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Abstract: This paper investigates how oil’s future price implies the bunker price through cointegration
analysis first. A cointegration test confirms the long-run equilibrium condition of bunker and oil
future prices. Based on the cointegration relationship, we construct VECM model to forecast bunker
prices. In addition, we also consider ARMA, ARMAX, and VAR models for certifying whether
considering the long-run equilibrium between bunker and oil future prices is helpful in prediction.
One-step-ahead and four-step-ahead forecasting are considered and two out-of-sample datasets are
used. The empirical results show that the increase in the value of the error correction term in the
VECM model has the effect of pulling down the bunker return. VECM performs better than other
models in prediction. The Crude Oil Future Contract 1 has better forecasting performance for bunker
prices with VECM in the 1-step-ahead forecast, while Crude Oil Future Contract 3 performs slightly
better than Crude Oil Future Contract 1 in the 4-step-ahead forecast.

Keywords: cointegration analysis; oil future price; bunker price; forecasting

1. Introduction

Marine transportation is an integral part of transportation networks, and one of
the most important ways for international trade. With the acceleration of the economic
globalization process, international trade is more and more frequent. With its natural
navigation channel, large carrying capacities, and relatively low freight charges, marine
transportation is active and accounts for more than 80% of the total volume of international
freight [1]. Other than the large investment in infrastructure construction, a bunker is a
significant operating cost for shipping companies, accounting for about 30–70% of the
operating cost based on different bunker prices [2,3] . Bunker is mainly the heavy residual
product left after gasoline, kerosene, and diesel oil from crude oil refining, as a result, its
price is closely linked to the crude oil price. However, it is also affected by the relationship
between supply and demand, showing volatility related to but inconsistent with the crude
oil price. In the first quarter of 2021, WTI and Brent crude oil spot prices increased by
24.95% and 23.00%, respectively, because of world economic recovery and US inflation.
During this period, the MGO (Marine Gas Oil) prices of Fujairah, Rotterdam, and Singapore
increased by 26.31%, 20.72%, and 20.03%, respectively, and the VLSFO (Very Low Sulphur
Fuel Oil) of these three ports increased by 19.38%, 17.41%, and 16.28%, respectively. Due
to the uncertainty of bunker prices, shipping companies are exposed to the risk of bunker
price changes. The analysis and forecasting of bunker prices are of great importance so
that shipping companies can control the risk of bunker price fluctuations and control their
operating costs.

Although previous studies have realized the importance of bunker, they mainly focus
on controlling bunker fuel cost and reducing the purchase cost by optimizing refueling
strategy. As for crude oil futures prices, most of the existing literature has studied the coin-
tegration relationship between crude oil future prices and spot prices, or the relationship
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between crude oil future market and other commodity markets. At present, there is no
literature on the relationship between the bunker price and the crude oil future price, which
is also the novelty and originality of this paper.

This paper aims to analyze the relationship between bunker and crude oil future prices
quantitatively. Firstly, this paper confirms the cointegration relationship between bunker
and oil future prices. As a result, the VECM becomes reasonable to capture the long-term
equilibrium relationship of bunker and oil future prices. ARMA, ARMAX, and VAR are also
considered in predicting bunker prices which can test whether the cointegration relationship
is effective in prediction. One-step-ahead and four-step-ahead forecasts are considered
because these two prices are the most concerning issue in the industry. Moreover, two
crude oil futures contracts are involved in the analysis because we want to check which
contract implies future bunker prices more reliably and suitably. The results show that
the VECM model performs better than the other three models, which means oil futures
prices imply bunker prices through the long-term equilibrium cointegration relationship.
The results also show crude oil future contract 1 is more reliable in the one-step-ahead
prediction. Oil future contract 3 is just a little better in four-step-ahead prediction. As a
result, in four-step-ahead prediction, the prediction results based on two future contracts
should be considered. The results of this paper are conducive to the liner companies to
have sufficient time to adjust the transportation refueling plan and use crude oil futures for
hedging to avoid economic losses in time. Moreover, forward trading regarding bunker oil
has gained the attention of some large financial firms, such as Goldman Sachs, in recent
years. Though accurate forecasting of bunker oil prices is of great importance and helps
shipping companies make timely adjustments to their operating strategies.

The structure of this paper is as follows. Section 2 reviews the literature. Section 3
presents the data and the cointegration analysis. Section 4 focuses on the prediction analysis.
Section 5 conducts the impulse response analysis and makes a supplementary. Finally,
Section 6 concludes this study.

2. Literature Review

Bunker price is crucial for ship operators, Abouarghoub and Haider [1] mention that
the cost of the bunker is the key cost for ship operators, and the change in bunker price
will have a great impact on the operation capacity. Notteboom and Vernimmen [2] study
the impact of bunker oil price changes on the cost of liner service operations. The rise in
bunker oil prices correspondingly increases the transportation costs of shipping companies.
The purpose of profit-making companies is to maximize corporate profits. As a result, price
analysis of bunkers used in ship transportation cargo is of great importance. However,
most of the existing studies focus on controlling fuel oil costs through bunker management
strategy. For example, Yao et al. [4] investigated a bunker fuel management strategy
for a single shipping liner service and studied the relationship between sailing speed
and fuel consumption rate. They use an empirical model to explain the relationship
between bunker oil consumption rate and sailing speed for container ships of different
sizes, which is conducive to reducing shipping costs and improving service quality and
efficiency for shipping companies. Wang, Gao et al. [5] use a mixed-integer nonlinear
programming model which simultaneously considers sailing speeds, bunkering ports,
bunkering volume, and loading amounts to maximize cargo revenue and minus bunker
cost. Ghosh, Lee et al. [6] focus on the cost optimization strategy with bunkering contracts,
and formulate a dynamic programming model to minimize the total bunkering cost. There
are also many studies in the extant literature on the optimal bunker refueling strategies
for liner shipping, in which ways the operators can control the cost of bunker oil. Plum,
Pisinger et al. [7] mention that fluctuations in bunker prices are usually related to crude
oil prices, but prices vary significantly between ports, so the bunker purchasing cost
optimization problem needs to be reformulated daily, but bunker purchasing is generally
made by contract a few weeks prior to arrival the port, which complicates the adjustment of
the optimal plan. De, Choudhary et al. [8] consider stochastic fuel consumption for different
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segments, stochastic bunker prices for each port, and different fuel refueling strategies to
determine the optimal fuel management strategy. These researches show that bunker oil
price is closely related to the operation of shipping companies and occupies an important
position. Because the general trend of bunker prices is fluctuating and uncertain, even on
the same day, bunker oil prices may vary significantly from port to port [6].

