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Abstract: The Equivalent Consumption Minimization Strategy (ECMS) is a well-known control
strategy for the definition of optimal power-split in hybrid-electric vehicles, because of its effec-
tiveness and reduced calibration effort. In this kind of Energy Management Systems (EMS), the
correct identification of an equivalence factor (K), which translates electric power in equivalent fuel
consumption, is of paramount importance. To guarantee charge sustaining operation, the K factor
must be adjusted to different mission profiles. Adaptive ECMS (A-ECMS) techniques have thus
been introduced, which automatically determine the optimal equivalence factor based on the vehicle
mission. The aim of this research activity is to assess the potential in terms of fuel consumption
and charge sustainability of different A-ECMS techniques on a gasoline hybrid-electric passenger
car. First, the 0D vehicle and powertrain model was developed in the commercial CAE software
GT-SUITE. An ECMS-based EMS was used to control the baseline powertrain and three alternative
versions of an auto-adaptive algorithm were implemented on top of that. The first A-ECMS under
study was based on feedback from the battery State of Charge, while the second and third on a
Driving Pattern Recognition/Prediction algorithm. Fuel consumption was assessed using the New
European Driving Cycle (NEDC), the Worldwide Harmonized Light Vehicles Test Cycle (WLTC)
and Real Driving Emissions (RDE) driving cycles by means of numerical simulation. A potential
improvement of up to 4% Fuel Economy was ultimately achieved on an RDE driving cycle with
respect to the baseline ECMS.

Keywords: CAE; vehicle simulation; Energy Management Systems; ECMS; RDE; machine learning;
Driving Pattern Recognition

1. Introduction

The urge to decarbonize transports and the need to reduce the time and cost of
the development process of electrified vehicles can be tackled by means of numerical
simulation, which is the elective ground for the development of a complex and innovative
Energy Management Strategy.

The availability of multiple sources of energy in Hybrid Electric Vehicles, e.g., the
chemical energy stored in the fuel tank, or the electro-chemical energy stored in the battery
pack, requires that a dedicated controller is used. Usually, such a controller is aimed at
optimizing the power-split among different energy sources to maximize a certain vehi-
cle performance. The most common target is the maximization of the energy efficiency
(i.e., the minimization of the fuel consumption for an engine-powered vehicle), but other
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performance indexes can be targeted (e.g., the minimization of pollutant emissions or the
speed-up of the powertrain thermal state).

Several optimization techniques have been developed through the years with different
levels of complexity and effectiveness [1]. In this context, global optimization techniques,
such as Dynamic Programming [2], which are usually computationally expensive and
require the a-priori knowledge of the mission profile, are usually adopted to define the
maximum benefit for a given hybrid architecture, enabling a fair comparison among hybrid
topologies. At the other end of the spectrum, rule-based EMS can be easily implemented
in common use vehicle control units, but they may achieve only average optimization
performance and they require a significant calibration effort [3].

To overcome the high computational demand required by global optimization tech-
niques and the low effectiveness of rule-based ones, local optimization techniques have
been developed. For industrial usage, the Equivalent Consumption Minimization Strategy
proposed by Paganelli et al. [4] was demonstrated to be a reasonable choice: it can be
implemented in a control unit because it is computationally efficient, and the optimization
is quite effective. Although the calibration of the ECMS is easy, it is usually performed
for a given vehicle on a prescribed mission profile requiring recalibration on different
driving cycles. In the literature, several adaptation mechanisms exist [5], which are usually
assessed on a single EMS on a specific architecture and a single mission profile. These adap-
tation mechanisms can be grouped in three groups. The first group includes adaptation
techniques based on the feedback from the State of Charge (SOC) which is used to feed a
controller acting on the calibration of the EMS [6–9]. Driving Pattern Recognition (DPR)
techniques belong to a second group. This approach collects information from the vehicle,
statistically evaluates the current mission profile and chooses the EMS calibration which
guarantees charge sustaining operation [10]. Finally, in the third group all EMS that are
intended to estimate future operations of the vehicle and, given the greater knowledge,
adopt the optimal EMS power-split, are present. These methods are various and usually
adopt ECMS optimization instead of a distinctive EMS [11–13]. Although in the literature
many auto-adaptive EMS exists, to the knowledge of the authors, limited information is
available about the comparison, in terms of the optimality and charge sustainability, of the
three different auto-adaptive ECMS groups.

The aim of this work is therefore the assessment of different Energy Management
Systems, based on the ECMS approach, that adapt their operation in real time and that
can guarantee charge sustaining operation and optimal control on various type-approval
and Real Driving Emissions (RDE) driving cycles. The evaluation of these EMSs will
be performed via numerical simulation in terms of SOC swing, fuel consumption and
controller stability. Moreover, this work, given the number of driving cycles and off-design
conditions (e.g., initial State of Charge, auxiliary power), is intended to assess different
EMSs for the subsequent adoption in a series production Vehicle Control Unit.

The case study is a P2 gasoline-powered mid-size Sport Utility Vehicle (SUV) assessed
using the New European Driving Cycle (NEDC), the Worldwide Harmonized Light Vehicles
Test Cycle (WLTC), the standardized random test RTS-95 and two RDE driving cycles.

The work is structured as follows: first the case study, including the vehicle and
powertrain model and the base EMS controller, is reported, then the methodology used to
develop and integrate the auto-adaptive controllers in the powertrain and vehicle model
is described. The test matrix is then presented; afterwards, the simulation results are
discussed. Finally, the outcomes of this work are summarized in the conclusions.

2. Case Study

A P2 Hybrid-Electric Vehicle (HEV), powered by a 173 kW gasoline engine and a
25 kW electric motor placed between the engine and the transmission, was chosen for this
work. The vehicle object of the study is a mid-size SUV featuring a six-gear automatic
transmission. The main specifications of the vehicle and powertrain are reported in Table 1
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and are not intended to be representative of a specific vehicle, but rather to represent a
generic high voltage P2 HEV belonging to the mid-size SUV market segment.

Table 1. Technical specifications of powertrain and vehicle.

Powertrain and Vehicle Data Unit Value

Engine Displacement cm3 1800
Engine Rated Power kW 173

Engine Speed @ Rated Power rpm 5000
Engine Rated Torque Nm 330

Motor Power kW 25
Motor Torque Nm 200

Battery Voltage V 168
Battery Capacity Wh 800

Vehicle Mass kg 1500
Vehicle Power Resistance @100 km/h kW 14

2.1. Vehicle and Powertrain Model

The vehicle model was built in the commercial software GT-SUITE and is schematically
depicted in Figure 1. A 0D mechanical model has been chosen for the modelling of the
vehicle and driveline. The vehicle is characterized by its aerodynamic drag coefficient and
frontal area, rolling resistance, test mass and the inertias of driveline and axles. Brakes are
modelled with a map-based approach: brake torque is applied to the axles as a function of
vehicle speed and brake pedal to guarantee the requested vehicle deceleration.
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The internal combustion engine and the electric motor were represented by means
of a map-based approach: fuel consumption and electric losses as a function of engine or
motor speed, respectively, and requested load were looked up to compute instantaneous
fuel consumption and electric power requested to the battery pack.

