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Abstract: In this empirical study, multifactor stochastic volatility models for the financial Nordic/Baltic
power markets are developed, implemented, and analyzed. Stochastic volatility projections are
the primary aim, followed by volatility forecasts and market repercussions. The research provides
a functional variant of the conditional distribution ( f (x|y)) based on conditional moments and a
long-simulated state vector realization (MCMC-GMM) that is evaluated on observed data (a non-
linear Kalman Filter) and applicable for step-forward volatility forecasts. For front year and quarter
financial electricity contracts, the SV model creates two mean-reverting factors: one persistent and
slowly moving component and one choppy, rapidly moving component. According to these factors,
static volatility predictions with optimum and generous lags have a Theil covariance percentage of
well over 97 percent for the front year contracts and 86 percent for the front quarter contracts. The
volatility visibility and its associated static forecasts improve market transparency and will eventually
make diversification and risk management easier to implement.

Keywords: forecasting; Markov Chain Monte Carlo (MCMC-GMM) estimation; nonlinear Kalman
filter; stochastic volatility

1. Introduction

This research creates and tests multifactor scientific stochastic volatility (SV) models
for predicting future electricity market volatility, which is characterized by extremes and
unpredictability. Electricity volatility is a measure of the spread around the mean return
on financial energy contracts. Given that electricity markets are influenced by a variety of
factors such as weather, local economic activity, the global financial outlook, international
prices, resource availability, investment in future resources, government policies, and the
physical and mechanical constraints on plant or infrastructure, periods of high volatility are
frequently the rule rather than the exception, making budgeting and cost control difficult.
Understanding and forecasting the effect of major market fundamental risk variables is
therefore critical for all market players since volatility is expected to persist. Volatility is low
(high) when daily price fluctuations are firmly bunched together (spread apart). Volatility
measurements provide predictive properties for future returns, and volatility models have
therefore been used globally to anticipate the absolute size of returns, quantiles, and full
densities. Squared price changes, for example, are a basic and often used indicator for
financial market volatility.

One of the characteristics that distinguishes market volatility is that it is not visible (la-
tent) for market participants. The unobservability makes it difficult to assess the predictive
efficacy. Models are therefore difficult to evaluate. Simultaneously, volatility prediction
and understanding the empirical features of future contract pricing are critical for develop-
ing risk management techniques for portfolio selection, derivatives and hedging, market
making, and market timing. The Nasdaq OMX financial market also offers a liquid market
for derivatives on future contracts. Consequently, any Nasdaq OMX market participant
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will benefit from a volatility model that predicts volatility. For instance, a successful risk
manager must be able to forecast if his portfolio will increase or decline in the future. For
hedging purposes, a risk manager will benefit from knowing the volatility as a contract
approaches maturity. Volatility, for example, is the sole parameter that requires estimate in
the Black–Scholes formula. In an energy market, an option trader will want to know how
volatile the contract will be over the contract’s lifetime. Derivatives encourage hedging,
a risk-reduction approach that necessitates a thorough understanding of how to value
derivatives and which risks should and should not be hedged. To hedge a contract, a trader
will need to know the expected volatility. The volatility estimates may also be useful in
calculating binomial model parameters (u and d). In general, higher (lower) volatility raises
(decreases) derivative prices. As a result, if market players anticipate a drop (increase) in
volatility, they will sell (purchase) call and put option contract holdings that are not part
of speculative or hedging positions. A portfolio manager may desire to sell an asset or an
asset portfolio before it becomes very volatile. According to worldwide portfolio and asset
research, when volatility grows, so does risk, and portfolio and asset movements fall. If
a portfolio manager adds extra assets to his portfolio, the additional assets diversify the
portfolio if they do not covary (correlation less than 1) with the other assets in the same
portfolio. As a result, portfolios frequently recommend diversification, highlighting the
need of asset allocation. Furthermore, if a market maker expects that future volatility will
vary, he may alter his bid-ask market spread, knowing that when volatility rises (falling),
the bid-ask spread normally rises (falls).

The main stylized features of asset, currency, and commodity price variations may
be described using stochastic volatility models, which have a basic and uncomplicated
structure [1]. The observed frequently and regularly fluctuating volatility motivates stochas-
tic volatility. Market participants who understand volatility’s dynamic behavior are more
likely to have realistic expectations about future prices and the risks to which they are
exposed [2]. In financial markets, time-varying volatility is widespread, and market players
who grasp the dynamic nature of volatility are more likely to have correct expectations
about future prices. The SV implementation tries to depict the evolution of volatility over
time. Volatility, although being a non-traded instrument with inaccurate estimates, may be
thought of as a latent variable that can be modeled and predicted by its direct influence on
the magnitude of returns. Because risks can alter in various ways over time, multi-factor
stochastic models for volatility temporal development are required. Thus, the use of SV
models is essentially motivated by three criteria. First, the number of events on day t
is unpredictable [2]. The number of day t events is proportional to the SV methodology.
Second, the trading clock (time deformation) runs at varying intensities on different days,
and the clock is frequently represented by trade volume [3]. Finally, Hull and White [4]
show that SV models for continuous volatility variables provide a decent approximation to
diffusion processes (closely related to realized variance). In contrast, general autoregressive
conditional heteroscedasticity (GARCH) processes, which are commonly referred to as SV,
do not use this terminology. These models explicitly model the conditional variance given
the econometrician’s prior observed returns.

The approach adapts Chernozhukov and Hong’s MCMC-GMM estimator [5] for
stochastic situations, which is reported to be much superior than typical derivative-based
hill climbing optimizers. The main reason is asymptotically correct standard errors for
the weighting matrix

(
Ĩn

)
. Furthermore, when the structural models are accurately

stated, the normalized value of the objective function is asymptotically χ2 distributable
(and the degrees of freedom are specified). Gallant and McCulloch [6] and Gallant and
Tauchen [7,8] implemented multivariate statistical models built from scientific concerns
using the Bayesian Markov Chain Monte Carlo (MCMC) modeling approach. The method-
ology is a systematic approach to obtaining moment conditions for a structural model’s
parameters using the generalized method of moments (GMM) estimator [8]. The Cher-
nozhukov and Hong [9] estimator was used to conserve model parameters in the range
where projected shares are positive for each observed price/expenditure vector. Further-
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more, the technique takes into account limitations, inequality constraints, and useful prior
information (on the model parameters and functions).