Although the bunker price is important, the direct analysis of the bunker price is
few. Stefanakos and Schinas [9] argue that the efficient forecasting of bunker prices is of
ship operators’ interest, and there is also a direct relationship between bunker prices and
financial results, and that incorrect forecasting of bunker prices leads to incorrect estimates
of bunker price fluctuations, resulting in incorrect hedging ratios and risk management
strategies, which means catastrophe for the normal operation of liner service operations.
They used Vector Auto-Regressive Moving Average (VAR-MA) model to forecast a tetra-
variate and an octa-variate time series of bunker prices, the predicted results are in good
agreement with the actual values. Due to the importance of bunker price prediction, they
also use fuzzy time series forecasting techniques to predict bunker prices [10].

In a short summary, most of the existing literature focuses on the optimal bunker
refueling strategy and bunker management. Bunker price prediction is an interest of the
researchers; however, these researchers just considered the bunker market. There is limited
literature to study the bunker price considering another energy market.

For crude oil futures, it has two indispensable functions; one is to hedge and reduce
the potential risk for investors, the other is the function of price discovery. The oil futures
prices reflect the price that both the buyer and the seller agree on. Thus, crude oil futures
prices contain direct information about investors’ expectations of future prices for the
crude oil commodity [11]. Most of the existing literature investigates the relationship
between crude oil future prices and spot oil prices or other commodity markets. Silvério
and Szklo [12] through the empirical analysis of WTI spot and WTI futures, find that for
WTI, the contribution of the future market in price discovery is increasing. Zhang and
Wang [13] find that there is a long-term equilibrium relationship between futures and
spot prices of crude oil, but the futures market is more mature and has better market
efficiency and price discovery functions. Jiang, Marsh [14] use a vector error correction
model to study the price transmission between the U.S. crude oil, corn, and plastic markets
and find that the crude oil price is a factor that causes the changes in the plastic and
corn futures markets. In addition, there is also a correlation between the crude oil and
corn futures markets. Alizadeh and Nomikos [15] investigate the dynamic relationship
between oil future prices and tanker freight rates. Chu, Hoff et al. [16] indicate that in
the prediction of oil spot price, futures-based forecasts perform better than the no-change
forecast across long-term horizons (one to five years). Bai and Kavussanos [17] examine
how to use the petroleum future contracts to manage the risk results from the bunker spot
price fluctuations. Other related literature includes Chang and Lee [18], Lee and Zeng [19],
Chen, Lee et al. [20], Gulley and Tilton [21], and Liu Wang et al. [22]. The existing literature
on the relationship between crude oil future prices and spot prices has been very sufficient.
However, at present, there is limited literature on the relationship between crude oil futures
and bunker oil. Bunker is a product of crude oil split distillation, so its price should be
closely related to the oil price. As oil future price contains the information of future spot
oil price; it is reasonable to investigate how oil future prices imply bunker prices. In this
way, shipping enterprises can make timely adjustments and decisions. As crude oil future
is the most active futures contract in the world shipping enterprises and can consider using
the crude oil future to manage risk when the bunker prices change, thus controlling their
operation costs and maximizing profits. For this reason, this research fills this gap by
investigating the relationship between bunker prices and oil future prices.

Cointegration analysis is very popular in analyzing the co-movement of two non-
stationary time series. For example, Aftab, Ahmed et al. [23] investigate the nexus between
carbon emissions, energy consumption and economic progress for Pakistan by cointegration
and autoregressive distribution lag methods. Zakaria, Khiam et al. [24] analyze the impact
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of world oil prices on inflation in South Asian countries, using Cointegration, VAR, and
nonlinear analysis. After the cointegration relationship is confirmed, the vector error
correction model (VECM) is usually applied to the model time series. For example, Alizadeh
and Nomikos [15] check the causal relationship between WTI futures and shipping freight
costs using the Vector Error Correction model. Besides ARDL, Aftab, Ahmed et al. [23]
also apply the VECM to determine feedback effect in a bivariate model. Impulse response
analysis is often used with VECM too because it can provide the support of causality status
between the variables in the VECM system [25]. For example, Danish Wang et al. [26]
use the impulse response function to reveal that CO2 emission rises due to forecast error
stemming from energy crises. Mensah, Triacca et al. [27] also conduct impulse response
analysis with VECM. So this paper adopts their research methods to explore how crude oil
future prices imply bunker prices.

3. Data Description and Cointegration Analysis
3.1. Data Description

The paper includes bunker fuel (MGO, Marine Gas Oil) weekly price data from three
ports, namely, Rotterdam, Singapore, and Fujairah, as well as two crude oil future contracts
(contract 1 and 3) from NYEX (The New York Mercantile Exchange). Approximately 831
data points are selected for analysis for the period 30 December 2005 to 26 November
2021. Taking the data from 30 December 2005 to 22 February 2019 as the in-sample, that
is 687 observations in total. We use data from 1 March 2019 to 26 November 2021 as the
out-of-sample(144 weekly price data) to investigate the predictive performance of different
models. Bunker price data are downloaded from Shipping Intelligence Network provided
by Clarkson Research Services Ltd. in London, UK. Crude oil future price is downloaded
from U.S. Energy Information Administration.

