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Abstract: Variable renewable energy availability has increased the volatility in energy prices in most
markets. Nuclear power plants, with a large ratio of capital to variable costs, have historically operated
as base load energy suppliers but the need for more flexible operation is increasing. We simulate
the techno-economic performance of a 950 MWt nuclear power plant, based on the Westinghouse
lead-cooled fast reactor, coupled with molten salt thermal storage as a method for flexible energy
dispatch. We use the System Advisor Model to model the nuclear reactor thermal power input and
power cycle operating modes. We combine this robust engineering model with a mixed-integer
linear program model for optimized dispatch scheduling. We then simulate the coupled nuclear and
thermal storage system under different market scenarios with varying price volatility. We find that
the coupled plant outperforms the base plant under markets where energy price peaks fluctuate by a
factor of two or more about the mean price. We show that a calculated power purchase agreement
price for the plant improves by up to 10% when operating under California energy market conditions.
Sensitivity analysis on the thermal storage cost shows that the optimal design remains unchanged
even when doubling costs.

Keywords: advanced nuclear; lead-cooled fast reactor; molten salt; thermal energy storage; dispatch
optimization; System Advisor Model

1. Introduction

Nuclear power plants (NPP) have a high ratio of capital costs to variable costs which
has historically made them a reliable option for baseload power supply under past energy
market conditions. While NPPs have the ability to ramp production to load follow demand
trends, the financial incentives are usually not enough to make this flexible operation viable
with current technologies. As markets become more saturated with variable renewable
energy (VRE) sources, market conditions become more volatile. Solar energy supplies the
grid with power during daylight hours; however, demand peaks during early morning
and late afternoon hours. Solar availability and grid demand peak out-of-phase, which
widens the range of wholesale energy prices throughout the day. Prices during the middle
of the day are known to reach negative values in VRE-saturated markets like the California
Independent System Operator market (CAISO) in the western United States. They, however,
increase rapidly when demand spikes in the evening as residential load comes online and
the previously abundant solar power wanes [1].
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High pricing periods can be lucrative for power plants with the right capacity and
ramping capabilities. Natural gas plants perform particularly well in these markets during
periods of rapid power ramping with their low operating costs and recent, historically
low natural gas prices. Comparatively, nuclear plant operating costs do not vary with
production as dramatically and rarely shut down outside of planned refueling outages.
They need to pay off their high capital costs as quickly as possible and therefore are
generally incentivized to operate at full power whenever possible, including in the middle
of the day when prices are unfavorable. Flexible operation of nuclear power is therefore of
growing importance for both current and advanced nuclear technologies [2–9].

One possible technology to help nuclear operate more flexibly is thermal energy
storage (TES). This allows the nuclear plant to maintain constant thermal output while
reducing its electrical output during low or even negative pricing periods by the added
option to store its thermal energy. Then, during high pricing periods, the nuclear plant
can sell its own constant thermal output as well as the excess stored energy. Adding
TES to an existing nuclear plant design would require over-sizing the turbine, generator,
and supporting subsystems relative to the originally intended nuclear thermal output to
provide extra capacity that can be dispatched during periods of high demand. This would
predictably increase capital costs and push the power cycle to perform at lower efficiencies
during charging periods. However, these costs can be offset against enhanced revenue
from optimized dispatch.

In this paper, we develop a model to investigate the techno-economic performance
of a nuclear plant coupled with thermal energy storage, specifically using two tanks of
molten salt as used in concentrating solar power (CSP) systems and increasingly of interest
for nuclear reactors. Our model uses the Westinghouse Lead-cooled Fast Reactor (LFR)
as a baseline for the nuclear plant model [10,11]; the thermal storage is assumed to be a
two-tank storage system with molten salt (60% NaNO3, 40% KNO3) as the thermal fluid.
Our starting point is the engineering model of a CSP system in the System Advisor Model
(SAM) provided by the National Renewable Energy Laboratory [12]. Here we modify this
model for the case of a nuclear reactor with the two-tank molten salt TES, specifically to
determine the thermodynamics of the full system at every timestep. A mixed-integer linear
program is used to generate optimized energy dispatch schedules to be used as targets for
the SAM engineering model. We investigate the effects of over-sizing the turbine of a steam
Rankine cycle on the overall revenue of the plant and use this to determine optimal turbine
and tank sizing for a nuclear plant. We ultimately develop a modeling capability to analyze
such systems, and apply this to derive useful insight into the overall cost-benefit of molten
salt TES for nuclear reactors under various pricing scenarios.

2. Methods
2.1. Reactor and Plant Assumptions

We modeled a nuclear reactor with nominal thermal output of 950 MWt. We used
a direct charging model for the TES as shown in the schematic in Figure 1. During the
charging phase, a mass flow of molten salt was drawn from the cold tank and heated via
heat exchange with the nuclear plant (using a secondary loop with the power cycle working
fluid). The heated molten salt was then routed to the hot tank for storage. The discharging
phase becomes the primary mode for adding heat to the power cycle—mass flow was
drawn from the hot tank and heated the steam via direct heat exchanger before the steam
entered the turbine. The cooled molten salt was then stored in the cold tank for later use in
charging. The thermal storage could also be operated in a balanced mode if no charging or
discharging was desired—that is, the mass flow out of the cold tank matches mass flow out
of the hot tank to balance heat addition from the nuclear plant.
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Figure 1. Schematic of LFR-molten salt flow loop. LFR heats (via secondary steam loop) the molten
salt that flows from the cold to hot storage tanks. The hot tank can then discharge heat to the power
cycle leading up to the steam turbine.

Our nuclear reactor design was modeled after the Westinghouse LFR plant. Lead-
cooled fast reactors are an advanced reactor concept being developed currently in the
US [11,13], Russia [14], and Belgium [15]. We chose the LFR within this study for many of
its safety and performance advantages [16–18] including but not limited to:

• better fuel utilization, lower waste production, and the capability to operate at higher
temperatures with fast neutron spectrum operation;

• ability to operate coolant at atmospheric pressure with more compact infrastructure; and
• inherent safety mechanics due to high thermal inertia from thermal capacity and

larger coolant mass, as well as retention of radioactive isotopes by lead in case of
severe accident.

These advantages also lower the capital costs of the plant, making it economically
competitive among other advanced reactor designs and a fitting candidate for further
revenue accumulation with a coupled TES system. Current designs use an outlet coolant
temperature of up to about 570 ◦C; the reactor is capable of higher temperatures but is
limited by material properties of the piping infrastructure. These outlet temperatures match
the highest operating temperatures, around 560 ◦C, of the molten salt [7,19].