The main results show that the MCMC-GMM estimated multifactor SV model, ex-
tended with a non-linear Kalman filter, visualize and reproject the latent volatility. Knowing
that volatility is strongly negatively correlated with commodity prices, market strategies in-
volving volatility will enhance diversification as well as insure market participants against
market crashes. Furthermore, static volatility forecasts can make market strategies even
more accurate. The rest of the article is organized as follows. Section 2 describes the
methodology and explicitly describes the non-linear Kalman filter. Section 3 characterizes
the Nasdaq OMX front year and front quarter contracts. Section 4 reports the empirical
results. Section 5 discusses findings for the electricity market, and Section 5 summarizes
and concludes the paper.

2. Literature and Methodologies

Rather than specifying the predictive distribution of price returns directly, the SV
technique does so indirectly, using the model’s structure. Because the SV model has its
own stochastic process, the econometrician is not concerned with the anticipated one-step-
ahead distribution of returns collected over an arbitrary time interval. The application of
Andersen et al. [10] is used as a starting point, with the known stochastic volatility diffusion
for an observed stock price St provided by

dSt

St
= (µ + c(V1,t + V2,t))dt +

√
V1,tdW1,t +

√
V2,tdW2,t

where the unobserved volatility processes Vi,t, i = 1, 2, are either log linear or square root
(affine). The W1,t and W2,t are standard Brownian motions that are possibly correlated with
(dW1,t, dW2,t). Andersen et al. [10,11] evaluated both variants of the stochastic volatility
model using daily S&P500 stock index data from 1953 to 31 December 1996. Both variants of
the SV model were categorically rejected. Adding a jump component to a simple SV model,
on the other hand, significantly improves the fit, owing to two well-known characteristics:
fat non-Gaussian tails and persistent time-varying volatility. Chernov et al. [12] used
an SV model with two stochastic volatility variables and found promising results. The
authors look at two different types of settings for the volatility index functions and factor
dynamics: affine and logarithmic. The models are based on daily Dow Jones Index data
from 2 January 1953, through 16 July 1999. They discover that models with two volatility
variables perform significantly better than models with simply one. One of the volatility
variables is very stable, whereas the other is choppy and mean reverting. Solibakke [13]
implements a multifactor logarithmic stochastic volatility model for the European equity
markets. Applying continuous time price movements (yt), the logarithmic model is applicable
for commodities, (crypto-)currencies, equities, and interest rates/bonds. The unique model
is specified below using two stochastic volatility factors. (See Solibakke [14] for a detailed
definition and specification of a two-factor stochastic volatility model. See also [15]).

yt = a0 + a1(yt−1 − a0) + exp(V1t + V2t)·u1t

V1t = b0 + b1(V1,t−1 − b0) + u2t

V2t = c0 + c1(V2,t−1 − c0) + u3t

u1t = dW1t

u2t = s1

(
r1·dW1t +

√
1− r2

1·dW2t

)

u3t = s2

 r2·dW1t +
(
(r3 − (r2·r1))/

√
1− r2

1

)
·dW2t+√

1− r2
2 −

(
(r3 − (r2·r1))/

√
1− r2

1

)2
·dW3t



(1)
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Wi.t, i = 1, 2, and 3 are standard Brownian motions (random variables). The pa-
rameter vector is θ = (a0, a1, b0, b1, c0, c1, s1, s2, r1, r2, r3). The r’s are Cholesky decompo-
sition correlation coefficients that enforce an internally consistent variance/covariance
matrix. In this study, the logarithmic model with numerous stochastic volatility variables is
adopted [12,14]. In the model, the Cholesky decomposition for consistency is employed
to enhance correlation between the model elements. The main justification for using
correlation modeling is that it allows for the introduction of asymmetry effects (correla-
tion between return and volatility innovations). Rosenberg [16], Clark [3], Taylor [2], and
Tauchen and Pitts [17] are early mentions. Gallant et al. [18], Andersen [10,19], Durham [20],
Shephard [15], and Chernov et al. [12] are more recent references.

For statistical analysis of a stochastic volatility model produced from a scientific pro-
cess, the article employs a computational technique described by Gallant and McCulloch [6]
and Gallant and Tauchen [7,8]. The technique may be stated intuitively as follows. To begin,
a reduced-form auxiliary model (ARMA-GARCH) with a general parameterization is esti-
mated to provide a tractable likelihood function. The phase gathers significant information
about the probabilistic structure of the data sample from the conditional model and esti-
mated set of score moment functions ( f (y|x)). Second, the logarithmic stochastic volatility
model is estimated using realistic starting values for the model coefficients. The optimal
MCMC-GMM methodology uses a long-simulated sample (>100 k) for the continuous
time SV model described above. Parameters are changed using the Metropolis–Hastings
method and parallel computation (OpenMPI, https://www.open-mpi.org (accessed on
1 April 2022)) to provide the best fit to the quasi-score moment functions assessed on the
simulated data. A comprehensive collection of model diagnostics and a clear metric for
gauging the level of SV model success are helpful byproducts. As already shown, the
scientific stochastic volatility model can be easily simulated, but it cannot generate likeli-
hoods. Finally, reprojection [21], a computationally expensive, simulation-based non-linear
Kalman filter approach, works backward from the observed process to infer the unobserved
state vector. (A Kalman filter [22] is an algorithm for sequentially updating a projection
for a dynamic system. The algorithm provides a way to calculate exact finite-sample fore-
casts). That is, from conditional moments and the optimally estimated SV model

(
φ = φ̂

)
,

a by-product is a long-simulated realization of the volatility state vector
{

V̂i,t
}N

t=1, i = 1, 2

and the corresponding returns {ŷt}N
t=1. The simulation {ŷt}N

t=1 and
{

V̂i,t
}N

t=1, i = 1, 2
makes it possible to calibrate the functional form of the conditional distribution of these
volatility functions. For this calibration, an SNP model is re-estimated on the simulated
returns ŷt, and remembering that the model provides a convenient representation of the
step-ahead conditional variance σ̂2

t of simulated returns ŷt+1 given the long simulated
returns. Ordinary regressions are run of V̂i,t, i = 1, 2 on σ̂2

t , ŷt |ŷt| with generously long lags
of these series. The functions are then simply evaluated on the observed data series {ỹt}n

t=1.
Generally, from a large data set, the conditional distributions of functions of Vi,t, i = 1, 2
given {ŷτ}t

τ=1 through non-linear Kalman filtering [22], the functions are evaluated on the
observed data {ỹτ}t

τ=1, giving volatility values Ṽi,t, i = 1, 2 for the two volatility factors at the

original data points [21]. That is, the available data set now consists of {ỹτ}T
τ=1,

{
Ṽ1,τ

}T

τ=1
,

and
{

Ṽ2,τ

}T

τ=1
, where T is the length of the original observed data series. The latent volatility

is now no longer latent but observable and available for analysis and forecasting.