In this paper, the MGO prices of Fujairah, Rotterdam, and Singapore and the two
crude oil future contract prices are treated logarithmically, and their price trends are shown
in Figure 1. From the figure, it can be seen that the bunker price fluctuates greatly. The
fluctuation trend of the bunker oil prices in all three ports is almost the same as that of the
two crude oil future contracts. Both bunker and crude oil future prices have risen since the
second half of 2020. According to Table 1, the average, minimum and maximum bunker
prices in Fujairah are higher, and the standard deviation is lower than those in Rotterdam
and Singapore. However, all three ports have big standard deviation value, which indicates
great price volatility. The skewness values for bunker prices of the three ports and crude oil
future prices are all greater than zero, indicating right-skewed distributions. The kurtosis
indicators are less than 3, indicating a fat-tailed distribution. The five columns on the
right side of Table 1 are the logarithm changes of MGO prices and crude oil future prices.
In terms of logarithm changes, MGO, and crude oil futures are not significantly different.
Referring to the skewness and kurtosis indicators, the logarithm changes of the bunker and
crude oil future prices exhibit left-skewed distributions. Crude oil future contract 1 has a
higher kurtosis coefficient than other series, making its kurtosis finer.
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Figure 1. The trend of MGO and oil future prices (Data source: Shipping Intelligence Network and
U.S. Energy Information Administration).

Table 1. Some key summary statistics (30 December 2005–24 September 2021).

MGOR MGOS MGOF Oil1 Oil3 ∆MGOR ∆MGOS ∆MGOF ∆Oil1 ∆Oil3

Mean 650.08 662.49 746.26 70.661 71.478 0.0003 0.0003 0.0003 0.0002 0.0002
Maximum 1317.5 1360.0 1375.5 142.46 143.39 0.1987 0.1964 0.1269 1.3914 0.1844
Minimum 211.50 232.00 329.25 3.9200 22.670 −0.2851 −0.2621 −0.1949 −1.6351 −0.3241
Std. Dev. 213.45 212.22 206.71 22.675 22.005 0.0450 0.0404 0.0269 0.0879 0.0413
Skewness 0.4728 0.4930 0.5219 0.3306 0.3873 −0.3637 −0.5224 −1.1853 −3.0312 −1.1757
Kurtosis 2.4675 2.5252 2.4855 2.5410 2.5192 7.1749 8.7501 11.451 223.93 11.786

Note: (1) Oil1 and Oil3 indicate Crude Oil Future Contract 1 and 3 respectively. (2) ∆ indicates the logarithm
change. (3) The kurtosis of the normal distribution is 3. If the kurtosis exceeds 3, the distribution is peaked
(leptokurtic) relative to the normal; if the kurtosis is less than 3, the distribution is flat (platykurtic) relative to
the normal.

The Jarque–Bera test (JB test in Table 2) aims to test whether the series is normally
distributed. The null hypothesis is the data that shows the normal distribution. As all the
JB test statistic values are large, we reject the hypothesis at the 1% significance level.

Table 2. The Stationary test and JB test.

LnMGOR LnMGOS LnMGOF LnOil1 LnOil3
JB test 10.576 *** 9.2268 *** 14.549 *** 956.92 *** 14.353 ***

ADF test −1.9750 −2.2646 −2.1899 −2.7922 * −2.4010
KPSS test 0.9759 *** 0.8618 *** 0.7336 ** 1.1098 *** 1.2602 ***

∆MGOR ∆MGOS ∆MGOF ∆Oil1 ∆Oil3
JB test 614.35 *** 1168.4 *** 2635.4 *** 1671000 *** 2829.5 ***

ADF test −27.347 *** −16.857 *** −12.121 *** −24.470 *** −22.209 ***
KPSS test 0.0597 0.0553 0.0762 0.0341 0.0486

Note: (1) Refer to the stationary test; intercept is included in the test equation for all the series. (2) The null
hypothesis of the ADF test is that the series has a unit root. The lag length for the ADF test is 20. The test critical
values of ADF test (Adj. t-Stat.) are −3.4380, −2.8648, −2.5686 at 1%, 5%, and 10% levels, respectively. (3) The
null hypothesis of the KPSS test is that the series is stationary. The asymptotic critical values of KPSS test (LM
Stat.) are 0.7390, 0.4630, 0.3470 at 1%, 5%, and 10% levels, respectively. (4) ***, **, * denote the significance at 1%,
5% and 10%, respectively.

Both the Augmented Dickey–Fuller (ADF) test and KPSS test are used to test the
stationarity and the results are shown in Table 2. As with the ADF test, we fail to reject
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the null hypothesis of a unit root in the logarithmic bunker and oil future contract 3 price
series at conventional significance levels. After differencing the series, the ADF test results
are significant, indicating that the logarithmic bunker and crude oil future price series are
stationary in their first-order differences. Different from the ADF test, the KPSS test has a
null hypothesis of no unit root. From Table 2, we reject the null hypothesis of no unit root
in the logarithmic bunker and oil future price series, but their first-order differences are
stationary according to the KPSS test results.

3.2. Cointegration Analysis

Figure 1 illustrates the similar trends of MGO and oil future prices. Moreover, the
logarithmic MGO and oil future prices are not stationary, but they have the same order
of integration. Engle and Granger [28] pointed out that even though two series are non-
stationary, a linear combination of them may be stationary. As a result, the test for the
cointegration among the variables is necessary to see if the logarithmic MGO and oil future
prices share a common trend, including long term relationship.

In this section, the Johansen cointegration test was performed for the MGO and the
crude oil future prices. It makes use of two likelihood ratio (LR) statistics: the trace statistic
(λtrace) and the maximum eigenvalue statistic (λmax) [29].

