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Abstract: The identification of underground formation lithology is fundamental in reservoir character-
ization during petroleum exploration. With the increasing availability and diversity of well-logging
data, automated interpretation of well-logging data is in great demand for more efficient and reliable
decision making for geologists and geophysicists. This study benchmarked the performances of
an array of machine learning models, from linear and nonlinear individual classifiers to ensemble
methods, on the task of lithology identification. Cross-validation and Bayesian optimization were
utilized to optimize the hyperparameters of different models and performances were evaluated
based on the metrics of accuracy—the area under the receiver operating characteristic curve (AUC),
precision, recall, and F1-score. The dataset of the study consists of well-logging data acquired from
the Baikouquan formation in the Mahu Sag of the Junggar Basin, China, including 4156 labeled
data points with 9 well-logging variables. Results exhibit that ensemble methods (XGBoost and RF)
outperform the other two categories of machine learning methods by a material margin. Within
the ensemble methods, XGBoost has the best performance, achieving an overall accuracy of 0.882
and AUC of 0.947 in classifying mudstone, sandstone, and sandy conglomerate. Among the three
lithology classes, sandy conglomerate, as in the potential reservoirs in the study area, can be best dis-
tinguished with accuracy of 97%, precision of 0.888, and recall of 0.969, suggesting the XGBoost model
as a strong candidate machine learning model for more efficient and accurate lithology identification
and reservoir quantification for geologists.

Keywords: machine learning; supervised classification; lithology identification; well-logging; ensemble
methods; gradient-boosted decision trees

1. Introduction

Lithology identification is a task of great significance in reservoir characterization for
petroleum exploration and engineering [1]. It is the basis for reservoir quality assessment
(e.g., porosity and permeability) and supports related geological research and drilling
activities (e.g., sedimentary modeling, favorable zone prediction, and well planning) [2,3].
Well-logging has been utilized as an effective remote sensing measurement to predict
underground formation lithology from a surface geophysical survey. Well-logging data
contains rich geological information, which is a synthesized reflection of formation lithology
and physical properties [4].

The idea of lithology identification from well-logging is to establish the relationship
between petrological characteristics and logging curves. Typical lithologies are supposed
to have their own specific logging responses. For example, the GR–RT (gamma ray–
resistivity of true formation) crossplot is effective to recognize sandstone and mudstone in
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conventional sand and shale reservoirs due to the fact that sandstone has relatively low GR
log values and high responding RT, whereas mudstone behaves oppositely on GR and RT
logs [2].

However, traditional logging interpretation depends heavily on expertise and hu-
man experience, which is labor intensive and time consuming, and often suffers from
subjectiveness and inconsistency of expert experience [5]. Due to the complexity of the
geological condition in unconventional reservoirs (e.g., carbonate, tight sandstone, or sandy
conglomerate reservoir [6,7]) and the increasing diversity and amount of logging data, the
traditional logging interpretation methods show great limitations. As a result, researchers
are turning to more advanced methods for breakthroughs in lithology identification.

Machine learning techniques have been embraced by the oil and gas industry as
alternative methods in addressing the complex and challenging problems it faces to enable
automation, lift performance, or explore new solution paradigms [8]. With advances in al-
gorithms, computational theories, and hardware such as graphic processing units, machine
learning shows great advantages in learning complex patters and relationships from large
amount of data [9]. Two primary classes of machine learning algorithms, namely, unsuper-
vised and supervised learning methods, have been prescribed for lithology identification.
Supervised learning methods use a set of training data to learn relationships between
features and corresponding labels and build models that are predictive for previously un-
seen data. Supervised learning algorithms outperform by a substantial margin compared
with nearly all unsupervised learning algorithms reported in lithology classification using
well-logging data [10,11].