The Westinghouse design utilizes either a direct supercritical CO2 (sCO2) power cycle,
or, more recently, supercritical Rankine cycle to produce electricity. As it is undesirable to
change the working fluid of the in-vessel heat exchangers, the TES must be integrated into
the system via an sCO2-to-salt or supercritical steam-to-salt heat exchanger. The stored
thermal energy can then be dispatched through a salt-to-sCO2 or salt-to-supercritical steam
heat exchanger. Such a configuration was recently analyzed in Ref. [20] for the case of sCO2,
confirming that the configuration is viable. It is also possible to configure a supercritical
Rankine cycle in this manner, and analysis of this is ongoing at the University of Wisconsin–
Madison. Indirect charging of the TES in this manner will naturally incur a ‘round trip’
efficiency penalty, which will somewhat penalize the desirability of the TES. However,
the efficiency of the cycle at the design point is unaffected by the presence of the TES as the
heat is transferred directly from the lead to the working fluid.

In this work, we assumed an alternative configuration also being investigated by
the advanced reactor community: to integrate the TES loop between the primary heat
transfer fluid and the working fluid before it enters the turbine. For a nuclear reactor, this
typically increases the number of loops required to transfer the heat to the power conversion
cycle (i.e., adds an extra heat exchanger) and hence introduces a thermodynamic penalty
regardless of whether the TES is being charged or discharged, rather than a ‘round trip’
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penalty. The intermediate working fluid loop between the lead primary and molten salt
tertiary also alleviates safety concerns from any potential lead–salt interactions. This
moves away from the Westinghouse configuration that explores indirect charging, which
can extract power from the secondary working fluid loop before charging the TES with
potential improvement in net efficiency, but is still a useful model to derive insights and
trends and allows the ability to draw more generalizable conclusions. Moreover, future
work is planned to investigate the indirect TES configuration. Here, we do not generally
include a cost penalty for the thermodynamic inefficiencies of integrating the TES with the
nuclear reactor in the interests of simplicity. As a sensitivity case, we do however introduce
a cost penalty through a reduction in the design point thermodynamic efficiency (as is
the case if the nuclear reactor charges the TES directly) for cases where a TES is included,
relative to the reference case where a TES is not included. A round-trip efficiency penalty
to using the TES (as is the case if the nuclear reactor charges the TES indirectly) is not
considered here as it is too complicated to treat accurately without altering the underlying
engineering models, which is in progress and will be included in future work.

We used several models with varying levels of fidelity to represent the system por-
trayed in Figure 1: a dispatch model to generate optimal operating schedules for all
subsystems and an engineering model in SAM to resolve thermodynamic and energy
balances for the full plant at each simulation time step. The SAM model utilizes tabulated
data of the power conversion cycle for design and off-design performance. This power
conversion cycle data typically comes from detailed thermodynamic calculations of the
power conversion cycle. The time constant of the power conversion cycle is typically much
less than the simulation timestep and therefore a steady-state off-design calculation is
acceptable. Here, we assume a steam Rankine cycle design as the baseline model for our
power cycle to make our results more generalizable. We utilize the model from Ref. [21],
written in Engineering Equation Solver (EES) to generate our off-design data [22]. Tabular
data within SAM are also normalized to make the model more generalizable.

Within our engineering model, we adopt a simple representation of LFR operations.
On the reactor side of the steam-to-salt heat exchanger in Figure 1, we assume that the
LFR can vary its control rod insertion as well as primary loop mass flow to alter thermal
power output. We do not directly model these complex nonlinear operations but rather
their end results: the LFR outputs its set-point 950 MWt thermal output and, when needed,
can reduce power to a desired fraction of the nominal production. The subtleties of the
operation to achieve this outcome are not directly represented in the scope of this work,
but as with the steam cycle, the time constant of the LFR is sufficiently short relative
to the timestep of the TES that we can model such behavior through simple constraints
on ramping.

2.2. Market Pricing and Economic Structure

We evaluate the effect of coupling TES with an LFR by simulating performance over a
full year under varying market conditions. We represent market conditions through the use
of a tariff rate, or price multiplier, as a time series—this is a normalized factor representing
relative pricing throughout the year as shown in Figure 2. We therefore assume that the
power plant is a price taker. This is a useful simplifying assumption as the dynamic
behavior of energy markets is highly complex, and in this manner we isolate the dispatch
optimization of the power plant from bidding behavior; the tariff rate therefore captures
the variance in clearing prices within the purported wholesale energy market. Such an
approach is typical for CSP plants [23]. We also assume perfect price forecasting. This
is a useful simplifying assumption as price forecasting is also highly complex, and it has
been shown that it is possible to take into account imperfect knowledge through additional
constraints, e.g., through holding some of the TES capacity in reserve [24].
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Figure 2. Price multipliers used to simulate different market conditions: (top) generic peak pricing
schedule from SAM and (bottom) normalized locational marginal price from CAISO. Some negative
pricing outliers for CAISO are not directly shown in the axis but are annotated in the graph.

We use two separate tariff rate time series to evaluate plant performance—a generic
peak pricing schedule from SAM and a normalized pricing time series from CAISO data—
as shown in Figure 2. The SAM tariffs represent a single price peak during the day and
lower prices at night; all multipliers are normalized so that they integrate over a full year
to 8760 (an hourly average of 1.0) and therefore do not artificially inflate the revenue
over the simulation. The price peaks are set higher during the weekdays than weekends;
there is also an increase in price during the summer relative to winter months. The SAM
tariffs are not meant to mimic any current market or specific geographic region, rather
they are meant to present a simple way to test both daily and seasonal plant responses
to price ramping. The CAISO tariff rates in the bottom of Figure 2 were generated using
collected data from the online OASIS tool [25]. These are locational marginal prices (LMP)
for the Iron Mountain (IRONMTN_2_N001) node taken from 1 January to 31 December of
2019. The LMP are normalized in the same way as the SAM tariffs to not artificially inflate
revenue values. Figure 2 shows weekly pricing curves from the CAISO data throughout the
entire year. Prices range over more dramatic peaks compared to the SAM tariffs, with the
added feature that they sometimes drop to negative values when excessive VRE is available
and the Independent System Operators (ISOs) want to penalize further addition to the
grid. A daily pattern with early morning and late afternoon peaks is evident from the
normalized data.

The economic performance of the coupled LFR and TES system is evaluated using
SAM financial modules with the previous tariff rate schedules and a simulated power
generation schedule to calculate a power purchase agreement (PPA) price for the site.
The PPA price represents a minimum wholesale price of energy at which a power plant
should sell its energy to the grid, taking into account both capital and O&M costs. It is
calculated by assuming a desired internal rate of return for the initial plant investment
and a specified return time—the PPA price would then present the minimum price the
plant should sell its produced electricity to, say, make back 11% return in 20 years. For our
purposes, the objective of a low PPA prices makes the plant more competitive in the market
while still guaranteeing a return on the initial capital investment.