λtrace = −T
K

∑
i=r+1

log(1− λ̂i) (1)

λmax = −T log(1− λ̂r+1) (2)

where λ̂r+1, . . . , λ̂K are (K − r) smallest estimated eigenvalues. For more details on the
application of Johansen test please refer to Mensah et al. [27]. The sequential test for the
trace test relies on the hypothesis

Hypothesis 1. H0: r = r0 against H1: r0 < r < K . (K is the number of the variables).

The sequential test for the maximum eigenvalue relies on the hypothesis

Hypothesis 2. H0: r = r0 against H1: r = r0 + 1 .

If the cointegration relationship is confirmed, it can be concluded that there is a long-
run relationship between the variables. As shown in Table 3, in the cointegration test
between the crude oil future contract 1 and the MGO prices of Rotterdam, Singapore,
and Fujairah, both Trace and the Maximum eigenvalue statistics firmly reject the hypothesis
of no cointegration at the 5% significance level. In the cointegration test between the crude
oil future contract 3 and the MGO prices of Rotterdam, Singapore, and Fujairah, both Trace
and the Maximum eigenvalue statistics firmly reject the hypothesis of no cointegration at the
5% significance level. Both crude oil future contract 1 and 3 has a cointegration relationship
with the MGO price series of Rotterdam, Singapore, and Fujairah. The cointegrating
parameters and optimal lag orders are shown in Table 3. Take the MGO price in Rotterdam
and the oil future contract 1 price as an example, the error correction term is

LnMGOR,t−1 = 2.1231 + 1.0247LnOil1,t−1 (3)

Equation (3) shows a positive correlation between oil future contract 1 and MGO. It
can be found that a 1 percent increase in oil future price leads to 1.0247 percent growth in
the MGO. This also means that a permanent increase in the price of oil future contract 1
will propel MGO price growth.
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Table 3. The Johansen cointegration test results.

H0 TRACE EIGENV Bunker Oil Future Constant LAG

Oil future contract 1

Rotterdam
r = 0 * 47.1838 43.4263 3
r = 1 3.7575 3.7575 3

Cointegrating parameters 1.0000 −1.0247 −2.1231

Singapore
r = 0 * 42.6368 37.8457 3
r = 1 4.7911 4.7911 3

Cointegrating parameters 1.0000 −0.9981 −2.2581

Fujairah
r = 0 * 59.6227 53.0320 3
r = 1 6.5907 6.5907 3

Cointegrating parameters 1.0000 −0.9407 −2.6314
Oil future contract 3

Rotterdam
r = 0 * 28.0200 23.8535 1
r = 1 4.1666 4.1666 1

Cointegrating parameters 1.0000 −1.0978 −1.7934

Singapore
r = 0 * 22.2509 17.4352 2
r = 1 4.8158 4.8158 2

Cointegrating parameters 1.0000 −1.0535 −2.0021

Fujairah
r = 0 * 66.6750 58.7704 2
r = 1 7.9045 7.9045 2

Cointegrating parameters 1.0000 −0.9866 −2.4169
Note: (1) The lag order is determined by BIC. (2) * denotes rejection of the hypothesis at the 0.05 level.

4. Prediction Analysis
4.1. Model Specification

It is found that the crude oil future prices and the MGO prices are cointegrated in the
last section. By utilizing the cointegration relationship, the VECM model can be built to
predict the price of MGO. In addition, we also considered the ARMA, ARMAX, and VAR
models to explore the performance of these models in predicting the MGO prices.

4.1.1. ARMA and ARMAX

Autoregressive Moving Average (ARMA) is the most basic model in time series analy-
sis and it is usually taken as the benchmark model in prediction performance evaluation.
ARMAX is an extension of ARMA by including exogenous variables.

The ARMA model considers the effect of the series’ own lagged term and random
disturbance term on the current series value (Shown in Equation (4)). The ARMAX model
adds exogenous variables to investigate the impacts of these exogenous variables. In this
paper, the return series of crude oil future prices lagging by one period is taken as the
exogenous variable in ARMAX, and the influence on the prediction effect of MGO price
after adding the exogenous variable of the return of crude oil futures is considered (Shown
in Equation (5)).

∆MGOt = c +
p

∑
i=1

φi∆MGOt−i +
q

∑
j=1

θjεt−j + εt (4)

∆MGOt = c +
p

∑
i=1

φi∆MGOt−i +
q

∑
j=1

θjεt−j + β∆OilFuturet−1 + εt (5)

4.1.2. VAR

VAR is constructed as a function of the lagged terms of each endogenous variable in
the system. In this paper, the VAR model is constructed by taking the MGO returns and
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crude oil future returns as the endogenous variables in the system and using their lagged
terms to construct a model to analyze and forecast MGO prices (Shown in Equation (6)).

∆MGOt = c1 +
p
∑

i=1
ϕ1,i∆MGOt−i +

p
∑

i=1
τ1,i∆OilFuturet−i + ε1,t

∆OilFuturet = c2 +
p
∑

i=1
ϕ2,i∆MGOt−i +

p
∑

i=1
τ2,i∆OilFuturet−i + ε2,t

(6)

The best lag order of VAR is determined by Schwarz Criterion (SC), which is also
known as Bayesian Information Criterion (BIC), because it also considers the number of
the parameters in the models. The value of SC is calculated by the following equation:

SC = −2l/T + n ln T/T (7)

where n is the number of the estimated parameters and l is the log-likelihood value which
is calculated by assuming that it obeys multivariate normal distribution. Table 4 shows the
BIC values for lags 1–5. The values in bold indicate the optimal lags selected by the criteria.

Table 4. Lag selection using Bayesian information criteria.