The battery pack was modelled with open access data for a Li-Ion battery pack [14],
scaled to achieve the requested voltage level, as an equivalent dynamic electric circuit
with open circuit voltage, internal resistance and two Thevenin resistance and capacitance
branches. The electric circuit is modelled with a high potential node and a ground node
where the electric motor, the battery and the auxiliaries are connected.

The two clutches were modelled with a Coulomb Dry Friction model. The first one
was placed between the Internal Combustion Engine (ICE) and the Electric Motor (EM) and
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the second one between the EM and the transmission. These two clutches were controlled
in such a way to enable electric driving, hybrid mode (ICE and EM mechanically linked to
the wheels) and a smooth start-up of the engine.

The transmission is defined by six gear ratios and a final drive with their mechanical
efficiency. The gear shift is imposed on NEDC according to UNECE 83 [15] and on WLTC
and RTS-95 according to [16], computed by means of the Gearshift calculation tool publicly
available [17], while following RDE driving cycles (i.e., RDE and City2City) a gearshift
strategy based on powertrain speed was followed. The relation between powertrain speed
and vehicle speed for this gearshift strategy is reported in the so-called Sawtooth diagram
in Figure 2.
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The computational time of the vehicle model is lower than a tenth of the real time (0.1 RT).

2.2. Vehicle Controllers

In Figure 3, the virtual Vehicle Control Unit (VCU) integrated into the vehicle model
is reported. The VCU is composed of a Supervisory Controller, an Energy Management
System (EMS) based on the Equivalent Consumption Management Strategy (ECMS), a
regenerative Braking controller and an Engine Control Unit (ECU). First, a driver model,
modelled as a PI controller, computes the driver power demand necessary to guarantee
that the prescribed speed profile (as a function of time) is followed by the vehicle. The
driver power demand is later processed by the Supervisory Controller, which chooses the
vehicle operating mode: when the driver power demand is negative, the ICE is switched
off and the braking power is split between the electric motor, which recovers the kinetic
energy to recharge the battery, and the mechanical brakes. When the driver power demand
is positive, the vehicle operates in normal operation and the optimal power-split between
ICE and EM is chosen; when the SOC is lower than a given threshold, the powertrain is
forced to recharge the battery.

During the first phase of ICE restart, the EM acts as a starter, the transmission clutch
is open and the clutch between the ICE and the EM closes at a prescribed rate. The
transmission clutch is later controlled to guarantee a smooth ICE start-up. To prevent
frequent oscillation of ICE power requests, a minimum ICE operation time of 10 s is
required after an engine start-up. The ICE-specific control functions (i.e., start-up, fuel
cut-off, idle operation, and torque request) are demanded by a virtual ECU.
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Moreover, the controller which defines the power-split between ICE and EM is the
ECMS-based EMS. This controller manages the multiple sources of energy on the HEV
(namely the energy from the fuel tank and that stored in the battery) to instantaneously
optimize the power-split and thus achieve the lowest possible fuel consumption in any
circumstance. For this work, the Equivalent Consumption Minimization Strategy (ECMS),
which has proven itself to be viable from an industrial point of view [18,19], has been chosen.
In the ECMS, at every time instant, the cost function representative of the equivalent fuel
consumption is minimized according to the cost function reported in Equation (1).

.
meqv =

.
m f +

.
mbatt =

.
m f +

s
LHV

·Pbatt =
.

m f + K·Pbatt (1)

The equivalent fuel consumption
.

meqv is the sum of engine fuel consumption (
.

m f )
and a fictitious “virtual” fuel consumption (

.
mbatt) associated with the power coming from

the battery (Pbatt), based on the assumption that the energy stored in the battery must be
replenished using fuel energy. The parameter used to convert battery energy into fuel
energy is the so-called equivalence factor s, which, differently from the notation commonly
available in the literature, is here reported as K, which includes the Lower Heating Value
(LHV) of the fuel. To implement an ECMS strategy in a dynamic vehicle model in GT-
SUITE, co-simulation with MATLAB Simulink is usually employed, performing an online
optimization of the traction power split between the electric machines and the ICE. In this
work, a map-based power-split optimization was used instead, a technique that enables a
standalone GT-SUITE-only simulation. An off-line optimization tool was used to generate
power-split maps as a function of driver total power demand and equivalence factor K,
minimizing the overall equivalent fuel consumption upfront. The aforementioned tool was
developed in the form of a MATLAB routine with a user-friendly GUI and accounts for
E-Motor, ICE, and battery limitations. As an output from the offline optimization software,
maps are stored in a ready-to-use GT-SUITE model that can be opened and edited by the
simulation engineer.

3. Auto-Adaptive ECMS Techniques
3.1. Background

The Equivalence factor K is the key to ECMS performance. First, K is a synthetic value
used to estimate the average chemical to electric conversion efficiency. It is representative of
past, present and future efficiency and affects charge sustainability and the effectiveness of
the strategy [3]. Usually, the equivalence factor K is calibrated on a type-approval driving
cycle to guarantee charge sustaining operation with an iterative procedure (it is not possible
to analytically compute the value of K beforehand). This assumes the a-priori knowledge
of the mission profile (i.e., this is not the case for Real Driving Emissions tests) and a
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calibration of this parameter to achieve charge sustaining operation (usually involving
several iterations due to the non-linear behaviour of the power-split as a function of the
equivalence factor). As a result, a fixed equivalence factor guarantees charge sustaining
operation and close to optimal results in a short and specific type-approval test. However,
on long and high-varying load mission profiles, a single K may produce imbalance in the
SOC profile, jeopardizing the advantages of a hybrid architecture.

For these reasons, in the literature several methods to adapt the equivalence factor in
a driving cycle are proposed. They can be divided in three main areas:

• ECMS: the equivalence factor K is adapted using the SOC feedback;
• Driving Cycle Recognition (DPR): the equivalence factor K is chosen from a subset of

equivalence factors as a function of past vehicle driving pattern (i.e., velocity trace);
• Driving Cycle Prediction (DPP): the equivalence factor K is chosen from a subset

of equivalence factors as a function of past and future vehicle driving patterns
(i.e., velocity trace).

For online implementation, the SOC feedback is always necessary, and therefore it is
also used for DPR and DPP, even if it is not the main adaptation variable [5].

