pi ≤ Pi2
...

...
aikP2

i + bikPi + ci1 + |eik sin( fik[Pi,min − Pi])|; Pik−1 ≤ Pi ≤ Pi,max

(3)

2.2. Constraints of the Problem

System and generation units impose limitations and constraints on the ELD prob-
lem [75,76] presented in the following subsections.

2.2.1. Power Balance

Power balance is an equality constraint, stating that the sum of the power output of all
generation units must be equal to the power demand on the consumer side and the power
loss [75,76]:

N

∑
i=1

Pi = PD + PL (4)

PD is the total demand and PL shows the power loss of the network, which can be calculated
as follows:

PL =
N

∑
i=1

N

∑
h=1

PiBihPh +
N

∑
i=1

B0i + B00 (5)

In this equation, Pi and Ph represent the power injection into buses i and h, respectively.
Additionally, Bih, B0i, and B00 are matrices of coefficients used for finding PL.

2.2.2. Active Power Limit

The output power of generator i is limited by its lower, Pi,min, and upper, Pi,max,
boundaries, which is expressed as follows:

Pi,min ≤ Pi ≤ Pi,max (6)
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Such limits prevent the generation units with expensive and inexpensive units from
producing less and higher power than their set values.

2.2.3. Prohibit Operating Zones (POZs)

POZs (defined as an inequality constraint) specify those zones or operating ranges
a generation unit i can operate within its permitted operation range. The permissible
operation zone for generator i is given as follows [78,79]:

Pi,min ≤ Pi ≤ PL
i1

. . .
PU

im−1 ≤ Pi ≤ PL
im; ∀m = 1, 2, . . . , ni

. . .
PU

ini
≤ Pi ≤ Pi,max

(7)

where ni shows the number of POZs for generator i, and PL
ik and PU

ik are the minimum and
maximum boundaries of POZ k.

2.2.4. Ramp Rate Limit

A determined ramp rate specifies the amount of change a thermal generator can follow
to vary its output power. Ramp rate limit, which is an inequality constraint, is included in
the ELD problem [78,79]:

max
(

Pi,min, P0
i + Di

)
≤ Pi ≤ min

(
Pi,max, P0

i + Ui

)
(8)

where, P0
i is the active power generation by generator i, and Di and Ui are the downward

and upward ramp rates for that generator.

3. The Proposed Algorithm
3.1. GWO Algorithm

The grey wolf optimization (GWO) algorithm imitates the hunting behavior of grey
wolves. Grey wolves are categorized as α, β, δ, and ω based on their position and history
in their social hierarchy. The dominance descends from α to ω [67]. Several main strategies
used in the GWO algorithm include the social hierarchy, encircling, hunting, attacking, and
searching strategies [67]. These strategies are mathematically described below.

3.1.1. Social Hierarchy of the Grey Wolves

The fittest solution, the second-best fitting solution, and the third best fit solution
within the pool of solutions are named α, β, and δ. These are the initiator members of the
hunting strategy in the optimization process. The rest of the solutions are called ω.

3.1.2. Encircling Strategy

The following formulation provides the equations describing the besieging strategy
conducted by grey wolves [67]:

→
D = |

→
C .
→

Xp(t)−
→
X(t)| (9)

→
X(t + 1) =

→
Xp(t)−

→
A.
→
D (10)

where t counts the iteration, parameters
→
A and

→
C are vectors of coefficients,

→
Xp(t) shows

the hunting vector, and
→
X denotes the position vector related to wolves.

→
A and

→
C are found

as follows: →
A = 2

→
a .
→
r1 −

→
a (11)

→
C = 2.

→
r2 (12)
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where
→
r1 and

→
r2 are random vectors randomly chosen between [0, 1], and

→
a changes from 2

and 0 in a linear form while the number of iterations rises.