A wide variety of supervised learning methods have been reported in the task of
lithology identification, including but not limited to Naïve Bayes [12], linear regression [13],
k-Nearest Neighborhood (kNN) [14], support vector machine (SVM) [15,16], decision
tree and its variants (e.g., random forests and boosting trees) [17–19], and artificial neural
networks (ANN) [20,21]. However, as different experiments were carried out using different
datasets with their own lithology classification schemes, it is hard to make a parallel
comparison of those machine learning models. Recently, more studies have attempted
to compare the performance of machine learning methods for lithology identification.
Xin et al. [22] compared the performance of five machine learning methods for formation
lithology identification using well-logging data from the Daniudui gas field (DGF) and
the Hangjinqi gas field (HGF) and concluded that Gradient Tree Boosting classifier (GTB)
and Random Forest had better accuracy than other three methods, namely, Naïve Bayes,
SVM, and ANN. Dev et al. [23] tested three models from the family of gradient-boosted
decision tree (GBDT) methods using data from DGF and HGF, and identified LightGBM
and CatBoost as the preferred algorithms for lithology classification using well-logging
data. Merembayev et al. [24] evaluated five machine learning algorithms including kNN,
Decision Tree, Random Forest, XGBoost, and LightGBM on well-logging data from Norway
and Kazakhastan for lithofacies classification. The results showed that Random Forest has
the best score among considered algorithms.

In this study, we intend to make a more systematic and comprehensive comparison
of machine learning methods for lithology identification using well-logging data. We
categorize supervised machine learning methods into three groups, namely, linear indi-
vidual classifiers, nonlinear individual classifiers, and ensemble methods, with increasing
model complexity. We select several typical machine learning models within each group to
evaluate their performance using well-logging data collected from 17 wells in our study
area and try to answer three key questions:

• Do nonlinear individual classifiers always show better performance in terms of accu-
racy than linear individual classifiers for well-logging-based lithology classification?

• Do ensemble methods consistently outperform individual classification models and
by what margin? Which (if any) is the superior ensemble method?

• How well can different lithology classes in our study be distinguished by the best-
performing models?
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The rest of the paper is organized as follows: Section 2 introduces the study area and
the well-logging dataset. Section 3 describes the machine learning methods included in our
study for lithology identification, as well as the metrics used to evaluate their performance.
Section 4 presents quantitative results of the experiments in terms of hyperparameter
optimization, overall performance, and lithology classification results. Feature importance
is also evaluated by the end of the section. The conclusions are summarized in Section 5.

2. Study Area and Dataset

The study area is located in the sandy conglomerate reservoir of the Baikouquan
formation in the Mahu Sag of Xinjiang oilfield in the Junggar Basin (Figure 1), which is the
main oil and gas exploration area in northwestern China. It was chosen for the availability
of high-quality well-logging and corresponding core images.

Figure 1. Location of the study area (modified after Tao et al. [25]). (A) Large-scale map of Xingjiang
Province, China. (B) Work location in northern Xinjiang Province. (C) Detailed map with typical
coring well locations and the approximate scope of ancient fan deposits (including alluvial fans and
fan deltas).

The dataset for the study consists of well-logging data with 9 properties acquired
from 17 wells with close proximity to each other. Lithologic labels were interpreted from
520 m core images with 4156 data points for machine learning workflow development.
The nine log properties include gamma ray (GR), self potential (SP), caliper log (CALI),
shallow/medium deep/deep reading resistivity measurement (RESS/RESM/RESD), neu-
tron porosity log (PHIN), bulk density log (RHOB), and interval transit time (DT). The
description of the well-logging dataset is shown in Table 1.

The lithofacies identified from core images in Baikouquan Formation contain 3 classes:
mudstone (M), sandstone (S), and sandy conglomerate (SC). The labeling scheme was de-
signed to reduce the subjectivity that exists in core photograph interpretation and produce
consistent and reliable labeling for the dataset to benchmark the performance of different
machine learning algorithms. The prepared dataset consists of nine predictor variables and
a lithology class as target variable.
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Table 1. The description of the well-logging dataset.

Statistics DEPTH GR SP CALI RESS RESM RESD PHIN RHOB DT

mean 3820.63 55.44 −1.02 8.72 20.54 24.51 23.53 19.28 2.50 72.52
std 157.30 13.83 33.97 0.77 17.42 15.15 15.78 4.77 0.10 6.76
min 3279.63 29.29 −68.06 5.59 0.20 2.88 −1.69 9.01 1.85 58.31
25% 3806.88 45.43 −14.45 8.41 7.69 13.15 11.92 16.41 2.47 68.31
50% 3855.13 52.32 −9.53 8.50 16.48 22.14 20.92 18.21 2.52 70.52
75% 3882.38 62.63 −1.97 8.69 28.81 32.56 32.09 20.36 2.56 74.36
max 4350.25 109.375 102.362 16.82 126.388 114.335 104.926 47.4 2.681 118.61

3. Machine Learning Models for Lithology Classification

Machine learning has been increasingly used in data-driven discovery in geoscience to
perform complex prediction tasks by learning patterns from large amounts of data, which
cannot be easily done by a set of explicit rules [9]. There are four major machine learning
paradigms: supervised learning, semisupervised learning, unsupervised learning, and
reinforcement learning [26].