Lag ∆MGOR ∆MGOR ∆MGOS ∆MGOS ∆MGOF ∆MGOF
∆Oil1 ∆Oil3 ∆Oil1 ∆Oil3 ∆Oil1 ∆Oil3

1 −5.6822 −7.9498 −5.8112 −7.9563 −5.8112 −7.9563
2 −5.6866 −7.9295 −5.8455 −7.9590 −5.8455 −7.9590
3 −5.7064 −7.9131 −5.8651 −7.9451 −5.8651 −7.9451
4 −5.6793 −7.8882 −5.8465 −7.9288 −5.8465 −7.9288
5 −5.6831 −7.8798 −5.8525 −7.9137 −5.8525 −7.9137

Note: The bold numbers indicate the smallest BIC values for different bunker and future combinations.

4.1.3. VECM

The VECM is a model of VAR with cointegration constraints. Using the information
presented in the previous section, one can construct a VECM model to analyze the dynamic
relationship between MGO and crude oil futures yields. ecmt−1 in Equation (8) is the
error correction term, which is established on the basis that bunker and crude oil future
prices have a cointegration relationship. The error correction term indicates the long-run
dynamics that although bunker and crude oil future prices are disequilibrium at any given
time, but they have the tendency to adjust themselves towards equilibrium.The short-run

dynamics is presented by
p−1
∑

i=1
τ1,i∆OilFuturet−i in Equation (8). In the following equation,

p is the optimal lag in the VAR model. So the lag order of VECM is p− 1.

∆MGOt = c1 + α1ecmt−1 +
p−1
∑

i=1
ϕ1,i∆MGOt−i +

p−1
∑

i=1
τ1,i∆OilFuturet−i + ε1,t

∆OilFuturet = c2 + α1ecmt−1 +
p−1
∑

i=1
ϕ2,i∆MGOt−i +

p−1
∑

i=1
τ2,i∆OilFuturet−i + ε2,t

(8)

4.2. Model Estimation Results

According to statistics, considering Singapore ranks first among the ten largest refu-
eling ports in the world in 2020, it is more representative than the other two ports. This
section discusses the estimation results based on the MGO prices in Singapore. The model
parameter estimation results of the models used in this research are shown in Table 5.
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Table 5. Estimated results (MGO in Singapore).

Parameters Oil Future Contract 1 Oil Future Contract 3
Coefficient

Estimate t-Statistic Coefficient
Estimate t-Statistic

ARMA
φ1 0.8131 *** 10.3244
θ1 −0.6983 *** −7.2539

ARMAX
φ1 0.6930 *** 5.1070 0.5550 *** 3.3644
φ2 0.0778 * 1.7134 0.1796 *** 4.5020
θ1 −0.6549 *** −4.9528 −0.7110 *** −4.2377
β 0.0644 *** 3.7401 0.3469 *** 7.8465

VAR
ϕ1,1 0.0320 0.7892 −0.1990 *** −3.8250
ϕ1,2 0.0735 * 1.7853 0.0952 * 1.8504
ϕ1,3 −0.0028 −0.0706 – –
τ1,1 0.0838 *** 4.4933 0.4115 *** 8.2375
τ1,2 0.0141 0.7193 −0.0076 −0.1467
τ1,3 0.0784 *** 4.1674 – –

VECM
α1 −0.0301 ** −2.0298 −0.0444 *** −2.9061

ϕ1,1 0.0595 1.4481 −0.1825 *** −3.5863
ϕ1,2 0.1258 *** 3.1764 – –
τ1,1 0.0489 ** 2.3906 0.3969 *** 7.8463
τ1,2 −0.0234 −1.2077 – –

Note: ***, **, * denote the significance at 1%, 5% and 10%, respectively.

In Table 5, the optimal lags of ARMA and ARMA are also determined by the BIC
value. For crude oil future 1, almost all of the parameters estimation results of AR terms
and MA terms in ARMA and ARMAX are significant at the 1% level. The parameter before
the exogenous variable, crude oil future price return, is significant at 1%. The positive
value indicates the bunker price increases with the oil crude future price. Additionally, the
random disturbances term is negatively related to the current return rate. The VAR model
considers the lagging terms of both the MGO return and the crude oil future return. The
results indicate that the lagging terms of both returns have certain impacts on the MGO
price return. For both datasets, the parameters’ signs of the AR terms in the VECM are
consistent with those of the VAR. For the MGO returns and oil future contract 1 returns, the
parameter’s sign of the MA(2) term in the VECM is not consistent with that of the VAR. But
both of them are not significant. For both datasets, the parameters of the error correction
terms are significant, which indicates the long-run equilibrium conditions significantly
affect the short-run dynamics of bunker prices through an error correction mechanism. The
parameters are negative, indicating that the increase in the error correction term’s value
has the effect of lowering the MGO returns, and the decrease in the error correction term’s
value has the effect of increasing the MGO price returns; in other words, the long-run
equilibrium between MGO and oil future prices stabilizes the MGO price returns. Referring
to the short-run dynamics between the MGO and oil future prices, the first lag of the oil
future returns has a positive impact on the MGO price returns. The oil future contract 1
returns increase by 1% and, consequently, the MGO returns increase by 0.0489%. The oil
future contract 3 returns increase by 1% and the MGO returns increase by 0.3969%. The
second lag of the oil future contract 1 returns also impacts the MGO returns. However, this
impact is weaker than the impact from the first lag.

4.3. Prediction Performance

Two prediction performance evaluation methods are used in this paper. Root mean
square error (RMSE) is the most widely used method of evaluation. The better the forecast
is, the smaller the mean square forecast error is. The closer to zero the value is, the better the
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forecasting performs. Another method is the Theil’s inequality coefficient, also known as
Theil’s U. It provides a measure of how well the predicted value compares to the observed
value, which helps to assess whether a good forecasting model is better than a naive
prediction that repeats the previous observation, with the same evaluation criteria as RMSE.
The calculation of RMSE and Theil’s U is shown in Equations (9) and (10).