3.1.3. Hunting Strategy

Grey wolves can identify the place of prey, besiege it, and attack it. α-type wolves start
the hunting process, while β and δ types do so from time to time. Assuming that α, β, and
δ have the information on the place of prey, the hunting strategy is formulated. Positions
of α, β, and δ wolves with the best solutions are stored, and the position of ω wolves are
updated accordingly:

→
Dα = |

→
C1.
→
Xα −

→
X|

→
Dβ = |

→
C2.
→
Xβ −

→
X|

→
Dδ = |

→
C3.
→
Xδ −

→
X|

(13)

→
X1 =

→
Xα −

→
A1.(

→
D1)

→
X2 =

→
Xβ −

→
A2.(

→
D2)

→
X3 =

→
Xδ −

→
A3.(

→
D3)

(14)

→
Xi(t + 1) = (

→
X1 +

→
X2 +

→
X3)./3 (15)

3.1.4. Attacking Strategy (Exploitation Phase)

To provide a model for how wolves mathematically advance toward the prey,
→
a

is decreased.
→
A in (14) is a vector which randomly generated between (−2

→
a , 2

→
a ). In

the cases
→
A in the range (−1, 1), a searching member (agent) can be placed between its

current position and the prey’s location. As a result, the wolves embark on attacking when

|
→
A| < 1 [67].

3.1.5. Searching for Prey (Exploration Phase)

The typical approach of grey wolves to attack prey is to search for it separately, gather
around, and finally attack the prey. This is called the exploration phase. A random value is

assigned to the vector
→
A so that |

→
A| > 1. By doing this, searching wolves are positioned at

different points, and the algorithm runs the exploration phase across the solution space.

Vector
→
C , given in (13), with a value between [0, 2], is a parameter that impacts the

exploration phase. Putting this in the hunting stage increases the impact of the prey’s

location in (13), if |
→
C | > 1, or decrease it while |

→
C | < 1. This vector leads to even greater

randomness in the GWO; hence, the search space is explored better than before and the
algorithm avoids trapping in the local minimum points [67].

The summary of the GWO is as follows. The population is initialized, and the searching
stage embarks on. When iterations are carried out, α, β, and δ wolves become aware of the
possible location of the prey. Next, the distance between ω wolf and the prey is updated
according to the estimated location of the prey. The value of a is decreased from 2 to 0 so

that the prey identification and attacking actions are enhanced. |
→
A| < 1 and |

→
A| > 1 are

adopted in the exploitation and exploration phases, respectively.

3.2. Nonhierarchical GWO (NHGWO)

Imitating the grey wolves’ social behavior, the GWO algorithm stores three of the
best solutions, i.e., α, β and δ, which help the other population members update their
positions. Consequently, it results in premature convergence towards the optimal solution.
Such an updating process suffers from some demerits in the filed applications. First, since
the best global solutions achieved so far are used, the convergence speed is very high,
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and the optimization potential is degraded remarkably. Second, the variety decreases in
the newly formed population in each iteration. This is addressed by defining the best
personal position for each individual wolf i as the best solution obtained so far by the wolf,

i.e.,
→
X

best

i . Additionally, we do not choose α, β and δ as the wolves that proceed with the
updating process of wolves instead, we select r1, r2 and r3 as randomly chosen members

and store their best personal positions given by
→
X

best

r1 ,
→
X

best

r2 , and
→
X

best

r3 so that the population
is updated. The equations used for updating the ith member are presented here:

→
Dr1 =

∣∣∣∣→C1.
→
X

best

r1 −
→
X

best

i

∣∣∣∣
→
Dr2 =

∣∣∣∣→C2.Xbest
r2 −

→
X

best

i

∣∣∣∣
→
Dr3 =

∣∣∣∣→C3.
→
X

best

r3 −
→
X

best

i

∣∣∣∣
(16)

→
Xr1 =

→
X

best

r1 −
→
A1.(

→
Dr1)

→
Xr2 =

→
X

best

r2 −
→
A2.(

→
Dr2)

→
Xr3 =

→
X

best

r3 −
→
A3.(

→
Dr3)

(17)

→
Xi(t + 1) = (

→
Xr1 +

→
Xr2 +

→
Xr3)./3 (18)

After the calculation of the new position in (18), a comparison is made between
→
Xi(t + 1) and

→
X

best

i The former gives a better value for the objective function so that it will
be assumed as the new best personal position.