In supervised learning, the model attempts to predict a target value using a set of
variables or features after learning the relationship between the predictors (the features)
and the output in training. When the target variable is a categorical variable (also called a
label), the problem is said to be a classification problem and the model is called a classifier.

This study explores an array of machine learning models and determines their perfor-
mance in lithology classification using the well-logging data. These individual machine
learning models can be broadly categorized as linear and nonlinear models, which will
be detailed in Sections 3.1 and 3.2. Ensemble models are models combining individual
models, which will be covered in Section 3.3.

3.1. Linear Models for Classification

Linear classification models refer to the class of classifiers that result in linear decision
boundaries [27]. Linear models remain a popular choice in applications, especially when
they can achieve adequate accuracy, for their straightforward implementation and better
interpretability.

3.1.1. Logistic Regression

Logistic Regression (LR) is one of the most popular linear models for classification
in the industry [27,28]. In the binary case, the model allows us to model the posterior
probability of being 0 or 1 using a linear function of input variables or features, with a sum
of one:

p(Y = 1|X = x) =
exp(β0 + βTx)

1 + exp(β0 + βTx)

p(Y = 0|X = x) =
1

1 + exp(β0 + βTx)

(1)

Applying the logit transformation, one obtains the log-odds ratio as

log
p(Y = 1|X = x)
p(Y = 0|X = x)

= β0 + βTx (2)

The input space is optimally divided by the decision boundary of hyperplane defined
by

{
x|β0 + βTx = 0

}
for which the log-odds ratio is zero, meaning that the posterior

probability of being in one class or the other is equal.
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3.1.2. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is another popular model that leads to linear
decision boundary [28,29]. The LDA model separates two classes based on a set of observed
characteristics x by modeling the class densities f1(x) and f0(x) of each class as multivariate
normal distributions with means µ1 and µ10 and the same covariance matrix Σ.

Again, we compute and investigate the log-ratio

log
p(Y = 1|X = x)
p(Y = 0|X = x)

= log
f1(x)
f0(x)

+ log
π1

π0

= log
π1

π0
− 1

2
(µ1 + µ0)

TΣ−1(µ1 + µ0) + xTΣ−1(µ1 + µ0)

(3)

where π1 and π0 are the prior probability of the two classes. The decision boundary or the
hyperplane, defined by Equation (3), equals 0 and is linear in x. The hyperplane drawn
by LDA aims to maximize the ratio of the between-group variance and the within-group
variance, so the two classes can be best-separated [30].

3.2. Nonlinear Models for Classification

More advanced machine learning techniques have been developed to model complex
patterns in data, which often result in nonlinear decision boundaries.

3.2.1. k-Nearest Neighbor

k-Nearest Neighbor (kNN) is a simple but effective classification method [31]. The
approach consists of calculating the Euclidean distance of a new instance with each instance
in the training sample that has already been labeled. Then, the class label of the new instance
is assigned according to the major class of the k-nearest neighbors in the training set. kNN
has the advantage of being nonparametric, but one has to carefully select k to achieve
optimal classification results. The method is also sensitive to the scale of different features
in multidimensional space; so, date standardization is required to eliminate the effect of
scale differences in both training and test sets [32].

3.2.2. Support Vector Machine

Support Vector Machine (SVM) is one of the most widely applicable machine learning
models developed by Vapnik [33]. The idea of the method is to transform the input
space into a high-dimensional feature space using a nonlinear function, where two classes
can be separated linearly. The goal of SVM is to find the hyperplane that maximizes
the minimum distance between the hyperplane and the support vectors. Like LR and
LDA, SVM was originally developed for two-class classification, then further extended to
multiclass problems [34].

SVM is reported to perform well in cases where sample size is small or the number of
features is more than the data points. It has good generalization in practice, and thus, a
relatively low risk of overfitting. Despite its advantages, choosing the optimal kernel for
SVM is a difficult task. SVM also does not directly provide probability estimates and is
harder to be interpreted compared with decision-tree-based methods [35,36].