3. Nordic/Baltic Electricity Market’s Front Year and Front Quarter Contracts

The daily studies span more than 12 years, from the end of 2009 to the beginning of
2022 (April), resulting in approximately 3000 daily price movements for the front year and
front quarter electricity price series (Supplementary Materials). Due to the non-stationarity
of the price series, the analysis is based on stationary logarithmic price changes from the
two series. Any evidence of effective SV-model market implementations implies random

https://www.open-mpi.org
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price changes and a minimum of weak-form market efficiency. As a result, the markets can
be used for both increased risk management and volatility (derivatives) measurements.

3.1. The Nasdaq OMX Front Year and Front Quarter Contracts

Summary statistics for the two time-series are presented in Table 1. Figure 1 reports
the time series, distributions, and correlograms. Both the front year and the front quarter
series have positive average price changes (positive drift). The standard deviation for
the front year (1.521) is naturally lower than the front quarter (2.668), reporting lower
risk. The maximum (9.6) and minimum (−9.7) numbers confirm lower risk for the front
year relative to the front quarter (a maximum of 27.9 and a minimum of −14.5) contracts.
The front year contracts have a negative skewness coefficient, suggesting that the return
distributions are negatively skewed. In contrast, the front quarter contracts show a positive
skewness, indicating a right-skewed distribution (more extreme positive price movements).
Kurtosis coefficients for the first quarter series are much higher than zero (>>0), indicating
a strongly peaked distribution with heavy tails. The front quarter contract series has a
higher peak than the front year contract series, indicating that the quarter series contains
even more observations near to the unconditional mean. The Cramer–von Mises normal
test statistics [23] suggest non-normal return distributions. In contrast, the quantile normal
test statistics suggest more normal distributed returns. Figure 1 plots (top and middle
parts) visually support and display these findings. The serial correlation in the mean
equation is high, and the Ljung-Box Q-statistic [24] for both series is substantial. Volatility
clustering appears to be evident using the Ljung-Box test statistic for squared returns (Q2)
and ARCH test statistics. Non-stationary series are rejected by the ADF [25] and Phillips-
Perron test statistics. The RESET [26] test statistic, which accounts for any deviation from
the maintained model’s assumptions, is noteworthy (instability). Finally, the BDS [27]
test statistics show that all integrals (m) have extremely substantial data dependence.
Figure 1 (bottom) shows correlograms for daily price and squared/absolute price changes
up to lag 20. Correlograms for daily price changes reveal only modest dependency, but
correlograms for squared and absolute returns show significant data dependence, mostly in
the form of serial correlation. The price change (log returns) data series demonstrate that the
amount of volatility appears to alter at random but has a time variable character, as is usual
for financial markets. We also experimented with breaking trends in the movement equations,
but our results suggested little evidence for trend breaks. Quandt-Andrews [28] and Bai and
Perron [29] report insignificant statistics (Quandt-Andrews’ [28] single breakpoint test static
report for front year contract a max. Wald F-statistic (2 December 2016) 6.143415 {0.1510}
and for front quarter contract a max. Wald F-statistic (17 March 2020) 5.187115 {0.2284}, and
Bai and Perron’s [29] multiple breakpoint tests report for front year contract 0 vs. 1 breaks
6.143415 with critical value: 8.58, and for front quarter contract 0 vs. 1 breaks 5.187115 with
critical value: 8.58.) for single and multiple breakpoints for both contracts. The Value at Risk
(VaR) is a well-known concept of measures of risk, and Table 1 includes the 2.5% and 1% VaR
numbers for market participants.

Table 1. Nordic/Baltic Electricity Market Characteristics, 2010–2022.

Panel A Nasdaq OMX Front Year Return Series

Mean (all)/ Median Max./ Moment Quantile Quantile Cramer Serial dependence VaR
M (-drop) Std.dev. Min. Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q2(12) (1; 2.5%)

0.03775 0.00000 21.5520 9.9166 0.28524 9.1610 1333.80 34.736 566.72 −6.394%
0.03716 2.10427 −13.4348 0.35853 0.04656 {0.0102} {0.0000} {0.0010} {0.0000} −4.452%
BDS-Z-statistic (e = 1) Phillips & Augment ARCH RESET CVaR
m = 2 m = 3 m = 4 m = 5 m = 6 Perron DF-test (12) (6;12) (1; 2.5%)

10.7530 12.7224 15.3246 18.0319 0.11584 −44.57339 −44.6405 252.848 4.189406 −8.389%
{0.0000} {0.0000} {0.0000} {0.0000} {0.1246} {0.0000} {0.0000} {0.0000} {0.0000} −6.517%
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Table 1. Cont.

Panel B Nasdaq OMX Front Quarter Return Series

Mean (all)/ Median Max./ Moment Quantile Quantile Cramer- Serial dependence VaR
M (-drop) Std.dev. Min. Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q2(12) (1; 2.5%)

0.01660 0.00000 27.8948 8.3326 0.20601 4.3358 12267.80 59.546 419.55 −9.937%
0.01176 3.32033 −21.2991 0.50813 −0.00653 {0.1144} {0.0000} {0.0000} {0.0000} −7.038%
BDS-Z-statistic (e = 1) P&Perron Augment ARCH RESET CVaR
m = 2 m = 3 m = 4 m = 5 m = 6 I + Trend DF-test (12) (12;6) (1; 2.5%)

10.9471 13.1693 15.1492 17.1172 0.30024 −42.93681 −42.9187 20.740 9.5316 −12.516%
{0.0000} {0.0000} {0.0000} {0.0000} {0.0050} {0.0000} {0.0000} {0.0000} {0.0000} −9.990%
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3.2. Empirical Results

The conditional moments are calculated using a statistical model for density ( f (y|x)),
where y represents price fluctuations and x represents series delays (SNP). The stochastic
volatility model (SV) from the equations above is estimated using the efficient method of
moments (EMM [30]), that is, MCMC-GMM, employing the SNP generated conditional
moments. Table 2 reports the conditional moments (panel A) and the BIC [31] optimal
SV model coefficients (Panel B). Panel A reports the conditional moments that are used
for the SV model simulation procedure. Note that we apply a spline transformation to
squash the conditional values of the time series, not altering the asymptotic properties of
the SNP estimators. The requirement for a largest eigenvalue for the variance less than
one does no longer holds under this spline transformation (less than two under spline).
Panel A reports the mode and standard errors for the conditional moments of the front
year and front quarter contracts. The optimal BIC values are 1.17109 and 1.17361 for the
front year and front quarter, respectively. Panel B reports columns for the mode, the mean
and the standard errors for the front year and front quarter SV models. The SV model
generates appropriate model test statistics, which are shown at the bottom of Panel B of
Table 2. The objective function accuracy for the front year and front quarter contracts is
−2.3 and −2.7, respectively, with related χ2 test statistics of 0.51 (3 df) and 0.44. (3 df).
Together with diagnostics for the conditional moments from the fourteen statistical SNP
estimation (all < 1.6 not reported; for score diagnostics, a value greater than 2 indicates
diagnostic failure), the χ2 numbers report success. Figure 2 shows the MCMC log-posterior
pathways. The model does not fail the test of over-identified limitations at the 10% level,
the chains are choppy, and the densities are near to normal, all of which indicate that the
SV model is adequate for the two electricity market contracts. As a result of the calculated
SV model, the long-simulated realization of the state vector creates a functional form of the
conditional distribution.