3.2. Adaptation of K Using the SOC Feedback (A-ECMS)

Different methods can be adopted for the adaptation of the equivalence factor in order
to guarantee limited variations of the SOC and optimal results. These methods are:

• Continuous A-ECMS with Proportional controller [6].

This is a simple proportional controller, represented by Equation (2):

Kt = K0 + Cp ·
(
SOCtgt − SOC(t)

)
, (2)

where Kt is the equivalence factor computed at each time instant, K0 is the initial K factor,
Cp is the proportional term, SOCtgt is the target value for the battery SOC and SOC(t) is
the actual SOC value. The SOCtgt is usually pre-determined to guarantee room to discharge
or recharge the battery. For this reason, in this work it is assumed to be equal to 0.5 (the
nominal SOC of the battery at the beginning of the simulation).

• Continuous A-ECMS with Proportional Integrative controller [7,8].

This is a modified version of the proportional controller to guarantee improved perfor-
mance when tracking the battery SOC:

Kt = K0 + Cp ·
(
SOCtgt − SOC(t)

)
+ Ci

∫ t

0

(
SOCtgt − SOC(t)

)
, (3)

where Ci is the integrative term.

• Discrete A-ECMS—Autoregressive Moving Average (ARMA), with adaptation at
discrete intervals T [9]:

The current equivalence factor is computed based on the equivalence factors computed
at two previous time interval and the battery SOC, according to Equation (4). At each
update interval T, the equivalence factor K is updated as a function of the difference
between the actual SOC and a target SOC. Additionally, the two autoregressive terms
accounts for previous states of the equivalence factor:

KT =
KT−1 + KT−2

2
+ Cp ·

(
SOCtgt − SOC(T)

)
, (4)

where KT is the equivalence factor computed at the beginning of interval T and adopted
throughout the interval, KT−1 and KT−2 are the K factors computed at the two preceding
intervals, Cp is the proportional term, SOCtgt is the target value for the battery SOC and
SOC(T) is the one at the beginning of the current time interval T.
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This discrete A-ECMS allows a greater utilization of the battery SOC within the interval
T, also termed as adaptation time (Tadapt). For this reason, this solution was developed and
integrated in the GT-SUITE model. Because the Cp may have a significant impact on charge
sustainability and optimality of the solution, it has to be calibrated. In this work, the Cp
was calibrated to achieve a satisfactory trade-off across different driving cycles; a unique
value for all the five driving cycles investigated was eventually chosen.

3.3. Driving Pattern Recognition (DPR-ECMS)

The equivalence factor K is the only calibration parameter of the ECMS and defines the
optimality of the solution and charge sustaining performance. When the vehicle is operated
on driving cycles which are different from the driving cycle used for the calibration, the
performance of the ECMS may worsen significantly. The idea behind the Driving Pattern
Recognition is that various driving cycles can be classified according to some general metric.
Then, during vehicle operation, these driving patterns can be recognised, and the proper
equivalence factor K can be selected to guarantee charge sustainability on a wide range of
operating condition.

In this work, the methodology proposed by Gu et al. [10] was followed, and a DPR-
ECMS controller was developed in Simulink and integrated in the GT-SUITE model with a
Simulink Harness.

First, the recognition capabilities of the DPR-ECMS controller were set up. For this
reason, 20 non-repetitive, non-composed type-approval driving or standard driving cycles
were chosen. Standard and type-approval driving cycles were gathered from different
sources [17,20]. For example, because the NEDC is composed of three repetitions of the
ECE and the EUDC, the NEDC is decomposed in an ECE and an EUDC driving cycle, while
the WLTC utilises the Low, Medium, High and Extra-high sections. Then, for each driving
cycle the charge-sustaining equivalence factor K is assessed via an iterative method (see
Figure 4).
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Techniques have been developed to analyse and cluster different driving cycles [21,22].
In this work, among 21 statistical metrics computed for each driving cycle (e.g., mean
run velocity, maximum acceleration, cruise fraction), only 18 statistical metrics (duration,
distance and the number of stop per unit distance were considered of limited interest and
excluded) were used for the driving cycle classification, as performed by Gu et al. [10].
Then, Principal Component Analysis (PCA) was used to reduce the numerosity of the data;
four principal components were chosen which described 95% of the variance of the dataset.
To improve the classification, the LA92 driving cycle was excluded from this analysis
because it includes mixed driving conditions (urban and suburban). The remaining driving
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cycles were grouped into five different driving clusters, as represented in Figure 5, by a
K-means algorithm [23]. These driving clusters were representative of, for example, urban,
extra-urban or highway driving style. From this classification, the WLTC Medium section
driving cycle was removed because its K was an outlier on the PCA plan and could not
effectively be included in a specific driving cluster. Finally, the average equivalence factor
of the driving cycles belonging to a certain cluster was computed and assigned to each
driving cluster. The driving clusters with their specific equivalence factor K are reported in
Table 2.
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Table 2. Driving cycles clustering.

Cluster # 1 2 3 4 5

City2
NYCC

WLTC Low
Artemis
Urban

Highway
WLTC

ExtraHigh

City1
SC03
US06

WLTC High
Artemis

Road

EUDC
EUDC Low

ECE
JPN10
JPN15

K 151 182 166 179 154

During vehicle operation, the driving metrics of the last 200 s of vehicle velocity are,
instant by instant, computed. The driving metrics are then transformed to PCA coordinates,
and after the identification of the closest cluster, the driving pattern is recognized. Then the
equivalence factor of this driving pattern is used to select the optimal power-split.

To account for significant off-design mission profile, for example altitude variations,
a PI controller on top of the DPR is adopted. This PI controller is analogous to the one
presented by Gu et al. [10].

3.4. Driving Pattern Prediction (DPP-ECMS)

Only the previous 200 s were analysed during vehicle operation by the DPR controller.
Thus, the equivalence factor adopted was late up to a certain extent, worsening the theoret-
ical performance of the controller. In this section, the DPR controller is updated to a DPP
controller able to recognize a driving pattern which comes from both past and forecasted
vehicle velocities.

In the literature, different implementation of the predictive capabilities of HEV con-
trollers have been proposed. Musardo et al. developed an adaptive ECMS based on both
past and predicted vehicle speed [24]; when the equivalence factors must be updated, the
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algorithm first builds the current mission combining past and predicted vehicle speed
and GPS data, then determines the equivalence factor that minimizes fuel consumption.
Sciarretta et al. [25] based the online estimation of the equivalence factor on a look-ahead
horizon defined in terms of energy at the wheels, thus measurements are used to determine,
at each instant, the most likely behaviour (charging or discharging). Ambuhl et al. [11]
developed a controller where the adaptation scheme used a predictive Reference Signal
Generator (pRSG) in combination with an SOC tracking-based controller (implemented in
the form of feedback from SOC). The pRSG computes the desired battery SOC trajectory as
a function of vehicle position to maximize recuperated energy. In this case, the topographic
profile of the future road segments and the corresponding average traveling speeds must
be known. Fu et al. [12] used a Model Predictive Control (MPC) based strategy and utilized
the information attainable from Intelligent Transportation Systems (ITS) to establish a
prediction-based real-time controller structure.