3.2.3. Decision Trees

Decision Trees (DT) are one of the most commonly used models in supervised classifi-
cation and serve as the building blocks for several more-sophisticated ensemble models.
DT constructs decision rules organized in a treelike structures to map input values to their
target labels. In a tree structure, leaves represent labels and nonleaf nodes are features.
Each branch represents a rule that leads to the final classification. The challenge lies in how
to build the smallest decision trees: the best split should result in a classification with the
lowest entropy or with the highest information gain. A realization of such a heuristic is
C4.5 developed by Quinlan [37].
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DT holds a lot of advantages, which explains its popularity in many applications,
including the following: (1) easy to interpret and explain; (2) requiring relatively little effort
from users for data preparation; (3) implicitly performing variable screening or feature
selection. However, one key disadvantage of DT is that they tend to overfitting. Without
proper pruning or limiting tree growth, they could become poor predictors [38].

3.3. Ensemble Models for Classification

To improve the performance of individual classifiers, ensemble models have been
introduced. The idea of ensemble methods is to combine multiple weak learners to obtain
a strong learner resulting in more accurate or robust predictions [39].

Ensemble models can be split into homogeneous and heterogeneous. Homogeneous
ensemble models use only one type of classifier whereas heterogeneous ones combine
different types of classifiers [40]. Two popular techniques in building homogeneous en-
semble models are bagging and boosting. In bagging, k independent base classifiers are
generated using bootstrapping; then, results are aggregated through majority voting. In
boosting, base classifiers are built sequentially to improve the prediction of the previous
outcomes [41].

In both cases, the base classifier can be any type of model, but decision tree methods
are usually applied. Two such examples of bagging and boosting are Random Forest (RF)
and Gradient-Boosted Decision Trees (GBDT).

3.3.1. Random Forest

Random Forest is one of the most popular bagging algorithms introduced by Breiman [42].
The algorithm starts with the generation of bootstrapped samples from the data; then, the
collected decision trees are fitted to those samples. Predictions from all trees are aggregated
in the inference to form the final decision via major voting in case of classification [43].
Benefiting from the randomization, RF helps in the reduction of variance, and is less likely
to overfit compared with individual decision trees.

3.3.2. Extreme Gradient Boosting Trees

Extreme Gradient Boosting Trees (XGBoost) belongs to the family of gradient-boosted
decision trees (GBDT). It was developed by Chen [44] and made multiple enhancements to
improve the efficiency and scalability of the original GBDT methods in the implementation.

Plain gradient boosting trains each subsequent model using the residuals (the dif-
ference between the predicted and true values) or gradient, which is the reason why it is
called “gradient boosting”. By correcting the mistakes of the previous models, it gradually
rectifies the results and improves the accuracy of predictions. XGBoost takes this one step
further. It exploits the second-order derivative in the loss function formulation to accelerate
the convergence of the model. XGBoost also introduces more regularization in the model
formulation to control overfitting, which further improves its performance.

Built and developed for the sole purpose of model performance and computational
speed, it quickly gained popularity and became the algorithm of choice for many winning
solutions of machine learning competitions [45].

3.4. Experiment Setting and Parameter Tuning

To obtain steady and reliable results, we split the dataset into train, validation, and test
subsets with a stratified random sampling method. This ensures that the distribution of
different classes in the training and testing datasets are consistent. The testing set, consisting
of 10% of the total data points in our case, is critical to evaluate the generalizability of the
machine learning model resulted from training. The remaining data are further divided
into train and validation subsets through cross-validation, which is also used to tune the
hyperparameters for parameteric models. The higher the model complexity, the more
hyperparameters there are to tune and the larger the feature space to search for the optimal
hyperparameters. For hyperparmeter tuning, Bayesian optimization is utilized to make
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the exploration of large feature space more efficient [46]. Once the hyperparameters are
determined, we train the model on the full training set and make inference on the testing set.

3.5. Model Evaluation

The performance of each model is evaluated using the following metrics: Accu-
racy, Recall, Precision, F1-score, and the area under the receiver operating characteristics
curve (AUC).