The cost structure of the plant is calculated by assuming some nominal values and
using data from our partners at Westinghouse, shown in Table 1. We have outlined the
calculation of extra capital costs incurred from oversizing the turbine relative to the thermal
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output. First, we define a reference electrical output from the nuclear thermal output design
point as:

Wn,des = ηdesQ̇n,des, (1)

where ηdes is the power cycle efficiency at the design point and Q̇n,des is the design point
nuclear thermal output of 950 MWt. We then calculate the cost associated with the oversized
turbine by the following:

Cn,des+ =
CnucWn,des + Cturb+(Wpc+ −Wn,des)

Wpc+ , (2)

where Cn,des+ is the cost of the nuclear plant over the design point and Wpc+ is the electric
power output of the over-sized cycle being considered. The parameter Cnuc is given in
Table 1; Cturb+ is the cost of additional power cycle capacity above the nominal turbine
output, given as a cubic approximation in Figure 3 from our partners at Westinghouse. We
similarly calculate a thermal storage cost as:

Ctes+ = Wpc+TtesCtes, (3)

where Ttes is the amount of storage in the molten salt tanks given in equivalent full-load
hours of the power cycle output, Ctes is the per-unit cost of TES, and Ctes+ is the total cost of
TES at the given capacity. TES and LFR capital costs are both updated as input parameters
for the financial portion of the SAM engineering model to calculate PPA price. Financing
costs during the construction period are also adjusted to be consisted with the updated
plant capital cost.

Table 1. Costs and other parameters used for evaluating plant economic performance.

Symbol Value Units Description Source

Dispatch Optimization Parameters
Cpc 0.00875 $/kWe · h Operating cost of power cycle Scaled SAM parameters [23,26,27]
Ccsu 27,345 $/start Penalty for power cycle cold start-up “ 1

Cchsp 5470 $/start Penalty for power cycle hot start-up “
Ccsb 0.00175 $/kWt · h Operating cost of power cycle standby operation “
C∆w 0.04375 $/∆kWe Penalty for power cycle production change “
Cvw 1.75 $/∆kWe Penalty for power cycle production change past design “
Cnop 0.00734 $/kWt · h Operating cost of nuclear plant Westinghouse estimates
Engineering Model Financial Parameters
r f in 7 % Interest rate on financing loan General assumption
τcon 4 yr Construction time “
Ctes 29.8 $/kWt · h Thermal energy storage cost Scaled SAM parameters [23,26,27]
Cnuc 4150 $/kWe · h Nuclear plant cost including fuel over analysis period Westinghouse estimates

1 Tables elements annotated with (“) are equivalent to the element in the row above.
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Figure 3. Cost of additional power conversion capacity above nominal turbine.
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2.3. Mathematical Formulation of Dispatch Optimization Problem

With the market pricing data shown in Figure 2, we can simulate plant performance
under differing market conditions. Plant operating schedules for a given day would need
to be optimized to dispatch energy according to some economically advantageous strategy.
We implement an optimization scheme to generate optimal energy dispatch schedules for
the plant using a mixed-integer linear programming (MILP) paradigm developed from
Wagner et al. [23] and Cox et al. [27]. The problem is first formulated using Pyomo [28] to
create an optimization model by calculating the initial operating state of the nuclear plant,
power cycle, and molten salt tank subsystems. Upper and lower bounds are also used to
constrain ramping within the time steps of the time horizon. Other parameters include the
tariff rate Pt for each time step of the time horizon T , as well as cycle efficiency adjustments
due to ambient temperature, all listed in Table 2. Variables for the MILP are classified as
either continuous or binary variables. Continuous variables represent power generation
quantities for the various subsystems (e.g., the power cycle electric output, nuclear thermal
generation, thermal tank stored energy) for each time step in T ; the binary variables are
decision variables used to distinguish between operating modes (e.g, “on”, “standby”,
“start-up”) for each subsystem at the given time step. A full list of variables is shown in
Table 3.

Table 2. Parameters used for dispatch optimization.

Symbol Units Description

Sets
T Set of all time steps within time horizon
Time-Indexed Parameters
Qin,nuc

t kWt Available thermal power generated by the nuclear plant in time t
δns

t - Estimated fraction of time t required for nuclear start-up
ηamb

t - Cycle efficiency ambient temperature adjustment factor in time t
ηc

t - Normalized condenser parasitic loss in time t
Pt $/kWe · h Electricity sales price in time t
Qc

t kWt Allowable power per period for cycle start-up in time t
Wu+

t kWe Maximum power production when starting generation in time t
Wu−

t kWe Maximum power production in time t when stopping generation in time t + 1
Steady-State Parameters
α $ Conversion factor between unitless and monetary values
Ec kWt · h Required energy expended to start cycle
ηdes - Cycle nominal efficiency
Eu kWt · h Thermal energy storage capacity
ηp kWe/kWt Slope of linear approximation of power cycle performance curve
Lc kWe/kWt Cycle heat transfer fluid pumping power per unit energy expended
Qb kWt Cycle standby thermal power consumption per period
Ql kWt Minimum operational thermal power input to cycle
Qu kWt Cycle thermal power capacity
Wb kWe Power cycle standby operation parasitic load
Ẇ l kWe Minimum cycle electric power output
Ẇu kWe Cycle electric power rated capacity
W∆+ kWe/h Power cycle ramp-up designed limit
W∆− kWe/h Power cycle ramp-down designed limit
Wv+ kWe/h Power cycle ramp-up violation limit
Wv− kWe/h Power cycle ramp-down violation limit
δnl h Minimum time to start the nuclear plant
En kWt · h Required energy expended to start nuclear plant
Ln kWe/kWt Nuclear pumping power per unit power produced
Qnl kWt · h Minimum operational thermal power delivered by nuclear
Qnsb kWt · h Required thermal power for nuclear standby
Qnsd kWt · h Required thermal power for nuclear shut down
Qnu kWt · h Allowable power per period for nuclear start-up
Wnht kWe · h Nuclear piping heat trace parasitic loss
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Table 3. Variables used in optimization.