Table 2. Nasdaq OMX Moments and Stochastic Volatility Coefficients, 2022.

Panel A The SNP Electricity Markets Conditional Moments

Front Standard Front Standard
Coeff. Year theta errors Quarter theta errors

Hermite Polynoms
h1 a0[1] 0.03455 0.0236 a0[1] −0.00107 0.0196
h2 a0[2] 0.03593 0.0319 a0[2] −0.11727 0.0166
h3 a0[3] −0.01690 0.0118 a0[3] −0.01688 0.0129
h4 a0[4] 0.07703 0.0113 a0[4] 0.11397 0.0111

Mean Equation (Correlation)
h5 b0[1] −0.05713 0.0281 B[1,1] −0.00975 0.0243
h6 B[1,1] 0.09000 0.0208 B[1,1] 0.09046 0.0211

Variance Equation (Correlation)
h7 R0[1] 0.06775 0.0137 R0[1] 0.09497 0.0145
h8 P[1,1] 0.31726 0.0320 P[1,1] 0.37250 0.0291
h9 Q[1,1] 0.95031 0.0064 Q[1,1] 0.94747 0.0069
h10 V[1,1] −0.11353 0.0851 V[1,1] −0.00096 511,882.37

Model sn 1.10494833 1.09814366
selection aic 1.10945468 1.10265001
criterias: bic 1.12252347 1.1157188
Largest eigenvalue mean: 0.0900003 0.0904637

Largest eigenvalue variance: 1.003750 1.036460
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Table 2. Cont.

Panel B Front Contracts Parameter Values for Scientific Models

Coeff. Front Year Standard Front Quarter Standard
θ Mode Mean errors Mode Mean errors

a0 0.07813 0.07050 0.04805 0.04688 0.05533 0.04808
a1 0.07813 0.09337 0.02092 0.08984 0.08910 0.02027
b0 0.56250 0.54483 0.17370 0.76562 0.69850 0.12565
b1 0.97656 0.91499 0.04284 0.98047 0.95517 0.03767
c1 0.0 0.0 0.0 0.0 0.0 0.0
s1 0.08594 0.12427 0.02831 0.08203 0.09375 0.02493
s2 0.16406 0.07667 0.05527 0.20703 0.18367 0.05950
r1 0.06250 −0.02430 0.13552 −0.03125 0.06765 0.23628
r2 −0.12500 −0.08900 0.33878 −0.07813 −0.17646 0.17803

Distributed (no. of freedom) χ2(3) χ2(3)
Posterior at the mode −2.5271 −2.7826

Chisq. test statistic {0.4704} {0.4264}
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Figure 2. MCMC Posterior Chain from 250 k Optimal SV Model (R = 75.000).

3.3. Nasdaq OMX Front Year and Front Quarter Stochastic Volatility

From the two recalibrated SNP models and their associated non-linear Kalman filter,
the reprojected volatility for the observed dates is available

(
Ṽit, i = 1, 2

)
. The latent

volatility is now no longer latent but observable and available for both analysis and
forecasting. Figure 3 reports factor 1 (V1), factor 2 (V2) (left axis), and the

√
252e(V1+V2))

(right axis) from the observed data points for the front year (top) and front quarter (bottom)
contracts. Interestingly, V1 is a slow-moving, persistent volatility factor, while V2 is a
fast-moving and strongly mean-reverting volatility factor. The volatility factors in Figure 3
seem to model two different flows of information to the electricity market and the market
participants. Market transparency and the flow of information may therefore be classified
according to factors. One slowly mean-reverting factor provides volatility persistence,
and one rapidly mean-reverting factor provides for the tails [21]. Furthermore, from the
volatility paths incorporating the projected yearly volatility

√
252e(V1+V2)), the volatility

seems more influenced by the V1 persistent factor than the mean-reverting V2 factor. The
line for the V1 factor is rarely exceeded by the V2 factor (both measured on the left axis).
Figure 3 also reports the ordinary least square R2 number for V̂i,t, i = 1, 2 on σ̂2

t , ŷt |ŷt|
and generously long lags for the front year and the front quarter. For V1 (V2), the R2 is
95.6% (4,8%) and 96.3% (5.9%) for the front year and front quarter, respectively. That is, the
V1 factor seems clearly easier to project than V2 for both the front year and quarter contracts.
The stochastic volatility

(√
252e(V1+V2))

)
for the front year and quarter is a combination
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of their associated factors V1 and V2. The latent volatility is now immediately available
and visible to all market participants. For electronic markets, the stochastic volatility series
should be tradeable on a real-time basis.
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When Figures 1 and 3 are compared, the two synchronous plots demonstrate that as
returns become broader (narrower), volatility increases (decreases). Furthermore, turbulent
(wide returns) days are more likely to be followed by other turbulent days, and calm
(narrow returns) days are more likely to be followed by other tranquil (wide returns) days
(clustering). Table 3 summarizes the volatility measures for the two electricity contracts.
The volatility from the front quarter is larger than from the front year contracts. The V1 (V2)
factor for the front year contracts reports a mean of 0.52 (−0.002) with a standard deviation
of 0.14 (0.04). The higher volatility for the front quarter contracts is confirmed by a mean
for V1 (V2) of 0.77 (0.004) and standard deviation of 0.16 (0.07). Moreover, due to the mean
size differences for V1 and V2, the stochastic volatility for both contracts

(√
252e(V1+V2))

)
seems dominated by the V1 factor. The characteristics for V1 will therefore most likely also
be found for the stochastic volatility.

Table 3 shows the characteristics for V1, V2, and the stochastic volatility
(√

252e(V1+V2))
)

.
The front year (front quarter) contracts’ average volatility is 20.6 (23.5). The standard
deviation is 1.7 for the front year and 2.4 for the front quarter contracts. Both contracts report
non-normal densities for the Kalman filtered volatility. The Phillips–Perron and Augmented
Dickey–Fuller tests cannot reject stationary volatility for the contracts. Moreover, a unit root
with break test and with break selection minimizes the Dickey–Fuller t-statistic, rejecting
the unit root for both front year and front quarter with −13.54 {<0.01} and −21.38 {<0.01},
respectively (probabilities in {}). Figure 4 reports the volatility densities (histogram) for the
two contracts together with a Epanechnikov kernel and Student-t and Gamma distributions.
Both contracts show a right-skewed distribution with a wider and higher density for the
front quarter than the front year density.
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Table 3. Nasdaq OMX Front Year and Quarter Volatility Characteristics 2020/2021.