According to the combination of actual data labels and predicted classes, the classi-
fication results can be divided into four cases: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). The accuracy, defined by Equation (4), measures the
percentage of correctly classified samples.

accuracy =
TP + TN

TP + FP + FN + TN
(4)

The recall is defined in Equation (5), indicating the percentage of real positive samples
that are classified as positive.

recall =
TP

TP + FN
(5)

The precision is defined in Equation (6), measuring the proportion of actual positive
samples within the samples that are predicted to be positive.

precision =
TP

TP + FP
(6)

The F1 score is the harmonic mean of Recall and Precision and can be used to evaluate
the model thoroughly. It is calculated as Equation (7):

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2TP
2TP + FP + FN

(7)

AUC is the area under the receiver operating characteristics (ROC) curve that repre-
sents the trade-off between Recall (TPR) and Specificity (FPR), given by Equations (8) and (9).
As it is independent of a cutoff value, AUC is considered a better overall performance
indicator than accuracy.

TPR =
TP

TP + FN
(8)

FPR =
FP

TN + FP
(9)

The AUC value ranges from 0.5 to 1, with 0.5 as the expected value of random
prediction. A model with better overall performance has an AUC value close to 1.

4. Results and Discussion

This section comprehensively evaluates the performances of different machine learning
models with increased complexity for lithology classification. For each machine learning
model, we compare its prediction results based on the optimal hyperparameters tuned with
respect to the metrics listed in Section 3.5. The results are presented in Sections 4.1 and 4.2.
In Section 4.3, we further investigate how each lithological class can be distinguished by
the best-performing machine learning methods among all models we put into the test and
to what extent, and discuss the implication of how it can contribute to the identification
of high-quality reservoirs in the study area. Lastly, in Section 4.4 we explore the feature
importance and how the number of features affect the classification performances, studying
the potential for designing more effective lithology classification systems in the future.
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4.1. Hyperparameter Optimization

Table 2 presents the optimal hyperparameter settings tuned for different machine
learning models in descending order of model complexity. The more complex the model,
the more hyperparameters are required to tune for the model to avoid overfitting and
achieve optimal performance. When the number of hyperparameters increase in the model,
it becomes less feasible to use grid search to find the optimal hyperparameters as the
searching space increases exponentially. Take the XGBoost model for example, consider
five levels for each of the six parameters, the grid search needs to explore in total 56 = 15,625
hyperparameter settings, whereas Bayesian optimization takes around 200 evaluations,
equivalent to 1.3% of the workload of the grid search. A similar comparison between grid
search and Bayesian optimization can be found in [18].

Table 2. Main hyperparameters tuned for parametric models.

Model Hyperparameter Symbol Parameter Values

XGBoost

Boosting learning rate learning_rate 0.08
Subsample ratio of the training instances subsample 0.7

The maximum depth of a tree max_depth 9
The number of boosted trees n_estimators 600

L2 regularization term on weights reg_alpha 0.1
L1 regularization term on weights reg_lambda 1.2

RF
The minimum number of samples required at a leaf node min_samples_leaf 1

The minimum number of samples required to split an internal node min_samples_split 2
The number of trees in the forest n_estimators 400

KNN The number of neighbors to inspect n_neighbor 3

SVM Penalty parameter of the error term C 1000
Kernel coefficient for ‘RBF’ gamma 0.1

DT The minimum number of samples required at a leaf node min_samples_leaf 1
The minimum number of samples required to split an internal node min_samples_split 2

4.2. Overall Performances

One of the main objectives of our study is to determine how different categories of
machine learning methods perform in the task of lithology classification using well-logging
data. Table 3 presents the overall performances of different machine learning models, with
the better performer ranking higher in the list. It shows clearly that ensemble models
perform best, followed by individual nonlinear models, while linear models rank last. The
results live up to the common expectation that, in general, the classification performance
improves with the increase in the model complexity.

Further, there are consistent performance results between training and testing for
all different machine learning models, indicating that minimum overfitting exists in our
trained models.

Values of AUC for ensemble models in both training and testing are well above 0.90,
indicating very good discriminant and generalization abilities of the ensemble models.
Within the ensemble models, XGBoost outperforms RF on all metrics. This is expected,
as boosting methods are capable of reducing both bias and variance by increasing the
expressive power of the base learner, while RF as bagging method is devised to reduce
variance by subsampling the training data.