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (9)

Theil′sU =

√
1
n ∑

i
(ŷi − yi)

2

√
1
n ∑

i
ŷ2

i +
√

1
n ∑

i
y2

i

(10)

While the in-sample performance of the prediction model is not necessary to indicate
the out-of-sample performance. Out-of-sample prediction can be used to measure the
model’s performance more subjectively. In this paper, the out-of-sample forecast period is
from 1 March 2019 to 26 November 2021, which includes 144 observations. There are two
types of forecast intervals, the one-step-ahead forecast and four-step-ahead forecast.

The results of RMSE and Theil’s indicators in the one-step-ahead are shown in Table 6.
When the ARMA, ARMAX, VAR, and VECM models are used to forecast the price of MGO,
the effect of the MGO price predicted by the ARMA model is better than that of the ARMAX
model, indicating that the prediction performance of the ARMA model will be reduced
when considering the crude oil future returns. So only simply involving crude oil future
returns is not effective in predicting MGO prices. In the out-of-sample forecast results of
crude oil futures contract 1 and MGO price, the VECM model has the smallest root mean
square error-index and Theil’s U index. It appears that the VECM model demonstrates
better forecasting performance than ARMA, ARMAX, and VAR models.

Referring to crude oil future contract 3 and MGO prices, when it comes to predicting
MGO prices of Rotterdam and Fujairah, the VECM performs better than the other two
models. In the prediction of MGO price of Singapore, the ARMAX model is the best and it
performs slightly better than the VAR and VECM models. Compared with crude oil futures
contract 1 and crude oil futures contract 3, crude oil futures contract 1 has better prediction
performance using the VECM model, which indicates that the prediction ability of the
model is improved after considering the cointegration relationship between the returns of
MGO and crude oil future contract 1. As compared to Rotterdam, Singapore, and Fujairah,
the RMSE and Theil’s of the one-step-ahead forecast for Fujairah have the smallest weekly
price relationship with crude oil futures, which indicates that the forecast effect on the
MGO price of Fujairah port is good.

Table 6. 1-step-ahead Prediction Performance (1 March 2019–26 November 2021, 144 observations).

Rotterdam Singapore Fujairah

RMSE Theil’s U RMSE Theil’s U RMSE Theil’s U
ARMA 5.4105 0.4380 4.9345 0.3967 3.3128 0.2597

Oil future contract 1
ARMAX 8.9108 0.7212 8.3100 0.6680 3.5014 0.2744

VAR 5.0130 0.4058 4.7971 0.3857 3.2027 0.2510
VECM 4.9577 0.4013 4.7501 0.3819 3.0387 0.2382

Oil future contract 3
ARMAX 5.6163 0.4546 5.1414 0.4133 3.2227 0.2526

VAR 5.6341 0.4561 5.1864 0.4169 3.1698 0.2484
VECM 5.5921 0.4527 5.1443 0.4136 3.1851 0.2497

Note: The bold numbers indicate the smallest RMSE or Theil’s U in the prediction of different ports’ bunker prices.
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The results of the four-step-ahead prediction are shown in Table 7 . When the crude oil
future contract 3 is used to make an out-of-sample prediction on MGO, the values of RMSE
and Theil’s U of the VECM model are lower than those of other models. This implies that
the VECM model based on the cointegration between the MGO returns and the crude oil
future returns can improve prediction accuracy. However, it doesn’t mean crude oil future
3 with VECM is most suitable to conduct a four-step-ahead prediction, because crude oil
future 1 with VECM achieves better RMSE and Theil’s U values in predicting the MGO
prices in Rotterdam.

Table 7. 4-step-ahead Prediction Performance (1 March 2019–26 November 2021, 144 observations).

Rotterdam Singapore Fujairah

RMSE Theil’s U RMSE Theil’s U RMSE Theil’s U
ARMA 5.4105 0.4402 5.0878 0.4090 3.3787 0.2648

Oil future contract 1
ARMAX 5.5995 0.4533 5.3622 0.4311 3.5781 0.2805

VAR 5.3969 0.4369 5.0829 0.4087 3.3923 0.2659
VECM 5.3942 0.4367 5.0658 0.4073 3.3001 0.2587

Oil future contract 3
ARMAX 5.4180 0.4386 5.1098 0.4108 3.3989 0.2664

VAR 5.4433 0.4406 5.1051 0.4104 3.3663 0.2638
VECM 5.4212 0.4389 5.0649 0.4072 3.2995 0.2587

Note: The bold numbers indicate the smallest RMSE or Theil’s U in the prediction of different ports’ bunker prices.

Comparing the one-step-ahead forecast with the four-step-ahead forecast, using the
VECM model, crude oil future contract 1 has a better performance on MGO price in the
one-step forward forecast, while in the four-step forward forecast, crude oil future contract
3 has a slightly better performance than crude oil future contract 1.

4.4. Robustness Checks

To test whether the above conclusions are reliable, this section adjusts the forecast
period to a total of 72 weeks from 17 July 2020 to 26 November 2021 to test whether the
above conclusions are robust under the condition of shortening the time window. In the
robustness test, the out-of-sample forecast is still divided into one-step -ahead and four-step-
ahead; the forecast performance is shown in Tables 8 and 9.

Table 8. 1-step-ahead Prediction Performance (17 July 2020–26 November 2021, 72 observations).

Rotterdam Singapore Fujairah

RMSE Theil’s U RMSE Theil’s U RMSE Theil’s U
ARMA 3.5594 0.2880 3.1600 0.2545 2.3303 0.1838

Oil future contract 1
ARMAX 3.6294 0.2937 3.1740 0.2556 2.3673 0.1867

VAR 3.5808 0.2898 3.1719 0.2555 2.3445 0.1849
VECM 3.4966 0.2829 3.1330 0.2523 2.2928 0.1808

Oil future contract 3
ARMAX 3.6564 0.2959 3.2840 0.2645 2.3948 0.1889

VAR 3.5864 0.2902 3.3116 0.2667 2.3770 0.1875
VECM 3.5720 0.2890 3.3294 0.2681 2.3420 0.1847

Note: The bold numbers indicate the smallest RMSE or Theil’s U in the prediction of different ports’ bunker prices.