Panel A Characteristics Nasdaq Front Year Contracts

Volatility Factor V1
Mean (all)/ Median Maximum/ Moment Quantile Quantile Cramer- Andersen Serial dep.

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Darling Q(12)
0.51887 0.48874 1.0954 2.43301 0.13542 10.8320 9.8053 63.85624 22713

0.14465 0.0225 1.13207 0.14916 {0.0044} {0.0000} {0.0000} {0.0000}
BDS-Z-statistic (e = 1) Phillips- Augment Breusch-Godfrey LM
m = 2 m = 3 m = 4 m = 5 m = 6 Perron test DF-test 10 lags 20 lags

124.121 146.201 175.798 218.816 280.884 −3.41164 −3.1497 2397.20 2397.31
0.00000 {0.0000} {0.0000} {0.0000} {0.0000} {0.0107} {0.0232} {0.0000} {0.0000}
Volatility Factor V2

Mean (all)/ Median Maximum/ Moment Quantile Quantile Cramer- Andersen Serial dep.
Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Darling Q(12)
−0.00272 −0.01341 0.3881 17.62417 0.08493 14.3653 33.1623 181.8012 374.23

0.03744 −0.0794 3.35739 0.18380 {0.0008} {0.0000} {0.0000} {0.0000}
BDS-Z-statistic (e = 1) Phillips - Augment Breusch-Godfrey LM
m = 2 m = 3 m = 4 m = 5 m = 6 Perron test DF-test 10 lags 20 lags
12.395 13.329 14.954 16.204 17.577 −51.840 −9.6462 180.953 224.657
0.00000 {0.0000} {0.0000} {0.0000} {0.0000} {0.0001} {0.0000} {0.0000} {0.0000}

Reprojected Volatility (exp(V1 + V2))
Mean (all)/ Median Maximum/ Moment Quantile Quantile Cramer- Andersen Serial dep.

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Darling Q(12)
20.61478 20.20185 31.1449 4.29946 0.14271 11.0575 13.8382 84.6297 20112

1.71739 16.1142 1.66877 0.14933 {0.0040} {0.0000} {0.0000} {0.0000}
BDS-Z-statistic (e = 1) Phillips- Augment Breusch-Godfrey LM
m = 2 m = 3 m = 4 m = 5 m = 6 Perron test DF-test 10 lags 20 lags
86.772 99.537 115.601 137.650 168.371 −8.73293 −3.1274 2202.33 2205.25
0.00000 {0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0247} {0.0000} {0.0000}

Panel B Characteristics Nasdaq Front Quarter Contracts

Volatility Factor V1
Mean (all)/ Median Maximum/ Moment Quantile Quantile Cramer- Andersen Serial dep.
M (-drop) Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Darling Q(12)

0.76788 0.71704 1.20739 1.56322 0.53077 122.3606 19.5508 104.339 26513
0.16247 0.02150 0.33583 0.48238 {0.0000} {0.0000} {0.0000} {0.0000}

BDS-Z-statistic (e = 1) Phillips- Augment Breusch-Godfrey LM
m = 2 m = 3 m = 4 m = 5 m = 6 Perron test DF-test 10 lags 20 lags

108.216 127.281 152.794 189.844 243.259 −4.15052 −4.2901 2390.69 2390.84
{0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0008} {0.0005} {0.0000} {0.0000}

Volatility Factor V2
Mean (all)/ Median Maximum/ Moment Quantile Quantile Cramer- Andersen Serial dep.
M (-drop) Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Darling Q(12)

0.00393 −0.01455 0.56434 12.78224 0.20480 34.3745 26.4854 146.889 290.69
0.06761 −0.15333 2.83930 0.27326 {0.0000} {0.0000} {0.0000} {0.0000}

BDS-Z-statistic (e = 1) Phillips - Augment Breusch-Godfrey LM
m = 2 m = 3 m = 4 m = 5 m = 6 Perron test DF-test 10 lags 20 lags

12.4713 16.0226 18.1589 20.1589 22.4214 −55.20717 −9.8673 154.1516 190.1991
{0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0001} {0.0000} {0.0000} {0.0000}

Stochastic Yearly Volatility (
√

252*exp(V1 + V2))
Mean (all)/ Median Maximum/ Moment Quantile Quantile Cramer- Andersen Serial dep.
M (-drop) Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Darling Q(12)
23.46186 22.72147 38.20854 3.27852 0.36575 76.9821 22.3128 116.342 19360

2.37134 16.27464 1.40411 0.39657 {0.0000} {0.0000} {0.0000} {0.0000}
BDS-Z-statistic (e = 1) Phillips- Augment Breusch-Godfrey LM
m = 2 m = 3 m = 4 m = 5 m = 6 Perron test DF-test 10 lags 20 lags

70.6365 81.9115 95.5908 114.165 139.986 −21.88660 −2.9438 1955.24 1959.39
{0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0406} {0.0000} {0.0000}
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Figure 4. Stochastic Volatility Densities from Observables and the Kalman Filter. 
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*

1 2exp( )
t

t T

t t

t

y V V dt

+
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y  is the contemporaneous latent variable, for the 

purpose of pricing options for the electricity contracts. Using Black and Scholes or the 

Binomial Formula to price options—for example, varying contract prices and time to ma-

turity—may be beneficial for market participants. Figure 5 reports a Call−Put plot over 

moneyness (ln(S/K)) for the front year option contracts per 1 April 2022. 

Figure 4. Stochastic Volatility Densities from Observables and the Kalman Filter.