It is also noted that individual nonlinear models perform better than linear models.
Linear models generally work better in situations where instances of different classes have
clear boundaries and can be separated linearly, indicating that the lithology classes cannot
be easily distinguished in the feature space formed by the well-logging data.
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Table 3. Overall performance of different machine learning models in lithology classification, with
best metrics achieved in each column are highlighted in bold.

Model
Training Testing

Accuracy AUC Recall Precision F1 Accuracy AUC Recall Precision F1

XGBoost 0.852 0.920 0.735 0.847 0.844 0.882 0.947 0.769 0.880 0.876
RF 0.837 0.918 0.695 0.833 0.823 0.861 0.942 0.715 0.861 0.849

KNN 0.801 0.861 0.689 0.794 0.794 0.839 0.892 0.753 0.836 0.837
SVM 0.797 0.857 0.648 0.782 0.783 0.844 0.898 0.711 0.836 0.835
DT 0.766 0.762 0.659 0.764 0.765 0.781 0.760 0.656 0.776 0.779

LDA 0.708 0.741 0.423 0.637 0.636 0.748 0.793 0.451 0.692 0.685
LR 0.705 0.744 0.411 0.620 0.627 0.745 0.796 0.446 0.669 0.677

4.3. Lithology Classification Evaluation

ROC curve and the confusion matrix are produced with optimized XGBoost and RF
classifiers on test dataset, to inspect how well each lithology class can be distinguished
from well-logging data in greater detail.

In Figure 2, ROC curves exhibit great generalization performances for both XGBoost
and RF in classifying the three lithology classes. Among them, mudstone is the lithology
class receiving the highest AUCs of 0.97 and 0.96 for XGBoost and RF, respectively. Mean-
while, sandstone gets the lowest AUCs for both classifiers, which are still above 0.92. The
AUCs for sandy conglomerate are between those of mudstone and sandstone, with 0.95
and 0.94 for XGBoost and RF, respectively.

(a) (b)

Figure 2. ROC Curve for XGBoost (a) and RF (b). M refers to mudstone, S refers to sandstone, and
SC refers to sandy conglomerate.

Figure 3 highlights the confusion matrices of predictions generated by XGBoost and
RF, from which we can interpret the actual classification accuracy of each lithology class.
The normalized confusion matrices (Figure 3b,d) demonstrate that sandy conglomerate
has the same highest classification accuracies for both XGBoost and RF at 97%. This could
be attributed to the fact that sandy conglomerate accounts for 70% in the dataset and the
evaluation metric for model optimization is classification accuracy.
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(a) (b)

(c) (d)

Figure 3. Confusion Matrices for XGBoost (first row) and RF (second row). (a,c) represents the
number of true and predicted lithology classes; (b,d) highlight the percentage of true and predicted
normalized per lithology class.

XGBoost excels RF in the classification of mudstone and sandstone, with 5% and 11%
higher classification accuracies for the two lithology classes, respectively. Classification
performance of sandstone is the worst in both XGBoost and RF among the three lithology
classes, which is coherent with the lowest AUCs observed in Figure 2. Mistakes are mainly
concentrated in the misclassification of sandstone, as well as mudstone, into sandy con-
glomerate for both classifiers. This is likely due to the fact that sandy conglomerate has a
mixed nature and contains samples with well logging signatures resembling that of mud-
stone and, especially, sandstone. It could result in overlaps between sandy conglomerate
and the other two lithology classes in the feature space, thus leading to misclassification of
sandstone and mudstone into sandy conglomerate.

Classification reports (Figure 4) are further derived from the confusion matrices. In
our study, XGBoost model achieves both high precision of 0.888 and high recall of 0.969
for sandy conglomerate, which shows great potential to identify high-quality reservoirs
in Mahu Sag [7]. In Mahu Sag, the sandy conglomerate accounts for over 90% of total
oil-producing layers’ thickness. It is also necessary to separate the lithofacies of tractive
current sandy conglomerates (TCSC) and gravity flow sandy conglomerates (GFSC) from
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the lithology class of sandy conglomerate. Tractive current sandy conglomerates account
for around 60% in thickness and about 90% in oil production of sandy conglomerate
layers. To make the automated identification of TCSC possible, more rigorous lab work
and interpretation are required to further label sandy conglomerate into sublithofacies of
TCSC and GFSC, which is our next step.