The past works were intended to build a comprehensive controller able to predict
future driving profiles and choose the optimal equivalence factor K. On the contrary, in the
present work, the aim is to enhance the performance of the DPR controller already devel-
oped, adding the capability to predict or estimate future velocity. From this perspective,
different methods can be followed [26]: Exponentially varying, Markov-Chain or Neural
Network velocity predictors. These latter showed the best overall performance across a
range of certification and real-world drive cycles in the works done by Liu et al. [13,27],
where different prediction methods were analysed and a Long Short-Term Memory (LSTM)
Deep Neural Network Model was finally selected in combination with CAN data, radar,
GPS and current velocity on a 10 s velocity prediction for the energy management of a
complex HEV.

In the current work, different prediction techniques were assessed. First, the perfor-
mance of a DPP controller able to estimate the exact future driving profile (using type-
approval driving cycles) with three prediction intervals (200 s, 30 s and 10 s) was evaluated.
Because the rolling windows taken into account for the Driving Pattern Recognition is
equal to 200 s, depending on the prediction interval, only future or various fractions of past
and future velocities are used to estimate the driving cluster. When the duration of the
recognition interval and of the prediction interval were equal (i.e., prediction interval of
200 s), a reference point was set. This benchmark, representative of the maximum benefit
attainable by a recognition controller with the perfect knowledge of a future driving profile,
is used to compare different prediction models. The closer to the benchmark a prediction
model gets, the higher its forecast quality. Because in real life the Perfect Prediction on
long time intervals may be hardly attained due to unpredictable traffic situations, two tests
with shorter intervals of Perfect Prediction (i.e., 30 and 10 s) were proposed. These DPP
controllers were termed as Perfect Prediction DPP and the acronyms DPP-PP200, DPP-
PP30 and DPP-PP10, referring to the forecast window of 200 s, 30 s and 10 s, respectively,
were adopted.

Then, two simple prediction models were assessed. The first prediction model is called
Persistence Model (DPP-PE) and assumes that nothing changes in the velocity profile, thus
the velocity profile in the forecast interval is equal to the velocity of the last timestep. The
second prediction model, termed as Exponential Model (DPP-EX), is instead based on the
exponential decrease of the vehicle velocity according to the following equation [26]:

Vti = Vt · 0.99ti , (5)

where Vti is the forecasted velocity at the time ti of forecast, Vt is the current vehicle velocity,
ti is the time of forecast (from 1 s to the maximum forecast duration, i.e., 30 s). The forecast
velocity in the early phases of the NEDC for these two prediction models are reported in
Figure 6.
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Figure 6. Forecast models: Persistence Model (a) and Exponential Model (b).

4. Test Matrix

The auto-adaptive EMSs developed or analysed in this work are representative of four
different case studies:

1. a reference vehicle with a fixed equivalence factor ECMS;
2. a vehicle featuring auto-adaptive ECMS with SOC feedback;
3. a vehicle featuring the auto-adaptive ECMS based on Driving Pattern Recognition (DPR);
4. a vehicle featuring auto-adaptive ECMS based on Driving Pattern Prediction (DPP).

These case studies were tested using different driving cycles, both type-approval
(NEDC, WLTC) and RDE driving cycles (RTS-95 and two customer driving cycles defined
as RDE and City2City). Although the NECD has lately been phased-out, it is taken into
account in this work for various reasons: it is fundamental for benchmark analysis with
relatively recent vehicle architectures; it is composed by constant acceleration and constant
speed phases, therefore it is useful to evaluate the stability of models and controllers in a
defined scenario; because the cycle energy requirement is low, the NEDC combined with
other driving cycles offers an extended assessment of controllers and vehicle architectures.
The type-approval or standard driving cycles have been iterated several times to assess the
performance of adaptive ECMS techniques over a longer timeframe (20 or 5 times for the
A-ECMS based on SOC feedback, 3 times for DPR-ECMS and DPP-ECMS).

In Figure 7, the RDE driving cycles are reported.
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Figure 7. RDE driving cycles assessed: RTS-95 (a), RDE-compliant (b), City2City (c).

The aim of adaptive controllers is to ensure charge sustainability during real driving
operation. In this context, different boundary conditions may apply. For example, if the
car is parked for a long period of time, the battery may be depleted or, during winter, high
electric power may be drawn by the rear defroster. Although multiple driving factors are
impacted by a real driving cycle [28], to test these auto-adaptive strategies in off-design
conditions, a reduced sensitivity analysis concerning the auxiliary power (0–500 W) and
the initial SOC of the battery (0.2–0.8) was performed. Moreover, for the A-ECMS based on
the SOC feedback only, different initial values of equivalence factor K were tested.
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The A-ECMS based on Driving Pattern Prediction is assessed considering Perfect
Prediction (DPP-PP), Persistence Model (DPP-PE) and Exponential Model (DPP-EX) with
different timeframes of prediction interval. The Perfect Prediction is in fact investigated
with a prediction interval of 200 s (DPP-PP200) to reproduce a theoretical case of 30 s
(DPP-PP30) and 10 s (DPP-PP10). The Persistence Model (DPP-PE) and the Exponential
Model (DPP-EX) were tested at 30 s because this is a rather acceptable prediction time
interval when ADAS systems are taken into account.

5. Results

In this section, the results of the three auto-adaptive ECMS strategies are reported.

5.1. Adaptation of K Using the SOC Feedback (A-ECMS)

Concerning the so-called Autoregressive moving average, when the update time
interval is equal to the length of the cycle, this filter can be used as an optimizer. In Figure 8,
the performance of this method is reported using NEDC for a reference case and three
off-design conditions. In this way, possible deviations of the SOC over a large timeframe are
counterbalanced by the update of the equivalence factor, and the SOC is driven towards its
target. The A-ECMS showed the capabilities to converge towards the optimal equivalence
factor K after some repeated driving cycles, achieving a comparable fuel consumption
with respect to the reference case, with limited SOC swing. End-of-cycle SOC is close to
the target SOC and, after 20 cycles, A-ECMS proved to guarantee a stable SOC behaviour
(SOC drifts are noticeable on the reference case with constant K). The calibration of Cp was
performed in order to guarantee that the optimal K is achieved before 20 cycles with limited
controller overshoot in the NEDC, as depicted in Figure 7, WLTC and RTS-95.
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When the aim is instead to have a reasonable controller that can be implemented in an
ECU, the adaptation time must be smaller than the driving cycle duration. For this reason,
an adaptation time equal to 30 s and a Cp equal to 630 were adopted in all the driving
cycles of interest. In this case, the EMS is able to maintain a State of Charge between 0.4 and
0.6 for the majority of the simulations, and it is able to account for the increased auxiliary
power or a low starting SOC or a low initial equivalence factor K (Figure 9).