3.3. Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer (G-SCNHGWO)

One popular algorithm proposed to solve optimization problems is the Sine Cosine
Algorithm (SCA), a metaheuristic algorithm [70]. This algorithm mimics the sine and
cosine functions to get the best result. The algorithm determines different solutions, and
the searching stage begins. Then, the objective function evaluates the solutions. The
algorithm stores the best solution achieved up to the current iteration (the destination
point). The rest of the solutions are updated, and new solutions are formed using the sine
and cosine functions, as given by (19). Once the maximum number of iterations is reached,
the algorithm terminates the operations.

→
Xi(t + 1) =


→
Xi(t) + r1 sin(r2)|r3Pi(t)−

→
Xi(t)|; i f r4 < 0.5

→
Xi(t) + r1 sin(r2)|r3Pi(t)−

→
Xi(t)|; otherwise

(19)

In this paper, the sine and cosine functions are used to improve the optimization
power of the G-NHGWO algorithm by increasing the variety of populations. The results
demonstrate the promising performance of this algorithm in improving the GWO. We call
this new algorithm G-SCNHGWO. In this algorithm, the member ith is updated using the
following equation:

→
Dr1 =


sin(δ1) ∗

∣∣∣∣→C1.
→
X

best

r1 −
→
X

best

i

∣∣∣∣; i f rand < 0.5

cos(δ1) ∗
∣∣∣∣→C1.

→
X

best

r1 −
→
X

best

i

∣∣∣∣; otherwise
(20)
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→
Dr2 =


sin(δ2) ∗

∣∣∣∣→C2.
→
X

best

r2 −
→
X

best

i

∣∣∣∣; i f rand < 0.5

cos(δ2) ∗
∣∣∣∣→C2.

→
X

best

r2 −
→
X

best

i

∣∣∣∣; otherwise
(21)

→
Dr3 =


sin(δ3) ∗

∣∣∣∣→C3.
→
X

best

r3 −
→
X

best

i

∣∣∣∣; i f rand < 0.5

cos(δ3) ∗
∣∣∣∣→C3.

→
X

best

r3 −
→
X

best

i

∣∣∣∣; otherwise
(22)

where δ1, δ2, and δ3 are random numbers that are equal to rand× π/2, respectively. By
calculating these new modified distances and substituting them in (16), the new position of
the search agent ith can be obtained using (17) and (18).

Algorithm 1 depicts the pseudocode of the G-SCNHGWO algorithm in detail.

Algorithm 1: Pseudocode of G-SCNHGWO algorithm.

G-SCNHGWO:

Generate initial grey wolves Xi(i = 1, 2, . . . , Npop);

Set the initial value of parameters a,
→
A and

→
C ;

Evaluate the objective value of the initial population;
Initial fitness evolution of grey wolves and save the local position best for any gray wolf;
Set t = 1;
While (t < maximum value of iterations)
For (each member ith)
Update their current position using Equations (17), (18), (21) and (22);
end for

Update parameters a,
→
A,
→
C;

Evaluate the objective value of all searching agents
members;
Update the value of grey wolves and save the best
position for any gray wolf;
Set t = t + 1;
end while
return Xα as the best solution.

3.4. Application of G-SCNHGWO in ELD Problem

When G-SCNHGWO is used to solve an ELD problem, population members denote
generation units. The value of each member shows the output generation power of that
unit. The optimal solution to the problem is achieved through the following steps of the
G-SCNHGWO algorithm:

1. Step (1) Set the parameters of G-SCNHGWO, the maximum number of iterations
(itermax), the population size of grey wolves (Npop), B-coefficients, and data of the
generation units.

2. Step (2) Generate grey wolves.
3. Step (3) Calculate the cost function fi(Pi) for each member in the initial population.

The penalty factors (big positive numbers) are used to transform the optimization
problem with constraints into a problem with no constraints [32]. The value of penalty
factors is determined experimentally for each problem and must be chosen to satisfy
the associated constraint.

4. Step (4) Use G-SCNHGWO phases to update the obtained solutions.
5. Step (5) Calculate the value of fi(Pi) for new solutions.
6. Step (6) Update α, β, and δ wolves by comparing the old and new solutions.
7. Step (7) If the termination criterion (itermax) is not satisfied, go to Step 4.
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4. Simulation Results

Four different systems are incorporated here to evaluate the performance of G-
SCNHGWO and its efficiency in solving the ELD problems. The four systems include 10, 15,
40, and 140 generation units, and the corresponding number of populations are assumed to
be 30, 30, 60, and 90, respectively, for three algorithms. The ELD problems run 25 times,
and the costs’ best mean, max, and standard deviation values are calculated.