Symbols Units Description

Continuous Variables
xt kWt Cycle thermal power utilization at t
xn

t kWt Thermal power delivered by the nuclear at t
xnsu

t kWt Nuclear start-up power consumption at t
ẇ kWe Power cycle electricity generation at t
ẇ∆+ kWe/h Power cycle ramp-up at t
ẇ∆− kWe/h Power cycle ramp-down at t
ẇv+ kWe/h Power cycle ramp-up beyond designed limit at t
ẇv− kWe/h Power cycle ramp-down beyond designed limit at t
ẇs kWe Energy sold to the grid at t
ẇp kWe Energy purchased from the grid at t
ucsu

t kWt · h Cycle start-up energy inventory at t
unsu

t kWt · h Nuclear start-up energy inventory at t
st kWt · h TES reserve quantity at t
Binary Variables
yn

t - 1 if nuclear is generating “usable” thermal power at t; 0 otherwise
ynsb

t - 1 if nuclear is in standby mode at t; 0 otherwise
ynsd

t - 1 if nuclear is shutting down at t; 0 otherwise
ynsu

t - 1 if nuclear is starting up at t; 0 otherwise
ynsup

t - 1 if nuclear is starting up at t from off; 0 otherwise
ynhsp

t - 1 if nuclear is starting up at t from standby; 0 otherwise
yt - 1 if cycle is generating electric power at t; 0 otherwise
ycsb

t - 1 if cycle is in standby mode at t; 0 otherwise
ycsd

t - 1 if cycle is shutting down at t; 0 otherwise
ycsu

t - 1 if cycle is starting up at t; 0 otherwise
ycsup

t - 1 if cycle is starting up at t from off; 0 otherwise
ychsp

t - 1 if cycle is starting up at t from standby; 0 otherwise
ycgb

t - 1 if cycle begins electric power generation at t; 0 otherwise
ycge

t - 1 if cycle stops electric power generation at t; 0 otherwise

The objective of this MILP represents the revenue of the plant over T while considering
losses and operating costs. The objective function is given as:

max ∑
t∈T

[
∆t Pt (ẇs

t − ẇp
t )− Ccsuycsup

t − Cchspychsp
t − αycsd

t

− C∆w(ẇ∆+
t + ẇ∆−

t )− Cvw(ẇv+
t + ẇv−

t )− Cnsuynsup
t − Cnhspynhsp

t

− αynsd
t − ∆t(Cpcẇt + CcsbQbycsb

t + Cnucxn
t )
]
,

(4)

which is summed over all time steps in T . The first term represents revenue of the plant
from electricity sales, where ∆t is the time step of 1 h, PT is the price multiplier, ẇs

t and
ẇp

t are power sold to and purchased from the grid, respectively. From the revenue we
subtract various associated costs. The first two negative costs are penalties for either “cold”
or “hot” power cycle start-up operations, respectively. A “cold” start-up penalty is incurred
when the power cycle transitions from a non-operating power mode to an operating
mode and is dictated by a binary variable ycsup

t and cost Ccsu; “hot” start-up penalties are
incurred when the power cycle transitions from a standby (or low power) operating mode
to nominal operation, dictated by a variable ychsp

t and cost Cchsp). Within the objective
function, we also subtract a shutdown cost for the power cycle. Next, we subtract costs used
to penalize excessive power cycle ramping. We also subtract costs associated with power
cycle production Cpc, power cycle standby operation Ccsb and nuclear power production
Cnuc. Linear constraints are applied to the MILP and outlined in Appendix A.1. Nuclear
reactor shutdown, start-up, and stand-by modes are not currently being modeled in the
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SAM engineering model; we therefore present a framework for future implementation
within the MILP dispatch model but, in this work, these modes are not enabled.

2.4. Implementation of Optimal Dispatch in Engineering Model

The MILP formulation produces optimal dispatch schedules for the plant over a
desired time horizon, outlining target levels of power cycle operation and the corresponding
operating modes of each subsystem to reach that target. The MILP dispatch model, however,
only captures energy interchanges between the subsystems from a high level. For a more
precise model we use the System Advisor Model (SAM) as the engineering model of our
plant. Namely, we use the SAM Simulation Core (SSC) which comprises of a suite of
compute modules for different technology models, in our case an LFR with two-tank TES
and a steam Rankine cycle. We rely on existing solvers to converge system mass and
energy, as well as calculate power cycle start-up times, at each simulation timestep. We
also combine existing thermal storage modules with new nuclear plant modules to account
for differing power levels and temperature effects on heat transfer to the molten salt.

We introduce a Python interface to implement optimal dispatch between the MILP
and SSC, iteratively solving for daily dispatch schedules in hourly time steps for a full
year of run time. We consider a time horizon on the order of 48 h for the MILP dispatch
model, assuming perfect forecasting of weather and market pricing conditions. We use
a cbc (coin-or branch and cut) solver to solve the MILP in hourly timesteps for the two-
day time horizon [29]. From that optimal schedule we keep solutions for the first 24 h,
using these values as targets for the SAM engineering model. The SAM model solves
system energy and mass balances and ensures component and plant operating feasibility
to attempt activating those optimal operating modes. Using a system running Ubuntu
20.04.4 LTS with an Intel i5-10310U quad-core processor at 1.7 GHz and 16 GB of RAM,
each time horizon solution for the combined MILP and SAM evaluation is solved within an
average of 0.58 s. After converging on a solution, the Python interface logs the SAM results
for the current day and creates a new instance of the MILP model starting at midnight
of the next day. This rolling time horizon approach, where we alternate between MILP
and engineering model calls, helps us anticipate any excessive ramping in market pricing
or possible inhibiting weather conditions that may necessitate changes in energy storage
levels overnight. Periodically refreshing the MILP initial conditions after calling on the
engineering model also prevents the MILP model from drifting too far from the higher
fidelity model representation.

3. Results

Using our alternating sequence of dispatch optimization and engineering model calls,
we simulate a full year of plant operation under various user inputs. We assume a fixed
thermal output from the nuclear core at 950 MWt but vary other parameters including:

• the nominal generated electric power from the turbine;
• the capacity of the molten salt tanks; and
• the market pricing scenarios for the plant.

We focus on electric power output levels starting at a reference 450 MWe as this
approximately matches the fixed nuclear core thermal output (the actual electrical output,
with an assumed net efficiency of 48.9% [11], is closer to 465 MWe but here we choose
a rounded number). Values of electrical output above the reference would require an
oversized turbine relative to the reactor output, incurring excess costs which under some
circumstances could be offset by increased dispatchability of stored energy. When choosing
an oversized turbine output, any operation below that rated level (i.e., when only receiving
nuclear output and no stored energy is dispatched) would incur an off-design penalty,
calculated from the off-design data tables described in Section 2.1, on the overall efficiency.
Power output values below the reference would not use thermal storage advantageously
and so are not considered. We also assume the reference design point uses no thermal
storage for comparison purposes. The energy capacity of the thermal storage tanks, when
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included in the design, is measured in equivalent hours of nominal turbine operation.
Weather data for the plant, namely dry-bulb temperature, are used from collected hourly
records hosted in SAM for a selection of sites. The records consist of weather data from
different years that have been combined to represent a ’typical’ year. We use data for a
tentative site in Phoenix, AZ though the simulation software is general to any weather
data input.