Energies 2022, 15, x FOR PEER REVIEW 12 of 22 
 

 

Figure 8. Impact of A-ECMS with Tadapt = 1200 s, Cp = 30, Kreference = 166 and SOC target = 0.5 on 20 
repetitions of NEDC (a) and for different off design conditions: Paux = 500 W (b), SOCinitial = 0.2 (c) 
and Kinitial = 130 g/kWh (d). 

When the aim is instead to have a reasonable controller that can be implemented in 
an ECU, the adaptation time must be smaller than the driving cycle duration. For this 
reason, an adaptation time equal to 30 s and a Cp equal to 630 were adopted in all the 
driving cycles of interest. In this case, the EMS is able to maintain a State of Charge 
between 0.4 and 0.6 for the majority of the simulations, and it is able to account for the 
increased auxiliary power or a low starting SOC or a low initial equivalence factor K 
(Figure 9). 

  
(a) (b) 

  
(c) (d) 

Figure 9. Impact of A-ECMS with Tadapt = 30 s, Cp = 630, Kreference = 166 and SOCtgt = 0.5 on 5 repetitions 
of NEDC (a) and for different off design conditions: Paux = 500 W (b), SOCinitial = 0.2 (c) and Kinitial = 
130 g/kWh (d). 

In Figure 10, the performance of the Adaptive ECMS calibrated with a fixed Cp and 
adaptation time is reported on WLTC, RTS-95, RDE and City2City. While on WLTC and 
RTS-95, the SOC is maintained between 0.2 and 0.8 and the oscillation of the equivalence 
factor K is quite high. This is due to the fact that the RDE driving cycles required a reduced 
adaptation time so that the controller could counteract steep variations in the power 
demand from the battery. Moreover, the Cp was chosen in order to have the smallest 
possible variation of the battery State of Charge. The RDE-Capable AECMS was able to 
operate the vehicle, maintaining the battery SOC around the target. The calibration of Tadapt 
and Cp was performed in order to limit the SOC swing in the NEDC, WLTC, RTS-95, RDE 
and City2City cycles. In this work, Cp coefficients, as a function of the vehicle speed, were 
not taken into account, but they might stabilize the controller itself. 

The RDE-Capable AECMS was demonstrated to improve the fuel consumption on 
RDE cycles with respect to a ECMS based on a fixed K. In fact, a fixed K would result, at 
some point, in the full charge, or the complete depletion of the battery, as seen on the RDE 
and City2City cycles, respectively. In these cases, the performance of the HEV is reduced 
because, when the battery is fully charged, no energy can be recovered by regenerative 

Figure 9. Impact of A-ECMS with Tadapt = 30 s, Cp = 630, Kreference = 166 and SOCtgt = 0.5 on
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In Figure 10, the performance of the Adaptive ECMS calibrated with a fixed Cp and
adaptation time is reported on WLTC, RTS-95, RDE and City2City. While on WLTC and
RTS-95, the SOC is maintained between 0.2 and 0.8 and the oscillation of the equivalence
factor K is quite high. This is due to the fact that the RDE driving cycles required a
reduced adaptation time so that the controller could counteract steep variations in the
power demand from the battery. Moreover, the Cp was chosen in order to have the smallest
possible variation of the battery State of Charge. The RDE-Capable AECMS was able to
operate the vehicle, maintaining the battery SOC around the target. The calibration of Tadapt
and Cp was performed in order to limit the SOC swing in the NEDC, WLTC, RTS-95, RDE
and City2City cycles. In this work, Cp coefficients, as a function of the vehicle speed, were
not taken into account, but they might stabilize the controller itself.
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The RDE-Capable AECMS was demonstrated to improve the fuel consumption on
RDE cycles with respect to a ECMS based on a fixed K. In fact, a fixed K would result, at
some point, in the full charge, or the complete depletion of the battery, as seen on the RDE
and City2City cycles, respectively. In these cases, the performance of the HEV is reduced
because, when the battery is fully charged, no energy can be recovered by regenerative
braking while, when the battery is discharged, the electric motor is not able to assist the
internal combustion engine.

CO2 emissions are directly computed from the fuel consumption without considering
the difference in terms of battery SOC between the beginning and the end of the driving
cycle. RDE legislation does not require that CO2 emissions are corrected and, on long
cycles (or multiple type-approval cycles), the impact of the added or depleted energy in the
battery on fuel consumption becomes negligible.

The results, in terms of CO2 emissions and final battery SOC from the adoption of
the ECMS calibrated for all the driving cycles, are reported in Table 3. It is to be said that
the results in terms of CO2 emissions were not corrected as a function of the final battery
State of Charge. This correction procedure is required by legislation for type-approval
driving cycles and for significant difference in battery SOC between the beginning and
the end of the test. However, because the controllers assessed in this paper are aimed to
operate unsupervised in different RDE driving cycles, CO2 emissions and final SOC were
both tracked and presented in the results, with no intervention; the lower the CO2 and
the lower the difference between final SOC and target SOC (equal to 0.5), the better the
controller performance.
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Table 3. Summary of the fuel consumption for the A-ECMS based on SOC feedback.

Fixed K A-ECMS A-ECMS A-ECMS A-ECMS

- - Paux = 500 W SOCinit = 0.2 Kinit = 130

5× NEDC
CO2 emissions g/km 123 122 132 126 119

Final SOC - 0.54 0.66 0.52 0.64 0.59

5× WLTC
CO2 emissions g/km 121 133 133 134 132

Final SOC - 0.45 0.74 0.68 0.74 0.74

5× RTS-95
CO2 emissions g/km 155 156 164 159 156

Final SOC - 0.49 0.61 0.63 0.65 0.66

RDE
CO2 emissions g/km 147 143 149 144 143

Final SOC - 0.5 0.7 0.6 0.6 0.7

City2City CO2 emissions g/km 164 164 168 166 164
Final SOC - 0.50 0.49 0.46 0.50 0.49

For any driving cycle, the increase of the auxiliary power is characterized by an
increase in the CO2 emissions, which is around 10 g/km for NEDC, WLTC and RTS-95 with
respect to the case with fixed K. The final SOC is between 0.4 and 0.6, except for the WLTC.
The A-ECMS using WLTC shows increased CO2 emissions with respect to the vehicle with
fixed K because the oscillations of the K factor force the powertrain to charge or discharge
the battery too frequently which is far from optimal. When Paux is increased to 500 W
in the WLTC, the oscillations on the equivalence factor K are reduced and optimality is
achieved. The performance of the A-ECMS controller based on the SOC feedback can be
appreciated in the RDE driving cycle, where an improvement of 4 gCO2/km is achieved
with an increase of the battery SOC at the end of the cycle. This is due to the fact that
an SOC controlled in the range of 0.4–0.7 guarantees that all hybrid functionalities are
enabled (e.g., regenerative braking). This is also confirmed for off-design conditions. In the
City2City driving cycle, the impact of the A-ECMS is negligible because this cycle is mainly
representative of a highway driving cycle where the ICE is mainly switched on and the
impact of the electric motor is limited.