Several cases are considered to run the simulations for the mentioned four sample systems:

1. Case A-type 1: A test system with ten thermal units, a demand of 2700 MW, with MF
constraints, and neglecting transmission power loss [35].

2. Case A-type 2: Similar to Case A-Type 1, considering VPE constraints [35].
3. Case B-type 1: A test system with 15 thermal units, a demand of 2630 MW, considering

transmission power loss and POZ constraints [32].
4. Case B-type 2: Similar to Case B-Type 1, considering ramp rate limits [32].
5. Case C: A test system with 40 thermal units, a demand of 10,500 MW, and VPE

constraints [65].
6. Case D: A large-scale test system with 140 thermal units, a demand of 49,342 MW,

and considering VPE and POZ constraints [80].

4.1. CASE A: A Test System with 10 Generation Units

Tables 1 and 2 list the obtained results of Case A-type 1 and Case A-type 2 implemented
using various algorithms. As is concluded from the results, the G-SCNHGWO algorithm
shows better performance than its counterparts, even better than GWO and SCA, in
both study cases. This means that the suggested adaptive learning strategy successfully
enhances the performance of GWO and SCA. Figure 1 shows how the results are converged
in Case A-type 2 and prove the noticeable ability of the G-SCNHGWO algorithm to reach
suitable convergence. Tables 3 and 4 report the best decision variables achieved by the
G-SCNHGWO algorithm for Case A-type 1 and Case A-type 2, respectively.

Table 1. The statistical indices of optimal results obtained by different methods for Case A-type 1.

Methods Min. Cost (USD/h) Mean Cost (USD/h) Max. Cost (USD/h) Std.

RCGA [60] 623.8307 623.8522 623.8908 -
DEPSO [20] 623.8300 623.9000 624.0800 -

ALO [58] 623.8708 625.6935 636.3510 -
ICSO [51] 623.8110 624.0298 - -

CCEDE [77] 623.8288 623.8574 623.8904 0.0076
SFLA-GHS [61] 623.8406 623.9521 624.7804 -

ORCSA [28] 623.8608 623.8963 623.9353 0.0154
IFA [59] 623.8768 625.2704 629.2765 -

SPPO [62] 623.8279 - - -
ISSO [29] 623.8286 623.8490 624.1641 -

SCA 624.3015 624.9862 628.7524 5.93
GWO 624.2521 625.9265 630.1479 7.61

G-SCNHGWO 623.8092 623.8400 623.8875 0.0055

Table 2. The statistical indices of optimal results obtained by different methods for Case A-type 2.

Methods Min. Cost (USD/h) Mean Cost (USD/h) Max. Cost (USD/h) Std.

IFA [59] 624.4950 625.2647 629.3951 -
IGA_MU [35] 624.5178 625.8692 630.8705 -
Jaya-SML [47] 623.9738 624.0468 624.1300 0.0327

CFA [32] 623.9576 623.9702 623.9884 0.0105
CBPSO-RVM [11] 623.9588 624.0816 624.2930 0.0576

CCSO [26] 624.0697 624.2770 624.6282 0.1606
ISSO [29] 624.3477 624.3666 624.8145 -
RO [55] 624.0922 625.2564 627.1189 -
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Table 2. Cont.

Methods Min. Cost (USD/h) Mean Cost (USD/h) Max. Cost (USD/h) Std.

ALO [58] 624.3894 625.6773 629.0156 -
AA [63] 623.9500 - - -

NPSO-LRS [13] 624.1273 624.9985 626.9981 -
SCA 624.6174 625.5630 628.7001 6.20

GWO 624.5508 626.0128 629.3592 8.73
G-SCNHGWO 623.9491 623.9914 624.7415 0.0418

Figure 1. Convergence behavior obtained by GWO and G-SCNHGWO algorithms for Case A-type 2.