3.1. Load Profiles for Plant with 700 MWe, 2 h of TES, under SAM Tariff Rates

We highlight operation profiles for some illustrative cases of turbine power output,
TES capacity, and market scenarios. Figure 4 shows results for a 700 MWe turbine design
with 2 h of thermal storage operating in the generic peak market from SAM. The hourly
generated power output of the power cycle and energy levels of the TES are tallied for a full
simulated year. We then create a violin plot for both metrics, demonstrating the distribution
in values for each hour of the day throughout the year. We further categorize the hourly
distributions according to the seasonal and daily variations in SAM tariff levels shown
in Figure 2: subplots distinguish between winter versus summer tariffs in the columns;
each column is then subdivided between weekday versus weekend tariffs. Together, these
subplots reveal the distributions in daily operating levels given pre-defined seasonal and
weekly market variability.
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Figure 4. Hourly violin plot distributions for a year of simulated electric power and stored energy
levels. Computed for a 700 MWe turbine with 2 h of TES under SAM generic peak market prices.
Median value for each hour is shown as a white circle and the black vertical rectangle demarcates
25th and 75th percentiles. Distributions are split between winter and summer price schedules as well
as weekday and weekend prices; price multipliers are shown on the right axis of each subplot.

Some routine behavior of the plant is evident from Figure 4. Between midnight and
5 a.m. during winter weekdays, power generation is kept at a low level while energy prices
are relatively low (i.e., the price multiplier is below 1). A greater portion of nuclear thermal
power is instead routed to storage as shown by the increasing tank charge level during
those same hours. Power generation during winter weekdays then increases from the
low morning levels with ∼450 MWe contributions from the LFR and the rest coming from
thermal storage. Tank energy levels decrease steadily between 8 a.m. and 8 p.m. as excess
energy is dispatched to the power cycle; day-by-day variability in the targeted dispatch is
based on anticipated outside dry temperatures and efficiency losses. Tank levels are mostly
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depleted by 8 p.m., after which the cycle runs with just the nuclear thermal contribution
until midnight where the process is repeated.

Winter weekend behavior differs from weekday behavior due to the much smaller
ramp in tariff rates in the early morning hours. Prices increase only once during winter
weekend days as opposed to twice during weekdays for the same amount of hours. While
on weekdays the plant often chooses to wait until the second, higher price ramp at 8 a.m.
before dispatching energy from storage, on weekends the plant dispatches starting at the
singular price increase at 6 a.m. The plant then dispatches excess energy for longer as a
response to the static market signal.

Summer weekday behavior for the plant design in Figure 4 mimics the winter week-
days behavior with some adjustments due to seasonal differences in the proposed SAM
market profile. The highest price peak for summer weekdays is larger but narrower in
time; the tanks, with their limited capacity, choose to dispatch their inventory more quickly
during the tallest peak. This is demonstrated by a steeper slope in the tank energy decrease
between 11 a.m. and 5 p.m. Thermal storage charging also commences earlier than during
the winter, starting in the late hours of the night rather than at midnight. The earlier start
is met by a slower charge time—a higher portion of the hourly nuclear thermal output is
instead routed directly to the power cycle to operate at slightly higher power levels than
winter weekdays.

Summer weekend behavior contrasts with the other three seasonal scenarios as the
tanks generally charge during the daytime as opposed to the early morning hours. Tariff
rates are static throughout the entire day; rather than follow market signals, tank storage
levels instead anticipate hot midday temperatures that lower efficiency and therefore total
power generation. Energy therefore dispatches at night to avoid daytime losses. Tank levels
and energy production from midnight to 6 a.m. exhibit bi-modal behavior; depending on
when the weather is more advantageous, the system will choose whether to operate with
full or partial contribution from thermal storage.

To better understand the role of price ramping on the techno-economic performance
of the plant, we created additional modified market profiles based on the original SAM
generic peak rates. From the base tariff schedule, all differences from unity are amplified by
a factor of two. This results in price multipliers with more exaggerated peaks and troughs
and therefore more dramatic price ramping. Figure 5 shows a distribution of hourly
behavior for the same design, with 700 MWe and 2 h of thermal storage, but under the SAM
market with exaggerated ramps. Across both winter and summer weekdays, the behavior
is largely unchanged from the base tariff schedule. Winter weekend hourly distribution of
both energy produced and energy dispatched have much less spread. The more uniform
operating levels throughout the year imply less sensitivity to variable dry temperatures.
The benefits of operating under more volatile pricing markets become more evident from
the economics of the plant and are discussed in Section 3.4.
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 P=700 MWe, TES=2 hrs

Figure 5. Hourly violin plot distributions for a year of simulated electric power and stored energy
levels. Computed for a 700 MWe turbine with 2 h of TES under twice-amplified SAM generic peak
market prices. Median value for each hour is shown as a white circle and the black vertical rectangle
demarcates 25th and 75th percentiles. Distributions are split between winter and summer price
schedules as well as weekday and weekend prices; price multipliers are shown on the right axis.

3.2. Load Profiles for Plant wtih 800 MWe, 6 h of TES, under SAM Tariff Rates

We next highlight operation profiles for a case with larger thermal storage capacity.
Figure 6 shows hourly distributions of power generation and energy storage levels for
an 800 MWe turbine with 6 h of thermal storage. With the extra storage capacity, power
generation is more likely to shut-off during low pricing periods in order to focus more
generation during higher pricing periods. Storage is particularly prioritized in the winter
weekday mornings between 12 a.m. and 8 a.m. in anticipation of high daytime prices.
Additional costs are incurred from power cycle shutdown and startup operations but
are not prohibitive due to high daytime revenues. Generally, any pricing periods with
multipliers greater than one are met with high power generation from both nuclear and
thermal storage contributions regardless of season. This is best illustrated by the contrast
between the winter and summer weekday distributions of this design compared with those
of the smaller storage capacity design in Figure 4. In the smaller storage capacity case,
the power generation scales more closely with each price multiplier increase due to the
reduced energy capacity available for dispatch in the molten salt tanks, accentuated by the
5 h lag between complete tank fill-up and discharge ahead of the summer weekday noon
price hike. In the 800 MWe design, with 6 h of thermal storage, the tanks can contribute
more energy for longer.