Figure 4. Cont.
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For this application of the stochastic volatility model, an estimate of

y∗t =
t+T∫
t

exp(V1t + V2t)·dt, where y∗t is the contemporaneous latent variable, for the pur-

pose of pricing options for the electricity contracts. Using Black and Scholes or the Binomial
Formula to price options—for example, varying contract prices and time to maturity—may
be beneficial for market participants. Figure 5 reports a Call–Put plot over moneyness
(ln(S/K)) for the front year option contracts per 1 April 2022.
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3.4. Forecasting Nasdaq OMX Front Year and Front Quarter Volatility

For the front year serial correlation (Q) [32], the BDS Z-statistics [27] and Breusch–
Godfrey [33] LM statistics in Table 3 suggest strong serial correlation (data dependence).
Figure 6 reports the correlograms. The measures suggest substantial serial correlation
(data dependence), that is, persistence (long memory). Forecasting volatility may therefore
become plausible. Forecasting is challenging because the outcome of a stochastic process
is influenced by random events that occur in the future. If there is a significant market
movement before the risk horizon, the prediction must account for it. Static forecasts, on
the other hand, are used to make a series of one-step-ahead forecasts of the two dependent
variables, Nasdaq OMX front year and front quarter. In a static forecast, the methodology
employs the actual value of the lagged endogenous variable for each observation in the
forecast sample, requiring that data for both the exogenous and any lagged endogenous
variables be observed for every observation in the forecast sample. Forecasting a realization
of a stochastic process is difficult because the process will be influenced by random events
that happen in the future. If there is a substantial market movement before the risk horizon,
the prediction must account for it.
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For the market forecasting, the SV model is estimated for the period 2010–2021 (in-the-
sample). The period 2021 to 2022 (4) is the out-of-sample period. Hence, the forecasting
period runs from 1 January 2021 to 1 April 2022, with the estimating period for the SV
model being from 2010 to 1 January 2021. Note that in practice, the SV model estimation
can be estimated every week/month to incorporate the latest information in the model for
forecasting purposes. (The SV model does not change significantly during the period 2021
to 2022 (4). For exposition and reporting, the SV model is therefore not updated during
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the 2021 to 2022 (4) period. In practice, the SV model’s weekly/monthly update will most
certainly be performed for updated information). The RMSE and MAE are scale dependent
on the dependent variable. The lower the inaccuracy, however, the higher the predicting
ability. The MAPE and Theil measurements are not affected by scale. Theil’s inequality
coefficient is 0 for a perfect match. Using the Theil inequality coefficient (bias, variance,
and covariance parts), for an “excellent” measure of fit, the bias and variance should be
modest, with the majority of the bias focusing on the covariance percentage. Table 4 shows
static forecast metrics for Nasdaq OMX contracts, and Figure 6 shows forecast plots with
95 percent confidence intervals for both factor components and the annual volatility. These
forecasts confirm the benefits of volatility projections giving estimates of validity of using
stochastic volatility models. For this application, pricing options are the main example.

Table 4. Nasdaq OMX Front Quarter and Front Year Contracts Static Forecast Evaluation Statistics
2020/2021.

Estimated Daily Stochastic Volatility Forecast Fit Measures 01/21–04/22:

Factor 1 Factor 2 Stochastic
Contracts: Error Measures: V1t: V2t: Volatility (e(V1+V2)):

Root Mean Square Error (RMSE) 0.01680 0.05883 0.89793
Mean absolute Error (MAE) 0.01240 0.03891 0.621243

Mean absolute percent error (MAPE) 1.58480 216.2324 2.55794
Teil inequality coefficient (U1) 0.01088 0.74757 0.01916

Front Year Bias proportion
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4. Discussion 

4.1. Stochastic Volatility Characteristics 

The past years have seen an increasing popularity in trading volatility-based finan-

cial instruments such as VIX (VIX: The Chicago Board of Exchange Volatility Index (VIX), 

a real-time index that represents the market’s expectations for the relative strength of near-

term price changes of the S&P 500 Index in New York, NY, USA), perhaps due to its neg-

ative correlation with the equity instruments. Several researchers have studied the possi-

bilities of reducing risk by including VIX and VIX-mimicking assets such as VIX futures 

and VIX options in their asset portfolio [34]. However, using VIX-mimicking portfolios 

does not provide a long-term hedge against rising volatility that most investors would 

desire [35]. Furthermore, Bordonado, ref. [36,37], touches upon the ineffectiveness of us-

ing VIX and VIX-based products as hedging instruments. This research, however, infers 

the volatility from logarithmic price movements modeled by a multiple-factor C/C++ 

unique model. The international research based on the unique SV model is therefore lim-

ited. The idea is to come up with alternative hedging instruments and strategies that will 

potentially be desirable for market participants.  

The stochastic volatility characteristics for the front year and front quarter contracts 

from 2010 to 2022 are reported for V1, V2, and e(V1+V2) in Table 3. Table 3 reports non-nor-

mality, serial correlation (persistence), mean reversion (reject unit-root), and strong data 

dependence (long memory). The volatility therefore mimics all known financial market 

characteristics, adding insight market hedging and derivative trading in general. From 

the step-ahead volatility projection, the following characteristics are readily available. The 

volatility is clearly not normal. The densities are clearly skewed to the right, showing log-

normal characteristics. The yearly volatility is clearly highest for the front quarter 
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4. Discussion
4.1. Stochastic Volatility Characteristics

The past years have seen an increasing popularity in trading volatility-based financial
instruments such as VIX (VIX: The Chicago Board of Exchange Volatility Index (VIX), a real-
time index that represents the market’s expectations for the relative strength of near-term
price changes of the S&P 500 Index in New York, NY, USA), perhaps due to its negative
correlation with the equity instruments. Several researchers have studied the possibilities
of reducing risk by including VIX and VIX-mimicking assets such as VIX futures and VIX
options in their asset portfolio [34]. However, using VIX-mimicking portfolios does not
provide a long-term hedge against rising volatility that most investors would desire [35].
Furthermore, Bordonado, ref. [36,37], touches upon the ineffectiveness of using VIX and
VIX-based products as hedging instruments. This research, however, infers the volatility
from logarithmic price movements modeled by a multiple-factor C/C++ unique model.
The international research based on the unique SV model is therefore limited. The idea is
to come up with alternative hedging instruments and strategies that will potentially be
desirable for market participants.

The stochastic volatility characteristics for the front year and front quarter contracts
from 2010 to 2022 are reported for V1, V2, and e(V1+V2) in Table 3. Table 3 reports non-
normality, serial correlation (persistence), mean reversion (reject unit-root), and strong data
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dependence (long memory). The volatility therefore mimics all known financial market
characteristics, adding insight market hedging and derivative trading in general. From
the step-ahead volatility projection, the following characteristics are readily available. The
volatility is clearly not normal. The densities are clearly skewed to the right, showing
log-normal characteristics. The yearly volatility is clearly highest for the front quarter
contracts (shorter contracts with summer, autumn, winter, and spring differences) and
therefore expected to show the lowest R2 for the non-linear Kalman filter. The non-linear
Kalman filter shows an R2 for the front year V1 (V2) of 95.6% (4.8%) and the front quarter V1
(V2) of 96.3% (5.9%), giving a high confidence in the volatility methodology for both contracts.