Energies 2022, 15, 3630 12 of 17

Table 9. 4-step-ahead Prediction Performance (17 July 2020–26 November 2021, 72 observations).

Rotterdam Singapore Fujairah

RMSE Theil’s U RMSE Theil’s RMSE Theil’s
ARMA 3.5714 0.2890 3.2442 0.2613 2.3945 0.1889

Oil future contract 1
ARMAX 3.5606 0.2881 3.2421 0.2611 2.4026 0.1895

VAR 3.5607 0.2881 3.2347 0.2605 2.3924 0.1887
VECM 3.5560 0.2878 3.2222 0.2596 2.3278 0.1836

Oil future contract 3
ARMAX 3.5545 0.2876 3.2108 0.2586 2.3940 0.1888

VAR 3.5712 0.2890 3.2248 0.2598 2.4093 0.1901
VECM 3.5348 0.2860 3.1598 0.2545 2.3139 0.1825

Note: The bold numbers indicate the smallest RMSE or Theil’s U in the prediction of different ports’ bunker prices.

In the one-step-ahead forecast, when using ARMA, ARMAX, VAR, and VECM models
to forecast the price of MGO, the effect of using the ARMA model to forecast the price of
MGO is better than that of the ARMAX model, which indicates that considering the yield
of crude oil futures can reduce the forecast performance of the model. In the relationship
between crude oil future contract 1 and MGO price, the VECM model with cointegration
constraint is still better than other models. In crude oil future contract 3, With respect to the
forecast of MGO price of Rotterdam and Fujairah, VECM performs slightly better than the
other two models. The ARMAX model performs slightly better than the VAR and VECM
in the forecast of the MGO price of Singapore. The prediction performances of MGO prices
using ARMA, ARMAX, and VECM models are consistent with the results obtained in
Table 5, which indicates that the VECM model has good prediction performance. Moreover,
oil future contract 1 is effective in one-step-ahead prediction. The RMSE and Theil’s U
values of crude oil futures contract 1 are smaller than those of crude oil futures contract 3,
indicating that the cointegration relationship between crude oil future contract 1 and MGO
has a good prediction effect on MGO.

In the four-step-ahead prediction, the prediction effect of the ARMA model is slightly
lower than the other three models. The VECM model considering the cointegration rela-
tionship between MGO return rate and crude oil future contract 3 is better in predicting
MGO prices. Comparing Table 6 with Table 8, the results of futures contracts with better
performance are inconsistent for the MGO price forecast of Rotterdam, the results of crude
oil future contract 3 used in the MGO price forecast of other ports are consistent. In addition,
it is consistent in its superior performance in the MGO price forecast that the VECM model
is based on the cointegration relationship between crude oil futures contracts and MGO.
Although contract 3 performs better in four-step-ahead prediction in most cases, but this
paper still recommends using both contract 1 and 3 to predict four-step-ahead values since
contract 3 is not better than contract 1 in Rotterdam.

In light of the above analysis, it can be shown that the result that VECM performs
better than other models is robust and consistent irrespective of how the prediction window
is chosen. In other words, the MGO price can be more accurately predicted when a one-step-
ahead prediction is made using the crude oil future contract 1. With the four-step-ahead
prediction, crude oil future contract 3 outperforms crude oil futures contract 1, but only
by a small margin. In the one-step-ahead forecast and the four-step-ahead forecast, the
cointegration relationship is helpful in the forecast of MGO price.

5. Discussion
5.1. Impulse Response Analysis
5.1.1. Impulse Response Function

Impulse response analysis traces the effect of a one-time shock to one of the innovations
on current and future values of the endogenous variables. It indicates how the shocks
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or impulses are transmitted to each variable. Considering the moving average (MA)
representation of a VAR process, that is

Yt = C +
∞

∑
i=1

Φiεt−i (11)

where Φi =
i

∑
i=1

Φi−1 Ai and Ai are fixed (K× K) matrix of coefficient parameters in the VAR

model. Φ0 = IK and Ai = 0 for i > p, i = 1, 2, . . . . Here K is the number of endogenous
variables and p is the lag order. The (K×K) MA coefficients represent the impulse response
sequences of innovations in the system. In other words, for a period of h shock, the impulse
response function:

Yt+h = C +
∞

∑
i=1

Φiεt+h−i (12)

{Φh}i,j =
∂yi,t+h

∂ε j,t
(13)

Can be described as the response of yi,t+h resulting from a one standard deviation in
the impulse of yi,t. The inverse of the Cholesky factor of the residual covariance matrix is
used to orthogonalize the impulses.

5.1.2. Analysis

In this paper, Figure 2 is an impulse response diagram based on the VAR model.
It shows the reaction of MGO price at each port after being impacted by one standard
deviation of crude oil futures price. As can be seen from the impulse response diagram
on the left in Figure 2, when the price of crude oil futures contract 1 changes positively,
the MGO price of Rotterdam presents positive feedback for two consecutive periods and
tends to decrease after reaching the peak value in the second period. Then it presents
negative feedback in the third period, presents positive feedback and reaches another peak
value in the fourth period and basically converges to 0 after the seventh period, returning
to the initial steady state. Singapore and Fujairah’s MGO prices react almost exactly the
same as Rotterdam’s to the positive change in the crude oil futures contract 1.