Figure 7 shows operation profiles for the same 800 MWe and 6 h of storage plant
but under the modified peak market from SAM with twice-amplified peaks and troughs.
The plant behavior does not change dramatically except for some slightly faster ramping in
power generation immediately preceding weekday daytime price increases. Weekend tank
level distributions are also narrower similar to Figure 5.
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Figure 6. Hourly violin plot distributions for a year of simulated electric power and stored energy
levels. Computed for a 800 MWe turbine with 6 h of TES under SAM generic peak market prices.
Median value for each hour is shown as a white circle and the black vertical rectangle demarcates
25th and 75th percentiles. Distributions are split between winter and summer price schedules as well
as weekday and weekend prices; price multipliers are shown on the right axis of each subplot.
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Figure 7. Hourly violin plot distributions for a year of simulated electric power and stored energy
levels. Computed for an 800 MWe turbine with 6 h of TES under twice-amplified SAM generic peak
market prices. Median value for each hour is shown as a white circle and the black vertical rectangle
demarcates 25th and 75th percentiles. Distributions are split between winter and summer price
schedules as well as weekday and weekend prices; price multipliers are shown on the right axis.
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3.3. Load Profiles for Both Plant Cases under CAISO Market Conditions

We also simulate the performance of the coupled nuclear and TES system under CAISO
tariff rates from Figure 2. Simulated plant performance here would be more indicative of
expected performance in a VRE-saturated market like California. Figure 8 shows hourly
distributions for a 700 MWe turbine with 2 h of storage under CAISO market conditions.
Power generation and storage charge level for both winter and summer have much more
variable hourly distributions due to the increased volatility in market prices. However, it is
evident that two charging periods occur on most days regardless of season: in the early
morning and during midday hours. These charging periods precede higher peaks in energy
pricing during morning and late afternoon hours. The charging periods also sometimes
coincide with negative energy prices, giving the plant an alternative use for the nuclear
thermal energy other than producing electricity at a loss. Winter and summer profiles differ
mostly by the temporal location of the price peaks. Storage charging in the winter seems to
start 1–2 h later than summer charging, likely due to a later sunrise which denotes the daily
introduction of solar renewable energy into the grid and a subsequent lowering of prices.
There are no notable differences between weekend and weekday behavior for the plant.
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Figure 8. (Top row) Hourly ranges in normalized CAISO energy price multipliers for a full year. Mean
price and standard deviation are shown in a darker shade. (Rows 2–5) Hourly violin plot distributions
for a year of simulated electric power and stored energy levels. Computed for a 700 MWe turbine
with 2 h of TES under normalized CAISO energy prices. Median value for each hour is shown as a
white circle and the black vertical rectangle demarcates 25th and 75th percentiles. Distributions are
split between winter and summer price schedules as well as weekday and weekend prices.

An increase in storage capacity is simulated again with the 800 MWe and 6 storage
hours under the same CAISO market scenario. Figure 9 shows more uniform trends
compared to the lower capacity case in Figure 8. With higher storage capacity, the optimized
charge level profile follows a sinusoid with a single daily peak: rather than dispatch energy
for both the morning and evening price peaks, it prioritizes the evening price peak with
more lucrative prices. Midday generation is more likely to shut down during midday
prices, regardless of season, to use all of the nuclear thermal availability for storage.
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Figure 9. (Top row) Hourly ranges in normalized CAISO energy price multipliers for a full year. Mean
price and standard deviation are shown in a darker shade. (Rows 2–5) Hourly violin plot distributions
for a year of simulated electric power and stored energy levels. Computed for an 800 MWe turbine
with 6 h of TES under normalized CAISO energy prices. Median value for each hour is shown as a
white circle and the black vertical rectangle demarcates 25th and 75th percentiles. Distributions are
split between Winter and Summer price schedules as well as weekday and weekend prices.

3.4. Plant Sizing Trade Studies

The variation in power generation and operation profiles between low and high capac-
ity storage designs prompts the question of optimal tank capacity and the corresponding
over-sizing of the power cycle turbine. The answer would seem to depend on the volatil-
ity of the market based on the previous load profiles. One way to imitate a scaling of
volatility is by using the generic SAM peaking market and gradually exaggerating the
values above and below unity, as conducted in the previous section. We have generated
several price multiplier curves in the bottom row of Figure 10 with amplification factors
ranging between 1 and 2. For each of these exaggerated peak markets, we conducted a
parameter sweep over the nominal power cycle output in MWe and hours of thermal stor-
age, generating a full year simulation for each. Results of the parameter sweep over each
market scenario are plotted as a heat map in their corresponding column within Figure 10.
The color value of each 2-D plot represents a relative PPA price: the PPA price for each
element is normalized by the PPA price of the reference design (having no storage and
turbine matching the nuclear thermal output). Relative PPA prices lower than 1 represent
design points more desirable than the reference case and therefore a subset of the parameter
space where adding thermal storage to the nuclear plant is economically advantageous.

Starting with the leftmost column of Figure 10, under the standard SAM generic peak
market, no amount of thermal storage reduces the PPA price below the nominal design
point. The pricing signals are not high enough to offset any additional costs incurred by
building and operating the thermal tanks. Adding any storage to the nominal 450 MWe
turbine strictly increases the PPA price as the power plant can never operate above nominal
output and there is hence no price advantage to charging the TES. Separately, sizing up the
power plant past the reference design point naturally worsens economic performance with
increased turbine costs and no extra energy to sell from storage. Adding thermal storage
to plants with output higher than 450 MWe does improve the performance relative to the
respective case with no thermal storage; however, the improvements in the generic peak
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market are never better than the reference and have diminishing returns when adding more
than 5 h of storage.
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Figure 10. Effect of increased price ramping on final PPA price. Each column represents PPA price
results for the SAM generic tariff rates with increasing peak-amplification from left to right. Heatmaps
show PPA prices relative to the reference design at 450 MWe and 0 h of storage for each market
scenario. Contours are generated using interpolated data to highlight key regions: values higher than
1 perform worse than the reference; values lower than 1 perform better. Values higher than 1.1 are
not shown for clarity. Corresponding tariff rates shown in bottom row for each column.

The second column of Figure 10 shows a slightly more exaggerated market profile—
where peaks and troughs about the 1 value are amplified by 50%—than the leftmost plot.
Relative PPA prices are again calculated relative to the reference design PPA price but
this time under the new market conditions. We overlay a contour denoting the region
in the parameter space where relative PPA values fall below 1—that is, a region forms
where adding thermal storage to the power plant and slightly over-sizing the turbine
output improves the performance relative to the reference, no-TES case. Improvements are
marginal within this market at approximately 1% but they suggest a trend.

The trend is confirmed by the rightmost plot where tariff rate peaks are amplified by a
factor of 2. The region of improved economic performance has expanded to now span 8 h
of thermal storage and include solutions with up to 900 MWe, a turbine oversized by 200%.
Though many solutions exist that perform better than the reference, the optimal design
point within this market for PPA price is at 700 MWe and 5 h of available thermal storage
with 5% improvements in PPA price. Final PPA prices for all markets are shown in Table 4.
We see that for a given turbine size above the nominal there exists an optimal TES size able
to store enough energy to maximize turbine output over periods of peak pricing.
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Table 4. Optimal plant designs and corresponding PPA prices per market.