Table 3. The best decision variables for Case A-type 1 obtained by G-SCNHGWO algorithm.

Units Output Power Fuel Types
P1 218.2500 2
P2 211.6628 1
P3 280.7223 1
P4 239.6312 3
P5 278.4979 1
P6 239.6318 3
P7 288.5849 1
P8 239.6309 3
P9 428.5216 3

P10 274.8666 1
Total cost (USD/h) 623.8092

Table 4. The best decision variables for Case A-type 2 obtained by G-SCNHGWO algorithm.

Units Output Power Fuel Types
P1 219.2079 2
P2 210.2170 1
P3 278.5472 1
P4 239.3705 3
P5 276.4141 1
P6 240.5806 3
P7 292.3230 1
P8 237.7583 3
P9 429.4002 3

P10 276.1812 1
Total cost (USD/h) 623.9491
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4.2. CASE B: A Test System with 15 Generation Units

The results related to optimal solutions of Case B-type 1 and Case B-type 2 are provided
in Tables 5 and 6, underlining the superiority and high efficiency of the proposed algorithm.
The best control variables for the mentioned cases are given in Tables 7 and 8. The data of
this test system is shown in Table 9.

Table 5. The statistical indices of optimal results obtained by different algorithms in Case B-type 1.

Methods Min. Cost (USD/h) Mean Cost (USD/h) Max. Cost (USD/h) Std.

CSA [25] 32,544.9704 32,545.0068 32,546.6734 0.238
CSO [33] 32,588.9189 32,679.8775 32,796.7792 -

SSOA [64] 32,731.6903 32,845.5416 32,930.9734 -
ESAHJ [42] 32,568.1200 - - -

KHA-IV [66] 32,547.3700 32,548.1348 32,548.9326 -
CIHBMO [65] 32,548.5858 32,548.5858 32,548.5858 -

SCA 32,564.9641 32,585.5542 32,727.5931 142.3
GWO 32,562.7306 32,580.1590 32,872.6039 322.4

G-SCNHGWO 32,543.2943 32,544.8824 32,545.7109 0.097

Table 6. The statistical indices of optimal results obtained by different algorithms in Case B-type 2.

Methods Min. Cost (USD/h) Mean Cost (USD/h) Max. Cost (USD/h) Std.

CCSO [26] 32,706.6400 32,706.6400 32,706.6400 0.00070
C-MIMO-CSO [52] 32,701.2100 32,701.2100 32,701.2200 0.00580

TLBO [22] 32,697.2151 32,697.2151 32,697.2151 0.00000
DSOS [43] 32,706.7610 32,706.8993 32,709.9665 0.45737
SPPO [62] 32,708.0000 32,732.0000 32,789.0000 18.0250

IODPSO-L [16] 32,692.3900 32,692.3900 32,692.3900 0.00000
SSOA [64] 32,819.1554 32,902.1631 32,999.4008 -

CIHBMO [65] 32,548.5858 32,548.5858 32,548.5858 -
KHA-IV [66] 32,547.3700 32,548.1348 32,548.9326 -
MsEBBO [34] 32,692.3972 32,692.3973 32,692.3975 0.00006
SOH-PSO [14] 32,751.0000 32,878.0000 32,945.0000 -

EMA [36] 32,704.4503 32,704.4504 32,704.4506 -
BFO [37] 32,784.5024 32,976.8100 - 85.77430

NhFA-Rnp [45] 32,697.9100 32,700.5600 32,709.9400 2.640000
SCA 32,759.0206 32,889.4720 32,954.3356 285.6200

GWO 32,748.6935 32,900.2007 32,986.0753 415.4700
G-SCNHGWO 32,687.1014 32,690.0745 32,692.7422 0.004200

Table 7. The best decision variables for Case B-type 1 obtained by G-SCNHGWO algorithm.

Units Output Power

P1 454.9909
P2 455.0000
P3 130.0000
P4 130.0000
P5 231.3200
P6 460.0000
P7 465.0000
P8 60.0000
P9 25.0000
P10 35.5300
P11 74.4800
P12 80.0000
P13 25.0000
P14 15.0000
P15 15.0000

PL (MW) 26.3207
Total cost (USD/h) 32,543.2943
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Table 8. The best decision variables for Case B-type 2 obtained by G-SCNHGWO algorithm.