To evaluate some probabilistic measures of the volatility series, the power law, an
alternative to assuming normal distributions, is applied to

(√
252e(V1+V2)

)
. The power

law asserts that, for many variables, it is approximately true that the value of the vari-
able υ has the property that when x is large, Prob(υ > x) = Kx−α, where K and α are
constants. The relationship implies that ln[Prob(υ > x)] = ln K − α ln x, and a test of
whether it holds is plotting ln[Prob(υ > x)] against ln(x). The ln(x) and ln[Prob(υ > x)]
values for the two front electricity contracts demonstrate that the logarithm of the chance
of a change of more than x standard deviations is essentially linearly dependent in
ln(x) for x ≥ 3. As a result, the power law holds for the re-projected volatility in both
contracts. Regressions show the estimates of K and α are as follows: for front year
(front quarter) contracts, K = e2.9776 and α = 5.9573 (K = e1.56364 and α = 5.19569).
A probability estimate of a volatility greater than 3 (6) standard deviations is there-
fore 19.6396 x 3−5.9573 = 0.02823(2.8235%)

(
19.6396 x 6−5.9573 = 0.000454(0.0454%)

)
and

4.7762 x 3−5.19569 = 0.015853(1.5853%)
(
4.7762 x 6−5.19569 = 0.0004326(0.04326%)

)
for the

front year and the front quarter contracts, respectively. As an alternative, the extreme value
theory can be used [38]. The u is set to the 95 percentiles of the filtered volatility series
of front year (u = 24.062) and front quarter (u = 28.342). The front year reports optimal
β = 1.7456 and ξ = 0.0, with a log-likelihood function maximum value of −189.99. The
front quarter series has optimum β = 1.8271 and ξ = 0.0, with a maximum value for the
log-likelihood function of −195.58. The optimizer result ξ = 0.0 is likely a sign that the tail
of the distribution is not heavier than the normal distribution. According to the extreme
value theory, the front year contracts’ re-projected volatility likelihood being larger than
25 (30) is 2.94 percent (0.1678 percent). The VaR with a confidence level of 99 (99.9) percent
is 26.88 (30.90). As a result, the 99.9% VaR estimate is approximately 0.992 times lower than
the maximum historical re-projected volatility. The 99 (99.9) percent expected shortfall (ES)
estimate is 28.63 (32.65). In the same vein, for the front year contracts, the unconditional
probability for a volatility greater than 24.062 (u) evaluated at the 99 (99.9) percent VaR
level is equal to 0.573 (0.0573) percent (in general, a wider confidence interval than from
a normal distribution). The likelihood that the stochastic volatility for the first quarter
contracts will be larger than 25 (30) is 31.384 (2.034) percent. The VaR with a confidence
level of 99 (99.9) percent is 31.296 (35.504). As a result, the 99.9 percent VaR estimate is ap-
proximately 0.929 times more than the greatest historical filtered volatility for front quarter
contracts. The 99 (99.9) percent ES estimate is 33.124 (35.504). Finally, the unconditional
chance of volatility larger than 28.342 (u) evaluated at the 99 (99.9) percent VaR level for
front quarter futures is equal to 0.5473 (0.05473) percent. Var and ES are efforts to give a
single number that encapsulates the volatility tails, so providing market participants with
an indicator of the risk to which they are exposed. The daily volatility more than 25 percent
has a likelihood of 2.943 percent for the front year contracts. According to the front quarter
contracts, a daily volatility of more than 25% has a probability of 31.384 percent. As a result,
both the power law and the extreme value theory, applying probabilities and VaR/ES
values, describe tail features for the densities implying market risk. Inverting the uncondi-
tional probability of volatility and placing a 1% limit on the change in the unconditional
probability will provide market players with a list of accessible investment possibilities.

In contrast to existing volatility markets calculated from derivative markets, this
paper’s volatility projection can immediately be updated from market movements (returns).
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Hence, volatility can be a real-time market instrument that is tradable as an asset class in its
own right. For instance, arbitrage traders and hedge funds may take positions on different
volatilities of the same maturities, and speculators may simply make a bet on future
volatility. Moreover, the volatility and contract prices from these electricity contracts are
negatively correlated. The front year (front quarter) contracts report a negative correlation
between returns and volatility of −0.234 (−0.154). Adding volatility to an electricity
portfolio will therefore provide market participants with excellent diversification. Moreover,
since volatility tends to increase markedly during market crashes, an electricity portfolio
insures market participants.

4.2. Stochastic Volatility Forecasts

The static forecasts in Figure 7 with fit measures in Table 4 report a reasonably good fit
for the projected stochastic volatility and its two factors (V1 and V2). Step-ahead volatility
information is beneficial for trading in the derivative market as well standalone volatility
instruments. Using the Theil inequality coefficient, which is a number between 0 and 1, for
V1, V2, and the stochastic volatility (e(V1+V2)) where portions sum to one, the results indicate
step-ahead fit reliability. For both contracts, the V1 factor and the projected volatility report
a Theil inequality coefficient lower than 0.033. In contrast, the V2 factor reports a Theil
inequality coefficient greater than 0.747. The immediate implication is predictability for
V1 and the stochastic volatility and low predictability for V2. A closer look at the portions
of Theil’s inequality gives the following insights. For V1 and the stochastic volatility, the
bias portion (how far the mean of the forecast is from the mean of the actual series) is
close to zero (zero indicates a perfect fit), the variance portion (how far the variation of
the forecast is from the variation of the actual series) is close to zero, while the covariance
proportion (measuring the remaining unsystematic forecast error) is close to one. For the
stochastic volatility (e(V1+V2)) and the V1 factor, most of the bias therefore concentrates
on the covariance portion, indicating an overall good fit. In contrast, the V2 factor does
not concentrate on the covariance portion. From Table 4, the front year (front quarter)
reports a covariance portion for the stochastic volatility of 0.971 (0.856). Furthermore, for
the main contributor to the re-projected volatility for both contract series, factor V1, the
covariance portion of the Theil inequality coefficient is closer to one. For the front year
(front quarter), the V1 factor shows a covariance portion of 0.996 (0.999). In contrast, the
front year (front quarter) for the V2 factor shows a Theil’s inequality covariance portion
as low as 0.462 (0.398). Hence, the predictability seems to originate from the V1 factor,
influencing the predicted stochastic volatility (see also the scaling in Figure 3).