(a) (b)

Figure 4. Classification reports of each lithology class for XGBoost (a) and RF (b).

4.4. Feature Importance

Feature selection in machine learning models is a relevant consideration for many
applications. Reducing irrelevant features can reduce model complexity and increase the
generalization performance of the model. It also helps in designing more cost-efficient
models by reducing the number of features in data collection.

In this study, we examine the model performances with reduced features using back-
ward elimination based on importance measures. Figure 5 shows the feature importance
extracted from XGBoost model of the nine well-logging variables. We then remove the
feature with lowest importance one by one and retrain the model based on cross-validation.
Figure 6 showcases the accuracy and AUC obtained by the XGBoost model with the de-
creased number of features. As can be seen from the figure, AUC decreases slowly at
first but takes a sharp downturn when the feature number drop below 3. To keep the
classification accuracy in testing above 0.9, we need to keep the top 6 features in the model.

Figure 5. Feature importance of XGBoost model for each input well-logging variable.
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Figure 6. Accuracy and AUC plots of optimized XGBoost model with decreasing number of features.

5. Conclusions

The identification of lithology from well-logging data is an important task in reservoir
characterization for petroleum exploration. Many different machine learning methods
have been reported for this application. In this study, we comprehensively evaluated
the performances of an array of supervised machine learning methods, from linear and
nonlinear individual classifiers to ensemble methods, on lithology identification using
well-logging data acquired from the sandy conglomerate reservoir of the Baikouquan
formation in the Mahu Sag of the Junggar Basin, China. Cross-validation and Bayesian
optimization were applied to optimize the hyperparameters of different models and their
performances were evaluated on separate test dataset.

Results exhibit that ensemble methods (XGBoost and RF) perform best among the three
categories of machine learning models, followed by nonlinear individual classifiers (kNN,
SVM, and DT). Linear individual classifiers (LR and LDA) produce the least favorable
results, indicating their disadvantages in solving the nonlinear lithology classification
problem using well-logging data. Within the ensemble methods under testing, XGBoost
has the best performance, with an accuracy of 0.882 and AUC of 0.947. It outperforms RF
especially in the classification of sandstone with an increase in accuracy of 11%. Among
the three lithology classes, sandy conglomerate—as found in the potential reservoirs in the
study area—can be best distinguished with an accuracy of 97%, precision of 0.888, and recall
of 0.969, suggesting the XGBoost model as a strong candidate machine learning model
for more efficient and accurate lithology identification and reservoir quantification for
geologists. Furthermore, we investigated the importance of well-logging variables and the
impact of the number of well-logging variables as input on the classification performance.
Experiments showed that at least the top three features are required for the XGBoost model
to maintain comparable performance.

The study suggests ensemble methods as the more accurate and efficient machine
learning models that can assist geologists in reservoir identification and lithology classifi-
cation in general. The machine learning workflow established is transferable and can be
applied in other geological environments. Future work will include further separation of
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subclasses of tractive current sandy conglomerates (TCSC) and gravity flow sandy con-
glomerates (GFSC) within sandy conglomerates from core images and more labeling on
well-logging data. More machine learning methods within the category of boosting and
beyond, such as neural networks, will be explored to find the best-performing model for
distinguishing TCSC and GFSC, thus achieving better reservoir quality (e.g., permeability
and porosity) assessment.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area under the receiver operating characteristic curve
XGBoost Extreme Gradient Boosting
RF Random Forest
kNN k-Nearest Neighborhood
SVM Support Vector Machine
GBDT Gradient-Boosted Decision Trees
DGF Daniudi gas field
HGF Hangjinqi gas field
GR Gamma ray
SP Self potential
CALI Caliper log
RE Self potential
RESS Shallow reading resistivity measurement
RESM Medium deep reading resistivity measurement
RESD Deep reading resistivity measurement
PHIN Neutron porosity log
RHOB Bulk density log
M Mudstone
S Sandstone
SC Sandy conglomerate
LR Logistic Regression
LDA Linear Discriminant Analysis
DT Decision Trees
TP True positive
FP False positive
TN True negative
FN False negative
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ROC Receiver operating characteristics curve
TPR True positive rate
FPR False positive rate
TCSC Tractive current sandy conglomerates
GFSC Gravity flow sandy conglomerates
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