Units Output Power
P1 455.0000
P2 380.0000
P3 130.0000
P4 130.0000
P5 170.0000
P6 460.0000
P7 430.0000
P8 67.9593
P9 58.0137
P10 159.9999
P11 80.0000
P12 80.0000
P13 25.0007
P14 17.9118
P15 15.0000

PL (MW) 28.8854
Total cost (USD/h) 32,687.1014

Table 9. Unit’s data for the 15-unit power system.

Unit Pmin (MW) Pmax (MW) a b c Prohibited Operating Zones (MW)

1 150 455 0.0003 10.1 671 -
2 150 455 0.0002 10.2 574 [185 255] [305 335] [420 450]
3 20 130 0.0011 8.8 374 -
4 20 130 0.0011 8.8 374 -
5 150 470 0.0002 10.4 461 [180 200] [305 335] [390 420]
6 135 460 0.0003 10.1 630 [230 255] [365 395] [430 455]
7 135 465 0.0004 9.8 548 -
8 60 300 0.0003 11.2 227 -
9 25 162 0.0008 11.2 173 -
10 25 160 0.0012 10.7 175 -
11 20 80 0.0036 10.2 186 -
12 20 80 0.0055 9.9 230 [30 40] [55 65]
13 25 85 0.0004 13.1 225 -
14 15 55 0.0019 12.1 309 -
15 15 55 0.0044 12.4 323 -

Figure 2 depicts the convergence characteristics of the total fuel cost for Case B-type 1,
which again validates the efficacy and superiority of the proposed G-SCNHGWO algorithm
in showing appropriate convergence behavior.

Figure 2. Convergence behavior obtained by GWO and G-SCNHGWO algorithms for Case B-type 2.
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4.3. Case C: A Test System with 40 Generation Units

Table 10 provides the optimal solutions obtained by different algorithms for Case C.
As per the results, the G-SCNHGWO algorithm proves its outstanding potential in reaching
the optimal solution compared to its counterparts. Figure 3 illustrates the convergence
curve related to objective function values in Case C, which again validates the superior
convergence of the suggested algorithm. Table 11 lists the best values for decision variables
obtained using the G-SCNHGWO in Case C.

Table 10. Comparing the best results obtained by different algorithms in Case C.

Method Min. Cost (USD/h) Mean Cost (USD/h) Max. Cost (USD/h) Std.

CTLBO [24] 121,553.83 121,790.23 122,116.18 150.000
SOH_PSO [14] 121,501.14 121,853.57 122,446.30 -

RCGA [60] 121,418.72 121,685.99 121,921.65 -
IJaya [46] 121,454.37 121,770.32 122,109.01 173.700

BF [37] 121,423.63 121,814.94 - -
BBO [39] 121,426.95 121,508.03 121,688.66 -

CCSO [26] 121,414.43 121,686.59 122,288.96 193.080
ABCTend [40] 121,418.51 - 122,831.22 -
CIHBMO [65] 121,412.57 121,412.59 121,412.63 -
OLCSO [56] 121,415.81 121,460.77 121,504.04 21.7993

CSADHS [17] 121,414.87 121,415.44 121,415.92 0.30040
MSSA [30] 121,413.46 121,466.61 121,521.73 28.6932

aBBOmDE [21] 121,414.87 121,487.85 121,568.32 -
IODPSO-G [16] 121,414.93 121,416.54 121,426.42 17.7500

DEPSO [20] 121,412.560 121,419.31 121,468.25 -
SOA [31] 124,295.4 126,033.2 - -

CQGSO [38] 121,412.55 121,412.55 121,438.68 -
θ-MBA [57] 121,491.06 121,491.06 121,491.06 0.23300
COA [27] 122,003.74 122,072.97 122,159.59 -

SMPSO [12] 121,412.57 121,938.24 122,265.56 169.740
HBB-BC [54] 121,471.72 121,984.24 122,137.42 -
ESAHJ [42] 121,412.70 - - -

KHA-IV [66] 121,412.59 121,413.14 121,415.00 -
DA [41] 121,412.680 121,439.89 121,479.63 -

SCA 121,506.58 121,857.90 122,056.15 347.26
GWO 121,490.72 122,108.21 122,800.33 935.620

G-SCNHGWO 121,412.54 121,412.58 121,412.63 0.00850

Figure 3. Convergence behavior of GWO and G-SCNHGWO algorithms in Case C.
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Table 11. The best decision variables obtained by G-SCNHGWO algorithm in Case C.