From Figure 6 (top), the front year volatility predictions for V1 are well inside the
95% confidence intervals (high covariance portion (0.993)). For the predicted stochastic
volatility, there are periods of 95% confidence interval breaks. The covariance portion is
lower (0.971), indicating actual markets movements somewhat larger than predicted. The
extra noise in volatility stem from the V2 factor. For the front quarter contracts in Figure 6
(bottom), the front quarter volatility predictions for V1 are well inside the 95% confidence
intervals (high covariance portion (0.999)). For the predicted stochastic volatility, there are
several periods of 95% confidence interval breaks. The covariance portion is clearly lower
(0.856), indicating actual markets movements larger than predicted. The lower covariance
portion for the predicted stochastic volatility stems from the V2 factor (noisier than for
the front year contracts). However, note that as the delivery period for the front quarter
contract is 1

4 of the front year contract, it is therefore natural that the front quarter contract
is more sensitive to new information, mostly observed in factor V2.
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5. Conclusions

The major purpose of this work was to define a good volatility model as one that
can predict and capture universally recognized stylized characteristics of financial mar-
ket volatility. The volatility is inferred from asset returns. A great variety of stochastic
volatility, deterministic volatility and jump models have been developed in recent years.
Solibakke’s [13,14] utilization of SV model applications is expanded upon in this work, ap-
plying logarithmic returns and the efficient method of moments (EMM) methodology [30].
Among the stylized realities for the volatility are heavy tails, persistence, mean reversion,
asymmetry (negative return innovations indicate higher volatility), and long memory. The
features imply that the volatility is highly dependent on data. The paper demonstrates that
electricity market volatility possesses all these characteristics, and that the data dependence
suggests that in this market, predictions can be used to improve risk management, portfolio
timing and selection, market making, and derivative pricing for speculation and hedging.

This paper applies stochastic models relating volatility to risks that change through
time in complicated ways. The departure from Black–Scholes–Merton option prices and
occasional dramatic moves in markets is possible to explain (factors, correlation, data
dependence). The paper shows that the stochastic volatility model separates into two
distinct factors: a very persistent factor, V1, showing low mean reversion, and a strongly
mean-reverting factor, V2. The persistent factor, V1, provides for the main distribution,
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and the rapidly mean-reverting factor, V2, provides for the tails. The two-factor stochastic
volatility model also reflects the shortcomings of the single-factor stochastic volatility model.
A closer examination of the two Nasdaq OMX front year stochastic factors reveals that the
persistent factor moves smoothly with an increase through COVID-19, and decreases in
level toward the end of 2021/2022, whereas the strongly mean-reverting factor is choppy
and reacts quickly to new information through the entire year of 2021/2022. For both
contracts, the projected volatility seems to follow more the V1 factor than V2. The level
of V1 versus V2 also confirms the V1 influence on yearly volatility. Hence, knowing the
different volatility factors may turn out to be an advantage for market participants.

Using an MCMC-GMM procedure of a multifactor stochastic volatility model with
an associated Kalman filter procedure for reprojection makes the latent volatility visible.
Volatility as an asset of its own will therefore extend investment strategies and make risk
management both easier and more accessible. For instance, commodity volatility is strongly
negatively correlated with prices, providing investors with excellent diversification and
simultaneously insurance against market crashes. Moreover, the static forecasting exercise
reports a high covariance portion from Theil’s inequality coefficient. Trading volatility
swaps and other derivatives may therefore become both accessible and less risky for all
market participants.

Since the mid-1990s, many different stochastic volatility models have been proposed in
the literature. By far the most popular model is the mean-reverting square root process from
Heston [39]. This paper’s stochastic volatility model research is an extended multifactor
model inferred from logarithmic price movements. Chernov [12], Gallant and Tauchen [21],
and Solibakke [13] have implemented and applied the model for equity markets. Inferring
stochastic volatility from logarithmic price movements in financial markets is numerically
inferior to volatility calculations from option markets (i.e., VIX). The model in Section 2 is
unique [13] and implemented and programmed in C/C++. The methodology is computationally
intensive and requires C/C++ programming experience. Prior international research is therefore
limited. The research so far shows that volatility characteristics will be market-specific and
dependent on the market’s information flow, transparency, and participants.

Although pricing processes in energy markets are difficult to anticipate, the variance of
prediction errors is obviously time dependent and appears to be estimable using observed
previous fluctuations. The static forecasts for the electricity market contracts’ projected
volatilities reveal a Theil’s inequality coefficient near to zero and a high covariance portion
component. The major component for the projected volatility cycles, V1, for the front year
(quarter) contracts, has a Theil inequality coefficient covariance part of 99.3 (99.9%) percent.
The tail component, V2, for the contracts is considerably lower—about 5%. However, the
V2 component is much lower in size than V1. Hence, the Theil’s covariance portion for the
front year (quarter) contracts is 97.1% (85.6%). The front quarter contracts have a more
influential V2 factor for the stochastic volatility. For the Nasdaq OMX electricity market
players, a continuous SV model for projecting and forecasting, coupled with volatility
trading strategies (i.e., derivatives and swaps), may enhance both assets and portfolios
market strategies for all market participants.

The implemented and computerized SV model seems therefore to capture the full
complexity of the generated volatility from price movements. This is natural in our re-
search field, and we would normally assume that the price movements of an asset should
contain the same information as option prices. This paper for a commodity market, to-
gether with international literature covering the equity market, has also shown that a
multifactor stochastic volatility model reports success. There is still work to do covering
implementation and computer efficiency for continuous updating of volatility/risk to
financial markets.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/en15103839/s1. The article uses two freely available data sets
( 3000 observation). The first file “001-Electricity_Front_Year_prices_returns_2010–2022.txt” contains
daily close financial contract prices (front year) in euros, freely downloadable from Nordpoolgroup.com
(https://www.nordpoolgroup.com/Market-data1/#/nordic/table (accessed on 5 April 2022)). The
second file “002-Electricity_Front_Quarter_prices_returns_2010–2022.txt” contains daily close financial
contract prices (front quarter) in euros, freely downloadable from Nordpoolgroup.com (https://www.
nordpoolgroup.com/Market-data1/#/nordic/table (accessed on 5 April 2022)). The Nordic/Baltic
Electricity market consists of the following countries: Denmark, Estonia, Finland, Latvia, Lithuania,
Norway, and Sweden. The Nord Pool Group has authorized the use of the data set. The consent is
given under cite agreements, and the data should not be used without authorization. The https://www.
nordpoolgroup.com/Market-data1/#/nordic/table (accessed on 5 April 2022) reference gives free and
direct access to contract prices for the relevant period 2011–2022. The paper encloses the two daily data
sets for the period 2010–2022: 1. 001-Electricity_Front_Year_Contract_ prices_returns_2010–2022.txt;
2. 002-Electricity_ Front_Quarter_Contract_prices_returns_2010–2022.txt.Elementary computer soft-
ware for one-factor stochastic volatility models is available from: https://www.aronaldg.org/webfiles/
(accessed on 1 April 20221). Hardware computers (Linux OS) are from the Department of Industrial
Economics and Technology Management, NTNU: http//www.ntnu.edu/iot (accessed on 1 April 2022).
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