Market Scenario Optimal Turbine Size Optimal TES Size Optimal PPA Price
(MWe) (h) (¢/kWe·h)

SAM Generic Peak × 1.0 450 0 6.54
SAM Generic Peak × 1.5 600 3 6.49
SAM Generic Peak × 2.0 700 5 6.26

CAISO 750 5 5.63

Performances using the market signal amplification tactic show the effects of increased
price ramping on the final PPA price. We additionally quantify the performance of the
combined LFR and TES plant using the CAISO tariffs from Figure 2, taken from real energy
prices and normalized to not artificially inflate revenue. Figure 11 show a similar heatmap
of relative PPA prices to the reference 450 MWe and 0 h of thermal storage design evaluated
using CAISO tariff rates. The region of improved design points expands much further
than even the twice amplified peaks in Figure 10; the improvements are greater in value
as well. Only under certain cases does the plant perform worse than the reference design:
heavily over-sized power outputs paired with low amounts of thermal storage and slightly
over-sized power outputs paired with large amounts of thermal storage. In each case, any
additional revenue from selling stored energy—even when dispatched optimally—does
not offset costs incurred from oversizing the respective subsystem. The optimal design
point for system performance in the CAISO market is similar to the twice amplified SAM
generic peak market: a 750 MWe with 5 h of thermal storage results in 10% improvements
in PPA price.
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Figure 11. Performance of LFR and TES plant in a simulated CAISO market using normalized price
multipliers. Heatmap plots PPA price values relative to the reference design at 450 MWe and 0 h of
thermal storage. Contours are generated using interpolated data to highlight key regions: values
higher than 1 perform worse than the reference; values lower than 1 perform better. Values higher
than 1.1 are not shown for clarity.
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3.5. Sensitivity Analysis on Thermal Storage Costs

The LFR performance when coupled with TES was analyzed in the previous sections
using static costs with the exception of the turbine cost per unit power, which scaled as a
cubic function of the rated nominal turbine rating shown in Figure 3. Among the other
parameters to which our simulations might be sensitive to, the thermal storage cost would
pose the highest second-order effect as it pertains to one of the main subsystems of the
plant. From Table 1, we estimate the cost of the thermal storage at $29.8 per kWt·h based on
similar costs of molten salt tanks paired with CSP systems. To determine whether thermal
storage costs were indeed a higher-order effect on the PPA price, we conducted a sensitivity
analysis on the previous simulations by varying the TES cost between 20–60 $/kWt·h for
selected designs. Results are shown in Figure 12. Each row within the figure represents a
different market scenario: SAM generic peak market, the same market with twice-amplified
peaks, and the normalized CAISO market. For the three markets, each column represents
a selected turbine output. Each individual plot then shows PPA price relative to that of
the reference plant design under the respective market as a function of thermal storage
hours. Multiple curves in each plot represent performance under varying TES cost (with
the reference cost shown in black). The optimal power cycle output and storage amount for
each market scenario are highlighted and marked with dotted vertical lines; the relative
PPA price of 1 is also marked with a horizontal line for reference.
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Figure 12. Sensitivity of PPA price to TES cost. Plots are arranged by different market scenarios in
the rows and power cycle outputs in the columns. Individual plots show PPA price relative to the
reference design performance (marked as a horizontal line at a value of 1.0) as a function of thermal
storage hours. Multiple lines are shown per plot for varying TES cost. Optimal design points are
highlighted for each market scenario: the optimal electrical output column is highlighted by face
color and the corresponding storage size is marked by a vertical line.

Together, the plots in Figure 12 show little deviation from previous trends when
altering TES costs. The PPA price of the optimal design point naturally worsens and
improves as TES costs increase and decrease, respectively. For the SAM generic peak
market, performance of a 500 MWe turbine with 2 h of storage comes close to rivaling the
reference design point when lowering the TES cost to $20 per kWt·h but ultimately does not
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cross the margins. The more volatile markets in the second and third row exhibit the same
trend. Here, lower TES costs improve the relative PPA price past the reference. Increasing
the TES cost reveals price points where thermal storage would no longer be advantageous.
For the CAISO markets in the third row, all shown combinations outperform the plant with
no storage except for the highest estimated cost with 7 h of storage.

As mentioned previously, we do not model a thermodynamic efficiency penalty when
integrating the TES with the nuclear reactor. Efficiency penalties for the TES would be highly
dependent on the configuration; omitting them allows the model and subsequent results
to remain more generalizable but might result in a slight overestimation of performance
with the TES. For our direct configuration for TES charging shown in Figure 1, we would
expect a reduction in efficiency for values of tshours greater than 0 due to inclusion of
an additional loop between the primary and the power conversion cycle with associated
temperature losses. If the efficiency penalty were to drop by 1–2 percentage points this
would correspond to roughly 2–5% reduction in the electrical power produced. Ultimately,
this would introduce a step shift in PPA price for non-zero values of TES storage. Table 5
shows the sensitivity of the optimal design point when a performance penalty is imposed
on the final PPA price (only for designs with storage). The optimal design for the SAM
tariff rates is only affected by the TES efficiency penalty in markets where the tariff peak
amplification factor is below two: adding performance penalties changes the optimal design
to one without TES. The design point does not change for the twice-amplified SAM and
the CAISO tariff schedules when imposing the additional TES efficiency penalty. However,
improvements on PPA price from the additional TES in these markets are reduced with
increasing performance penalties. They nevertheless still perform better than the reference
no-storage design.

Table 5. Sensitivity of optimal design point to efficiency penalty incurred by implementing TES. PPA
price improvements are calculated relative to reference design performance in the respective market.

Market Scenario Optimal Turbine Size Optimal TES Size PPA Price Improvement
(MWe) (h) (%, Relative to Reference)

Performance Penalties: 0 % 1 % 2.5 % 5 % 0 % 1 % 2.5 % 5 % 0 % 1 % 2.5 % 5 %

SAM Generic Peak × 1.0 450 ← 1 ← ← 0 ← ← ← 0 ← ← ←
SAM Generic Peak × 1.5 600 ← 450 ← 3 ← 0 ← 1.05 0.06 0 ←
SAM Generic Peak × 2.0 700 ← ← ← 5 ← ← ← 4.88 3.93 2.50 0.13

CAISO 750 ← ← ← 5 ← ← ← 10.06 9.16 7.81 5.57
1 A left arrow (←) denotes a table element equivalent to the value of its left-adjacent column.

For the indirect TES case not modeled here, described in Section 2.1, there would not
be a universal efficiency penalty for non-zero amounts of storage. However, we would
expect round-trip efficiency penalties on energy that is stored prior to dispatch that might
move the optimal point closer to the origin of the plots in Figures 10 and 11. The indirect
TES model will be a subject of future studies.