Units Output Power Units Output Power

P1 110.7995 P21 523.2794
P2 110.7995 P22 523.2794
P3 97.4000 P23 523.2794
P4 179.7329 P24 523.2794
P5 87.7999 P25 523.2794
P6 140.0000 P26 523.2794
P7 259.5997 P27 10.0000
P8 284.5997 P28 10.0000
P9 284.5997 P29 10.0000
P10 130.0000 P30 87.7999
P11 94.0000 P31 190.0000
P12 94.0000 P32 190.0000
P13 214.7598 P33 190.0000
P14 394.2794 P34 164.7998
P15 394.2794 P35 194.3978
P16 394.2794 P36 200.0000
P17 489.2794 P37 110.0000
P18 489.2794 P38 110.0000
P19 511.2794 P39 110.0000
P20 511.2794 P40 511.2794

Total cost (USD/h) 121,412.5425

4.4. Case D: A Test System with 140 Generation Units

Table 12 gives the optimization results obtained in Case D. According to the results, and
the G-SCNHGWO demonstrates its power and efficiency. Figure 4 shows the convergence
curve obtained in Case D. Table 13 lists the best values of decision variables obtained by
G-SCNHGWO algorithm for Case D. The data of this test system is shown in Table 14.

Table 12. Comparison of best results obtained by different algorithms for Case D.

Algorithm Min. Cost (USD/h) Mean Cost (USD/h) Max. Cost (USD/h) Std.

C-GRASP–SaDE [19] 1,657,962.7 1,658,006.2 1,658,583.52 -
HPSO-ICA [15] 1,747,466.0 - 1,783,367.0 17,168

CCEDE [77] 1,657,962.7 1,657,963.0 1,657,965.18 1.1466
CCPSO [80] 1,657,962.73 1,657,962.7 1,657,962.73 0.0
CQGSO [38] 1,657,962.72 1,657,962.7 1,657,962.77 -

IL-SHADE [18] 1,657,962.73 1,657,965.3 1,658,090.54 -
SCA 1,680,904.41 1,698,895.23 1,751,427.09 754.31

GWO 1,678,795.41 1,702,255.9 1,803,546.78 150,000
G-SCNHGWO 1,657,954.70 1,657,957.5 1,657,961.16 3.62

Table 13. The best decision variables obtained for Case D by the proposed G-SCNHGWO.

Units Output Power
P1~P10 118.9999 163.9999 190.0 190.0 168.5400 190.0 490.0 489.9990 495.9990 496.0
P11~P20 496.0 496.0 506.0 508.9999 506.0 505.0 506.0 505.9999 504.9999 505.0
P21~P30 505.0 505.0 504.9999 505.0 537.0 536.9995 549.0 549.0 501.0 499.0
P31~P40 505.9999 506.0 506.0 506.0 499.9998 500.0 241.0 241.0 774.0 769.0
P41~P50 3.0 3.0 249.9999 250.0 250.0 249.9998 250.0 250.0 250.0 250.0
P51~P60 165.0 165.0 165.0 165.0 180.0 180.0 103.0 198.0 312.0 308.9987
P61~P70 163.0 95.0 511.0 511.0 490.0 256.0664 490.0 490.0 130.0 339.8395
P71~P80 141.0082 388.3274 195.0004 200.6508 194.9314 257.1706 398.9960 330.0 530.9999 531.0
P81~P90 542.0 56.0 115.0 115.0 115.0 207.0 207.0 175.0 175.0 180.0
P91~P100 175.0 575.9758 547.2990 836.8 837.5 682.0 720.0 717.9999 720.0 964.0
P101~P110 957.9999 947.9 934.0 935.0 876.4999 880.8999 873.7 877.4 871.7 864.8
P111~P120 882.0 94.0 94.0 94.0 244.0 244.0 244.0 95.0 95.0 116.0
P121~P130 175.0 2.0 4.0 15.0 9.0 12.0 10.0 112.0 4.0 5.0
P131~P140 5.0 50.0 5.0 42.0 42.0 41.0 17.0 7.0 7.0 26.0

Total power output 49,342.0 MW Fuel total cost 1,657,954.708 USD/h
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Figure 4. Convergence behavior obtained by GWO and G-SCNHGWO algorithms for Case D.