5.2. Driving Pattern Recognition (DPR-ECMS)

The approach based on Driving Pattern Recognition was tested using all the driving
cycles, and the results are reported in this section.

Concerning the NEDC driving cycle, in Figure 11, the driving clusters identified by the
controller are reported. The controller recognises the ECE part of the cycle as belonging to
the driving pattern number 5, while the EUDC is identified as Cluster 4, as defined during
the development of this controller (see Table 2). Because the analysis of the driving metrics
is performed considering the last 200 s, the recognition of the driving pattern is delayed
with respect to the start of the EUCD, while during the first 200 s of the entire NEDC, the
controller is initialized.

Energies 2022, 15, x FOR PEER REVIEW 14 of 22 
 

 

gCO2/km is achieved with an increase of the battery SOC at the end of the cycle. This is 
due to the fact that an SOC controlled in the range of 0.4–0.7 guarantees that all hybrid 
functionalities are enabled (e.g., regenerative braking). This is also confirmed for off-
design conditions. In the City2City driving cycle, the impact of the A-ECMS is negligible 
because this cycle is mainly representative of a highway driving cycle where the ICE is 
mainly switched on and the impact of the electric motor is limited. 

Table 3. Summary of the fuel consumption for the A-ECMS based on SOC feedback. 

   Fixed K A-ECMS A-ECMS A-ECMS A-ECMS 
   - - Paux = 500 W SOCinit = 0.2 Kinit = 130 

5× NEDC CO2 emissions g/km 123 122 132 126 119 
Final SOC - 0.54 0.66 0.52 0.64 0.59 

5× WLTC CO2 emissions g/km 121 133 133 134 132 
Final SOC - 0.45 0.74 0.68 0.74 0.74 

5× RTS-95 
CO2 emissions g/km 155 156 164 159 156 

Final SOC - 0.49 0.61 0.63 0.65 0.66 

RDE 
CO2 emissions g/km 147 143 149 144 143 

Final SOC - 0.5 0.7 0.6 0.6 0.7 

City2City 
CO2 emissions g/km 164 164 168 166 164 

Final SOC - 0.50 0.49 0.46 0.50 0.49 

5.2. Driving Pattern Recognition (DPR-ECMS) 
The approach based on Driving Pattern Recognition was tested using all the driving 

cycles, and the results are reported in this section. 
Concerning the NEDC driving cycle, in Figure 11, the driving clusters identified by 

the controller are reported. The controller recognises the ECE part of the cycle as 
belonging to the driving pattern number 5, while the EUDC is identified as Cluster 4, as 
defined during the development of this controller (see Table 2). Because the analysis of 
the driving metrics is performed considering the last 200 s, the recognition of the driving 
pattern is delayed with respect to the start of the EUCD, while during the first 200 s of the 
entire NEDC, the controller is initialized. 

 
Figure 11. Driving Pattern Recognition (DPR) clusters identification along 3 repetitions of NEDC. 

The results in terms of battery SOC and equivalence factor K in the NEDC, for some 
design conditions are reported in Figure 12. In terms of charge sustainability, the DPR-
ECMS is able to achieve a final SOC close to the target. Because the recognition of the 
EUDC happens with a certain delay, the SOC is reduced due to a K lower than the charge 
sustaining K, and only after regenerative braking and the recognition of the ECE, is the 
SOC aligned with the target. When the auxiliary power is increased to 500 W or the initial 
SOC is far lower than the target SOC, the PI controller intervenes, in combination with the 
DPR, to update the K factor above or below the K factor of the reference case. 

Figure 11. Driving Pattern Recognition (DPR) clusters identification along 3 repetitions of NEDC.

The results in terms of battery SOC and equivalence factor K in the NEDC, for some
design conditions are reported in Figure 12. In terms of charge sustainability, the DPR-
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ECMS is able to achieve a final SOC close to the target. Because the recognition of the
EUDC happens with a certain delay, the SOC is reduced due to a K lower than the charge
sustaining K, and only after regenerative braking and the recognition of the ECE, is the
SOC aligned with the target. When the auxiliary power is increased to 500 W or the initial
SOC is far lower than the target SOC, the PI controller intervenes, in combination with the
DPR, to update the K factor above or below the K factor of the reference case.
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SOCinit = 0.5 (a); DPR-ECMS with Paux = 500 W (b); DPR-ECMS with SOCinit = 0.2 (c). The reference
case with fixed K is represented with a black dotted line, while the DPR-ECMS is represented with a
blue solid line.

The performance of the controller using WLTC, RTS-95, RDE and City2City are re-
ported in Figure 13. In these cases, various clusters are recognized. In the WLTC, the
deviation of the SOC of the vehicle featuring the DPR-ECMS with respect to the reference
case is low. In the RDE, the SOC is controlled mostly between 0.4 and 0.6, while in the
City2City the SOC is operated between 0.2 and 0.8. The City2City driving cycle is com-
posed of a strong highway phase up to 5000 s and a mild urban phase in the last part of
the cycle, which would require, respectively, a significantly higher and lower K factor with
respect to those determined during the controller development phase. The criticalities of
the DPR-ECMS controller in the City2City driving cycle can be seen as a recommendation
to extend, towards specific RDE driving cycles, the database of driving cycles used to build
the controller.
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Figure 13. Impact of A-ECMS based on DPR on different driving cycles: WLTC (a), RTS95 (b), RDE (c)
and City2City (d).

In Table 4, the results in terms of CO2 emissions and final battery SOC are reported.
The DPR-ECMS shows comparable or improved CO2 emissions with respect to the vehicle
featuring the fixed K ECMS using the five driving cycles investigated. In the RDE, the
DPR-ECMS improves the fuel consumption by 6 gCO2/km. The higher Paux has an im-
pact on CO2 emissions, which increase by 10 gCO2/km on NEDC, 6 gCO2/km on WLTC,
8 gCO2/km on RTS-95, 6 gCO2/km on RDE and 4 gCO2/km on City2City, and the con-
troller guarantees a comparable battery SOC at the end of the driving cycles. Using
regulated driving cycles, an initial State of Charge equal to 0.2 causes an increment of CO2
emissions because the battery pack must be replenished during driving to achieve the
target SOC, while on RDE and City2City the energy to recharge the battery is negligible
with respect to the energy used to move the vehicle.