When there is a positive price change in crude oil future contract 3, the bunker price of
Rotterdam presents positive feedback for two consecutive periods, gradually falling after
reaching the peak in the second period, the feedback disappears after the fifth period and
tends to be stable. When the price of crude oil future contract 3 changes positively, the price
of MGO in Singapore shows positive feedback in the first two periods and peaks in the
second period, then gradually converges after a downward trend, converges to zero after
the fifth period, and returns to a steady state. The reaction of the MGO price in Fujairah
after the rise in crude oil future contract 3 is different from that of the other two ports.
The positive feedback in the first two phases reached a peak in the second phase, but the
reaction was not as intense as that in the other two ports. Then the reaction showed a
downward trend. In the third phase, the positive feedback reappeared. After reaching a
small peak in the fourth phase, it gradually fell back. After the eighth phase, the feedback
effect of crude oil futures on it disappeared and returned to a steady state. From the above
analysis, it can be seen that the rise and fall of crude oil futures price will play a positive,
negative, or inhibitory role in the rise and fall of bunker oil price.

5.2. Cointegration Analysis between VLSFO and Crude Oil Future

Since 1 January 2020, the sulfur limit for bunker fuel outside the emission control
zone has been reduced from not more than 3.5% to no more than 0.5% globally to prevent
air pollution caused by ships. With the implementation of the IMO’s Global Sulphur
Restriction Order in 2020, shipping companies have taken steps to use low-sulfur bunker
oil, install tail gas desulfurization devices or use alternative energy sources as power
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sources. Compared with the first measure, the use of latter two measures are limited.
For example, the installation of desulfurization units requires the discharge of wastewater,
which is restricted by the regulations of some countries in the world. New energy sources
are used as the power fuel for the operation of ships. However, there are few suitable types
of equipment, which is somewhat limited. At present, the main fuel of most international
navigation ships is low-sulfur fuel oil, which is a directly available compliance product.
Accordingly, the demand for low-sulfur bunker fuel oil will increase and the consumption
will increase.

Figure 2. Response to Cholesky One S.D. (d.f. adjusted) Innovations ±2 S.E.

VLSFO is the ultra-low sulfur fuel oil obtained by directly refining low-sulfur crude
oil or by desulfurizing high-sulfur fuel oil. In this case, the ultra-low sulfur fuel oil is
more expensive than the high-sulfur fuel oil. Since the International Maritime Sulphur
Restriction Order came into effect in January 2020, the price gap between high-sulfur fuel
oil and low-sulfur fuel oil remains wide, even exceeding the US $150. The main reason is the
strong demand for low-sulfur fuel oil and the tight supply. Since the implementation of the
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Global Sulphur Restriction Order, the consumption of VLSFO has increased, but all ports
began to provide VLSFO prices just from the second half of 2019. The price sample is small.
As VLSFO can be regarded as the result of reprocessing HSFO, we generated simulation
data of VLSFO prices from January 2015 to August 2019 based on the price relationship
between VLSFO and HSFO from September 2019 to February 2020. The simulation data is
used to test the potential cointegration relationship between VLSFO and crude oil futures.

The results of the cointegration test of the VLSFO and the crude oil futures are shown
in Table 10. In the cointegration test between the crude oil future contract 1 and the VLSFO
prices of Rotterdam, Singapore, and Fujairah, both Trace and the Maximum eigenvalue tests
firmly reject the hypothesis of no cointegration at the 5% significance level. On the other
hand, the null hypothesis that one cointegration relation exists cannot be rejected between
crude oil future contract 1 and the VLSFO prices. For crude oil future contract 3, the null
hypothesis of no cointegration cannot be rejected. It means there is no cointegration relation
between crude oil futures contract 3 and the VLSFO prices. Crude oil future contract 1 has
a cointegration relationship with VLSFO, which can be useful in the price prediction of
VLSFO prices. Based on the previous empirical analysis of MGO prices, if there are enough
data, it is possible to forecast the VLSFO prices in the future based on the cointegration
relationship between VLSFO and crude oil future contract 1.

Table 10. The Johansen test results for VLSFO and crude oil future.

H0 TRACE EIGENV LAG

Oil future contract 1

Rotterdam r = 0 * 33.6248 29.7657 1
r = 1 3.8591 3.8591 1

Singapore r = 0 * 36.9681 34.0930 1
r = 1 2.8751 2.8751 1

Fujairah r = 0 * 23.4196 19.7493 2
r = 1 3.6703 3.6703 2

Oil future contract 3

Rotterdam r = 0 13.8906 9.7870 1
r = 1 4.1036 4.1036 1

Singapore r = 0 13.8839 10.2185 2
r = 1 3.6654 3.6654 2

Fujairah r = 0 13.7044 9.6641 2
r = 1 4.0403 4.0403 2

Note: (1) The lag order is determined by BIC. (2) * denotes rejection of the hypothesis at the 0.05 level.

6. Concluding Remarks

This study aimed to investigate whether oil future prices can indicate future bunker
prices. We find there is a cointegration relationship between bunker and crude oil future
prices. We also considered two oil future contracts (contract 1 and 3) to find out which
future contract implies the bunker price better. We find bunker price and oil future price are
cointegrated, which means there is a long-run relationship between bunker and oil future
prices. In a further step, we take ARMA as the benchmark model and use ARMAX, VAR,
and VECM models to predict bunker price. Among those models, only VECM considers
the long-run relationship between bunker and oil future prices. The model estimation
results of these models (as shown in Table 4) show how the oil futures price implies the
bunker price. The prediction performances of the models are compared with one-step-
ahead and four-step-ahead prediction. The results show that in the one-step-ahead and
four-step-ahead prediction, the VECM model established with crude oil futures contract
1 has better prediction performance than other model specifications. We also change the
prediction samples to check the robustness. Finally, impulse response analysis shows the
response of bunker prices to crude oil future prices in different periods.
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The research of this paper is mainly to help shipping enterprises adjust bunker oil
refueling plan in time according to the change of crude oil futures price, or use crude oil
futures to hedge the business risk caused by an excessive change in bunker price. Given
the small amount of VLSFO data currently available, this paper only investigates the
cointegration relationship between its prices and crude oil future prices. In the future, the
cointegration relationship may be used to forecast VLSFO prices.
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