4. Discussion

The volatility of energy market pricing as a consequence of daily and hourly VRE
availability incentivizes more flexible dispatchability for nuclear power plants. We have
shown, for a medium-sized NPP rated at 950 MWt, that coupling molten salt thermal
storage improves economic performance only when participating in volatile markets where
ramping is necessary and therefore rewarded with higher prices. With a novel software
architecture that combines the robust engineering model of SAM and a mixed-integer linear
program for dispatch optimization, we now can simulate a coupled NPP and thermal
storage plant under varying market and weather conditions. Technical operations of our
LFR and TES design, modeled after the Westinghouse LFR concept, have been shown
to prioritize thermal power from the nuclear component according to price increases.
Thermal power is typically stored in the molten salt tanks ahead of pricing peaks; charging
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periods are also used advantageously during negative pricing periods in the CAISO market
simulations and ahead of particularly hot dry temperature periods when pricing curves
are flat and offer no incentive. Dispatch of stored energy is most effective during high
pricing periods, offering increased revenue to offset any low powered periods of power
cycle operation or even power cycle shutdowns occurring during storage charging periods.

Our results assume perfect forecasting of both pricing and weather data over 48 h
periods which might not be entirely realistic; future work in adapting forecasting models
to the optimal dispatch strategy would help create more accurate depictions of system
performance. Siting and participation in grid-stabilizing ancillary service markets is also of
interest for future study. A companion model for the indirect TES configuration is currently
being developed for investigation.

5. Conclusions

The economic performance of the system was shown to improve as a function of
market price volatility. With the single-peak SAM market and subsequent peak magnifica-
tions, we showed that increased price ramping creates and amplifies a region of improved
performance in the turbine oversizing versus thermal storage parameter space. Designs
within the region outperform a design with no thermal storage and turbine electric output
that matches the assumed NPP thermal input. The outperforming region moves towards
higher thermal storage and more oversized turbine designs as the volatility is increased.
With the assumed costs in this simulation, PPA price reaches a minimum under the CAISO
market simulations with up to a 10% improvement in performance relative to the reference
design. A sensitivity analysis of TES cost confirms that when operating in the CAISO
market, the NPP-TES design outperforms the reference design for TES costs up to double
the assumed value (except for designs with large amounts of storage, close to 7 h). Despite
additional costs incurred, it is still economically advantageous to both add thermal storage
capabilities and correspondingly oversize the turbine electric output for plants performing
in volatile energy markets saturated by variable renewable energy.
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Appendix A

Linear constraints are applied in conjunction with the objective function to provide
bounds on subsystem operations.

Appendix A.1. Nuclear Supply and Demand Constraints

The first group of constraints relate to nuclear plant operations and include:

xn
t + xnsu

t + Qnsdynsd
t ≤ Qin,nuc

t (A1)

xn
t ≤ Qin,nuc

t yn
t (A2)

xn
t ≥ Qnlyn
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yn
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Qin,nuc
t
Qnl . (A4)

Constraint (A1) allocates total expected thermal power generation from the nuclear
core to the power cycle, possible nuclear start-up and shutdown respectively. Constraint (A2)
ensures a maximum possible thermal power transmitted to power cycle and introduced
a decision variable to shut off production if that action is more optimal. Constraint (A3)
ensures a minimum thermal power generated from the nuclear core in accordance with
operational limits. Constraint (A4) sets requirements for enabling nuclear thermal power
production—expected thermal output must be above a rated minimum.

Appendix A.2. Nuclear Start-Up Constraints

We have included nuclear start-up constraints for completeness of the model. However,
we are only considering nominal operations and equilibrium cycles of the nuclear power
plant. Conditions which would result in nuclear shutdown and subsequent start-up are not
in our current scope since we are looking at increasing power output of the turbine relative
to a fixed nuclear output. Nevertheless, the complete start-up constraints are as follows:
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Constraint (A5) translates nuclear start-up energy inventory to a thermal power flow
used for start-up within the nuclear core model. Constraint (A6) ensures a maximum
start-up energy inventory. Constraint (A7) ensures start-up only follows from either
previous thermal production, stand-by or start-up step. Constraint (A8) ensures that
nuclear start-up mode does not persist while nuclear is operating in its power-producing
mode. Constraint (A9) defines an upper bound for nuclear start-up thermal power usage
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within each time step. Constraint (A10) sets requirements for enabling nuclear start-up
mode only when expected thermal output is above a rated minimum.

Appendix A.3. Nuclear Logic Constraints

A set of logical constraints follow from the implementation of the above constraints.
These include:
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yn
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t ≤ 1 (A12)

ynsb
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t−1 (A13)
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ynsd
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t−1 − yn
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t−1 − ynsb
t : ∆t ≥ 1, t > 1. (A16)

Constraint (A11) prevents both start-up and standby modes from occurring at once.
Constraint (A12) prevents the same situation for standby and power-production modes.
Constraint (A13) ensures that a nuclear standby mode immediately follows either a power-
producing mode or a previous standby mode. Constraint (A14) triggers a penalty for
entering into start-up mode from a non-power producing mode, i.e., a “cold” startup.
Constraint (A15) triggers a penalty for entering into a power producing mode from standby,
i.e., a “hot” start-up. Finally, Constraint (A16) ensures nuclear shut-off happens from either
a standby or power-producing mode.

Appendix A.4. Energy Balance Constraints

Many similar logic, supply and demand, and start-up constraints are applied for
the power cycle and are described in detail in Wagner et al. [23]. We have made some
modifications in implementing a nuclear plant rather than a concentrating solar plant. One
modified constraint is the grid sum constraint in Equation (A17) as shown below

ẇs
t − ẇp

t =(1− ηc
t )ẇt − Ln(xn

t + xnsu
t + Qnlynsb

t )− Lcxt

−Wbycsb
t −Wnht(ynsb

t + ynsu
t )

(A17)

which subtracts losses from electric power produced and thereafter sold to the grid. Other
updated constraints involve the balance inside the thermal storage tanks:

st − st−1 = ∆t[xn
t − (Qc

t ycsu
t + Qbycsb

t + xt + Qnsbynsb
t )] (A18)

st−1 ≥ ∆tδ
ns
t [(Qu + Qb)(−3 + ynsu

t + yt−1 + yt + ycsb
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t ) + xt + Qbycsb
t ]. (A19)

Constraint (A18) tracks energy balance within the thermal storage between subse-
quent time steps. It allocates thermal power from the nuclear plant and can extract en-
ergy to use for normal cycle operation, cycle start-up and standby, as well as nuclear
standby. Constraint (A19) ensures that the thermal tanks have sufficient capacity for
start-up operations.
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