Table 4. Summary of the fuel consumption for the ECMS based on Driving Pattern Recognition
(DPR-ECMS).

Fixed K DPR-ECMS DPR-ECMS DPR-ECMS

- - Paux = 500 W SOCinit = 0.2

3× NEDC CO2 emissions g/km 123 123 133 127
Final SOC - 0.54 0.52 0.59 0.52

3× WLTC CO2 emissions g/km 121 122 128 124
Final SOC - 0.45 0.47 0.44 0.58

3× RTS-95 CO2 emissions g/km 155 154 162 156
Final SOC - 0.49 0.39 0.44 0.32

RDE CO2 emissions g/km 147 141 147 142
Final SOC - 0.5 0.4 0.43 0.47

City2City CO2 emissions g/km 164 164 168 164
Final SOC - 0.50 0.54 0.65 0.53



Energies 2022, 15, 3896 17 of 22

Figure 14 represents the operating conditions of the DPR controller using the five
driving cycles investigated, depicted on a plot in which the X and Y axis are the first
and second principal components, respectively. The five driving cycles cover the surface
explored during the controller development, encompassing all five clusters identified. The
components of RTS-95 and RDE roam to lower First and Second principal components
than previously evaluated, while RDE and City2City (this latter for a significant portion
of time) also extend to higher First and Second principal components (upper right part of
the figure). This suggests that future development of the DPR controller must account for
additional RDE cycles during the principal component characterization phase to improve
the recognition capabilities of the controller.
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Figure 14. Operating conditions of the DPR-ECMS controller using NEDC, WLTC, RTS-95, RDE and
City2City driving cycles on the First–Second Principal Component plan.

5.3. Driving Pattern Prediction (DPP-ECMS)

The DPR-ECMS showed how the recognition of the driving pattern can improve both
charge sustainability and CO2 emissions for a HEV. In this section, the authors evaluate the
benefit coming from the prediction of future velocity traces in terms of CO2 emissions and
charge sustainability with different velocity predictors.

First, the theoretical improvement coming from the exact knowledge of future velocity
was evaluated using NEDC, WLTC and RTS-95 with different forecast durations (200 s
being the rolling time window processed by the controller): 200 s, 30 s and 10 s. Then, two
simple prediction models, the Persistence and the Exponential Model, were used to predict
the future velocity trace with a forecast duration equal to 30 s using the five driving cycles
chosen. In Table 5, the acronym for each DPP-ECMS assessed is reported.

Table 5. DPP-ECMS controllers code name.

Acronym DPP-PP200 DPP-PP30 DPP-PP10 DPP-PE DPP-EX

Prediction Model Perfect Perfect 30 s Perfect 10 s Persistence Exponential
Forecast Time 200 s 30 s 10 s 30 s 30 s

In Figure 15, the SOC, the K and the identified clusters using NEDC for three different
perfect forecasts are represented. A forecast window of 200 s (equal to the processed
velocity timeframe) brings the recognition of the EUDC cluster forward and an earlier
adoption of a higher K factor, which results in a SOC close to the target. The difference
between a Perfect Prediction window of 30 s or 10 s is minor, and the performance of the
DPP-ECMS controller with these settings is close to the DPR-ECMS (cf. Figure 12).
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In Table 6, CO2 emissions and final SOC are reported along NEDC, WLTC and RTS-95
for different DPR and DPP techniques. During the NEDC, the DPP-PP200 guarantees
effectively that the SOC is close to the target SOC. However, in terms of CO2 emissions, the
impact of the Perfect Prediction is limited. In NEDC there is no CO2 difference between the
DPR-ECMS and DPP-PP200, DPP-PP30 and DPP-PP10. There is a small beneficial impact
in WLTC (−1 gCO2/km), only for the case with a Perfect Prediction of 200 s and in RTS-95
(−1 gCO2/km) in all cases. The DPP-PP200 does not significantly improve fuel consump-
tion because the PI controller on top of the driving pattern controller gradually acts on the
K to restore the charge sustainability.

Table 6. Summary of the fuel consumption for the ECMS based on DPR-ECMS, DPP-PP200, DPP-PE
and DPP-EX.

DPR-ECMS DPP-PP200 DPP-PE DPP-EX

NEDC
CO2 emissions g/km 123 123 123 123

Final SOC - 0.52 0.51 0.53 0.53

WLTC
CO2 emissions g/km 122 121 122 122

Final SOC - 0.47 0.5 0.49 0.47

RTS-95
CO2 emissions g/km 154 153 153 153

Final SOC - 0.39 0.41 0.39 0.39

After investigating the impact of a Perfect Prediction of the velocity trace, two simple
forecast models were explored.

In Table 7, the summary of fuel consumption and final battery SOC are reported.
Both the DPP-PE and the DPP-EX show CO2 emission results aligned with the DPP based
on Perfect Prediction with a forecast interval equal to 200 s. For example, in WLTC, the
CO2 emissions are equal to 121 gCO2/km for DPP-PP200, DPP-PE and DPP-EX, with
an improvement with respect to the base DPR-ECMS equal to 1 gCO2/km. Differences
between the forecasting model, i.e., the Perfect (DPP-PP200), both the Persistence (DPP-PE)
and the Exponential (DPP-EX) models, lies in negligible changes in the battery SOC at the
end of the simulation, respectively 0.50, 0.47 and 0.46. In the RDE, the controllers behave in
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the same way, while in the City2City driving cycle, the vehicles featuring the DPP with
the DPP-PP200 and the DPP-PE show a higher final SOC (respectively, 0.58 and 0.57 with
respect to 0.54 of the DPR-ECMS).

Table 7. Summary of the fuel consumption for the ECMS based on Driving Pattern Prediction with
the vehicle speed forecasted with a Persistence (DPP-PE) or Exponential Model (DPP-EX). DRP-ECMS
and DPP-PP200 are reported for comparison.