Table 14. Unit’s data for the 40-unit large-scale power system.

Units Pmin (MW) Pmax (MW) a b c e f
1 36 114 0.0069 6.7300 94.705 100 0.0840
2 36 114 0.0069 6.7300 94.705 100 0.0840
3 60 120 0.0203 7.0700 309.540 100 0.0840
4 80 190 0.0094 8.1800 369.030 150 0.0630
5 47 97 0.0114 5.3500 148.890 120 0.0770
6 68 140 0.0114 8.0500 222.330 100 0.0840
7 110 300 0.0036 8.0300 287.710 200 0.0420
8 135 300 0.0049 6.9900 391.980 200 0.0420
9 135 300 0.0057 6.6000 455.760 200 0.0420
10 130 300 0.0060 12.9000 722.820 200 0.0420
11 94 375 0.0052 12.9000 635.200 200 0.0420
12 94 375 0.0057 12.8000 654.690 200 0.0420
13 125 500 0.0042 12.5000 913.400 300 0.0350
14 125 500 0.0075 8.8400 1760.4 300 0.0350
15 125 500 0.0071 9.1500 1728.3 300 0.0350
16 125 500 0.0071 9.1500 1728.3 300 0.0350
17 220 500 0.0031 7.9700 647.850 300 0.0350
18 220 500 0.0031 7.9500 649.690 300 0.0350
19 242 550 0.0031 7.9700 647.830 300 0.0350
20 242 550 0.0031 7.9700 647.810 300 0.0350
21 254 550 0.0030 6.6300 785.960 300 0.0350
22 254 550 0.0030 6.6300 785.960 300 0.0350
23 254 550 0.0028 6.6600 794.530 300 0.0350
24 254 550 0.0028 6.6600 794.530 300 0.0350
25 254 550 0.0028 7.1000 801.320 300 0.0350
26 254 550 0.0028 7.1000 801.320 300 0.0350
27 10 150 0.5212 3.3300 1055.1 120 0.0770
28 10 150 0.5212 3.3300 1055.1 120 0.0770
29 10 150 0.5212 3.3300 1055.1 120 0.0770
30 47 97 0.0114 5.3500 148.890 120 0.0770
31 60 190 0.0016 6.4300 222.920 150 0.0630
32 60 190 0.0016 6.4300 222.920 150 0.0630
33 60 190 0.0016 6.4300 222.920 150 0.0630
34 90 200 0.0001 8.9500 107.870 200 0.0420
35 90 200 0.0001 8.6200 116.580 200 0.0420
36 90 200 0.0001 8.6200 116.580 200 0.0420
37 25 110 0.0161 5.8800 307.450 80 0.0980
38 25 110 0.0161 5.8800 307.450 80 0.0980
39 25 110 0.0161 5.8800 307.450 80 0.0980
40 242 550 0.0031 7.9700 647.830 300 0.0350
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5. Conclusions

Non-hierarchical grey wolf optimizer (NHGWO) was employed as the basis of a
novel algorithm named G-SCNHGWO. The aim was to modify the GWO algorithm so
that it could escape local optima. To validate the suggested algorithm, the ELD problem
was incorporated. The amounts of output power generation by a generation unit were
used as the decision variables in the ELD problem. The objective function attempted to
adjust the variables optimally to minimize the overall cost of generation units while being
limited by system constraints. Simulations on four different systems with 10, 15, 40, and
140 generation units proved the efficacy and high potential of the suggested G-SCNHGWO
algorithm. This algorithm can be implemented in the real world for field applications; this
will be addressed in future studies. The suggested method will be used in other nonlinear
and complex optimization problems prevalent in the industry.
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