DPR-ECMS DPP-PP200 DPP-PE DPP-EX

NEDC
CO2 emissions g/km 123 123 123 123

Final SOC - 0.52 0.51 0.53 0.53

WLTC
CO2 emissions g/km 122 121 121 121

Final SOC - 0.47 0.50 0.47 0.46

RTS-95
CO2 emissions g/km 154 153 153 153

Final SOC - 0.39 0.41 0.39 0.39

RDE
CO2 emissions g/km 141 141 141 141

Final SOC - 0.40 0.40 0.39 0.40

City2City CO2 emissions g/km 164 164 164 164
Final SOC - 0.54 0.58 0.57 0.54

6. Conclusions

A GT-SUITE vehicle model, representing a gasoline-powered P2 HEV mid-size SUV,
was used as a virtual plant for the assessment of three auto-adaptive Energy Management
Systems (EMS). An A-ECMS based on SOC feedback, a Driving Pattern Recognition-ECMS
and a Driving Pattern Prediction-ECMS, all based on the ECMS concept, were developed,
integrated and investigated. The three auto-adaptive ECMS techniques were tested using
five type-approval and RDE driving cycles (NEDC, WLTC, RTS-95, RDE and City2City)
and compared, in terms of battery charge sustainability and fuel consumption performance,
against a reference EMS featuring a fixed-K ECMS control.

The A-ECMS based on the SOC feedback was evaluated in a two-fold manner. With
a timeframe of adaptation equal to the length of a given type-approval driving cycle, the
A-ECMS showed the capability to achieve the optimal K after some repeated cycles. On the
other hand, with an adaptation time (Tadapt) equal to 30 s and a Cp calibrated to guarantee
good controller performance across the five driving cycles investigated, comparable perfor-
mance in terms of fuel consumption and charge sustainability, with respect to the vehicle
featuring the fixed-K ECMS, were obtained. However, in the WLTC, the fuel consumption
increased by 10 gCO2/km (+8%) due to significant oscillations of the computed equivalence
factor K.

Then, the ECMS based on Driving Pattern Recognition (DPR) was evaluated. The
equivalence factor that guaranteed charge sustaining operation was computed using var-
ious driving cycles. In parallel, these driving cycles were analysed in terms of statistical
metrics (e.g., average speed, max positive acceleration, etc.) using the Principal Component
Analysis approach and grouped in five different clusters representing different driving
patterns. During vehicle operation, the vehicle speed during the previous 200 s was stored
and processed by the controller to recognize the driving pattern and select the proper
equivalence factor K for the ECMS. The DPR-ECMS showed comparable fuel consumption
(±1 gCO2/km) as the Reference ECMS with fixed K in NEDC, WLTC and RTS-95 and better
fuel consumption in the RDE driving cycle (−6 gCO2/km, corresponding to −4%). The
adoption of the DPR-ECMS on a different vehicle requires the evaluation of the charge
sustaining equivalence factor K for each driving cluster.

Finally, the DPR-ECMS was updated, thanks to velocity prediction models, becoming a
Driving Pattern Prediction ECMS. Past velocity traces were coupled with predicted vehicle
velocity in three different scenarios:
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• Perfect Prediction (DPP-PP): future velocity of type-approval cycles (NEDC, WLTC
and RTS-95) was supplied to the DPR controller to assess the maximum theoretical
benefit from this controller concept. An improvement in CO2 emissions by 1 gCO2/km
on WLTC and RTS-95 when the forecast interval was chosen as equal to the rolling
time window processed by the controller (i.e., 200 s) was achieved.

• Persistence Model (DPP-PE): in this case, the driving pattern is recognized with
both past velocities and future velocity. This latter is predicted assuming that the
current velocity persists during the prediction horizon (with a length equal to 30 s). A
reduction of 1 gCO2/km on RTS-95 was obtained.

• Exponential Model (DPP-EX): the future velocity is predicted assuming that the current
velocity reduces exponentially in the prediction horizon (30 s long) and both past
velocity and predicted velocity are used to recognize the driving pattern. With this
model, the vehicle featuring the DPP-ECMS reduced by 1 gCO2/km the CO2 emissions
in WLTC and RTS-95 with respect to the DPR-ECMS.

In conclusion, this project resulted in two main outcomes. First, a virtual represen-
tation of the target vehicle can be adopted for the development of an advanced Energy
Management controllers for Hybrid-Electric Vehicles. Then, auto-adaptive EMS can im-
prove both the charge sustainability and CO2 emissions of HEVs, especially in RDE driving
cycles, even if the adoption of prediction techniques had limited impact in terms of fuel
consumption improvements.

Future development directions of this work will involve, on the one hand, the ex-
pansion of the database of driving cycles, including altitude data, to train the recognition
capabilities of the DPR-ECMS on a wider range of operating conditions with the aim of
improving charge sustainability. On the other hand, because the Perfect Prediction of the
driving cycle may have a beneficial impact on fuel consumption, the DPP-ECMS algorithm
can be effectively improved via integration with on-board GPS and ADAS data collection,
to enhance future vehicle speed prediction.
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Abbreviations

The following abbreviations are used in this manuscript:
.

mbatt Virtual battery fuel consumption
.

meqv Equivalent fuel consumption
.

m f Engine fuel consumption
Ci Integral term
Vti Forecasted velocity at the time ti of forecast
Vt Current vehicle velocity
Cp Proportional term
K0 Initial K factor
KT Equivalence factor computed at the beginning of interval T
KT−1 K factor computed at the T−1 preceding intervals
KT−2 K factor computed at the T−2 preceding intervals
Pbatt Battery power
ti Time of forecast at instant i
A-ECMS Adaptive ECMS
ARMA Autoregressive Moving Average
DPP Driving Cycle Prediction
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DPP-EX DPP Exponential Model
DPP-PP10 DPP Perfect Prediction with forecast window of 10 s
DPP-PP200 DPP Perfect Prediction with forecast window of 200 s
DPP-PP30 DPP Perfect Prediction with forecast window of 30 s
DPR Driving Cycle Recognition
ECMS Equivalent Consumption Minimization Strategy
ECU Engine Control Unit
EM Electric Motor
EMS Energy Management Systems
HEV Hybrid-Electric Vehicle
ICE Internal Combustion Engine
ITS Intelligent Transportation Systems
K Equivalence Factor
Kinitial Initial value of the equivalence factor (including fuel LHV)
LSTM Long Short-Term Memory
MPC Model Predictive Control
NEDC New European Driving Cycle
Paux Electric auxiliary power
PCA Principal Component Analysis
pRSG predictive Reference Signal Generator
RDE Real Driving Emissions
RT Real Time
RTS-95 standardized random test for an aggressive driving style
SOC State of Charge
SUV Sport Utility Vehicle
T Current time interval
t Current time
VCU Vehicle Control Unit
WLTC Worldwide Harmonized Light Vehicles Test Cycle
K Equivalence factor (including fuel LHV)
LHV Lower Heating Value of the fuel
SOCinit Initial battery SOC
SOCtgt Target value for the battery SOC
SOC(T) SOC at the beginning of the current time interval T
SOC(t) Actual SOC value
s Equivalence factor
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