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Abstract: Accurate short-term solar forecasting is challenging due to weather uncertainties associated
with cloud movements. Typically, a solar station comprises a single prediction model irrespective of
time and cloud condition, which often results in suboptimal performance. In the proposed model,
different categories of cloud movement are discovered using K-medoid clustering. To ensure broader
variation in cloud movements, neighboring stations were also used that were selected using a dynamic
time warping (DTW)-based similarity score. Next, cluster-specific models were constructed. At the
prediction time, the current weather condition is first matched with the different weather groups
found through clustering, and a cluster-specific model is subsequently chosen. As a result, multiple
models are dynamically used for a particular day and solar station, which improves performance
over a single site-specific model. The proposed model achieved 19.74% and 59% less normalized
root mean square error (NRMSE) and mean rank compared to the benchmarks, respectively, and was
validated for nine solar stations across two regions and three climatic zones of India.

Keywords: clearness index forecasting; cloud cover; clustering; DTW

1. Introduction

Solar power is one of the viable alternatives to fossil-fuel-generated power, which
causes serious environmental damage [1]. In terms of total energy consumption, India is
ranked third after China and the United States [2], and has a target of producing 57% of total
electricity capacity from renewable sources by 2027 [3]. In this paper, we developed a novel
method for the short-term (some hours ahead) [4] forecasting of the clearness index (Kt)
(defined as the ratio of global horizontal irradiance (GHI) to extraterrestrial irradiance) [5–8]
while accounting for unpredictable weather conditions, focusing on variability in cloud
cover [9–12]. Cloud variability leads to highly localized solar prediction, as a single model
is unable to provide accurate forecasts under different weather conditions [13,14].

Long short-term memory (LSTM) [15] is one of the most popular deep-learning algo-
rithms, mainly used to handle sequential data, and it can preserve knowledge by passing
through the subsequent time steps of a time series [16]. In [17], the authors developed
a site-specific univariate LSTM for the hourly forecasting of photovoltaic power output.
In [18], the authors compared the performance of several alternative models for forecast-
ing clear-sky GHI. These included gated recurrent units (GRUs), LSTM, recurrent neural
networks (RNNs), feed-forward neural networks (FFNNs), and support vector regression
(SVR). GRU and LSTM outperformed the other models in terms of root mean square error
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(RMSE). In [19], the authors proposed an hour-ahead solar power forecasting model based
on RNN-LSTM for three different solar plants. In [9], LSTM and GRU dominated over
artificial neural networks (ANNs), FFNNs, SVR, random forest regressor (RFR), and multi-
layer perceptron (MLP) in solar forecasting. The above discussion suggests that the authors
used a single model to forecast solar irradiation for a particular day and did not consider
cloud cover at the time of forecasting. In [20], the authors designed a forecasting model for
one-day ahead hourly prediction using LSTM. The authors reported that the algorithm per-
formed effectively under fully or partially cloudy conditions. In [21], the authors proposed
a one-hour-ahead hybrid solar forecasting model using traditional machine-learning mod-
els such as random forest (RF), gradient boosting (GB), support vector machines (SVMs),
and ANNs. The RF model showed the best forecasting accuracy for the spring and autumn
seasons, while the SVR model performed best for the winter and summer seasons. In [22],
the authors evaluated 68 machine-learning models for 3 sky conditions, 7 locations, and
5 climate zones in the continental United States. No universal model exists, and specific
models for each sky and climate condition are recommended. Hence, it is well-established
that a single site-specific forecasting model is unable to produce consistent forecasting
performance in all cloud conditions and seasons [20–22].

Typically, a site-specific model is built for solar-energy prediction, and multiple models
are built for different seasons. However, even within the same day, there can be fluctu-
ations due to variability in cloud cover [23]. So, a single model gives a very high error
in terms of NRMSE. The error is further pronounced for time windows with high cloud
variability. The authors in [22], found that a specific forecasting model showed very high
error in NRMSE in overcast cloud conditions in comparison with clear-sky conditions on a
particular day. They also stated that forecasting performance significantly changed with
the change in cloud conditions on a particular day. The authors in [24], stated that LSTM
outperformed other predictive models in short-term solar forecasting. Nevertheless, its
ability to predict cloudy days with low solar irradiance is significantly reduced. This serves
as a motivation to implement an adaptive model. Table 1 summarizes the forecasting
error of LSTM for nine solar stations across three climatic zones of India. Solar stations
are described in Section 3.1. Figure 1 depicts the deviation of NRMSE in high- and low-
variability cloud-cover conditions in comparison with overall NRMSE. In high cloud-cover
variability, forecasting error was significantly higher compared to overall NRMSE. This
signifies that if cloud variability ever increases too much, site-specific LSTM cannot handle
such a situation very well. Another motivation is provided by the parity plot in Figure 2,
which shows forecast and actual clearness indices for three solar stations separately for
high and low cloud-cover variability conditions. Forecasts were more accurate under
low-variability cloud cover conditions than those for high-variability cloud conditions.

In this paper, we propose a novel short-term (2 h ahead) solar forecasting approach [25]
that uses clustering on the basis of cloud parameters as a preprocessing step, and subse-
quently uses LSTM that is cluster-specific for the forecasting clearness index. Specifically,

• For each forecasting site, the nearest three neighboring stations were selected on the
basis of DTW similarity scores [26].

• A global dataset was created by combining some derived features of cloud cover and
clearness indices of each station and those of its neighbors. The derived features were
obtained following [23].

• The entire day was divided into time windows. For clustering, the K-medoids [27]
algorithm was applied on those time windows.

• A separate LSTM model was trained for each cluster that represented different cloud
conditions.

The major contributions of the paper are as follows:

• An adaptive forecasting model (CB-LSTM) is proposed that can apply multiple models
for a site on the basis of existing weather conditions.

• A global dataset was created on the basis of derived cloud-related information that is
used to cluster a day into different weather types.
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• The proposed model showed promising forecasting performance compared to bench-
mark models such as convolutional neural network (CNN)-LSTM and nonclustering-
based site-specific LSTMs. The model achieved less forecasting error for solar stations
having significant solar variability.

• Performance (measured in terms of forecasting accuracy) was validated for nine solar
stations from three climatic zones in India. To our knowledge, this is the first time that
such an approach was applied to data from the Indian subcontinent.

The rest of the paper is organized as follows. Section 2 provides the background on
various deep-learning model architectures. Section 3 presents the proposed method, and
Section 4 presents details on its forecasting performance. The paper is concluded with a
discussion in Section 5.

Table 1. Forecasting performance (NRMSE in %) of LSTM for high- and low-cloud-variability cloud
cover.

Stations
High Cloud-Cover

Variability
Low Cloud-Cover

Variability Overall NRMSE

Composite climate zone

Bhainsdehi 44.72 17.71 29.85
Begamganj 39.03 20.80 27.98

Dindori 41.16 14.90 25.73

Hot and dry climate zone

Tiruchirappalli 59.06 44.02 47.57
Idukki 87.99 47.70 61.13

Madurai 47.89 44.29 45.65

Warm and humid climate zone

Khaga 34.23 17.42 23.63
Vaibhavwadi 92.22 38.22 57.31
Osmanabad 71.72 33.58 47.83

Figure 1. Deviation of NRMSE (%) in high and low cloud-cover variability conditions compared to
overall NRMSE (%).
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Figure 2. Parity plot showing forecast and actual clearness indices for three solar stations for high
and low cloud-cover variability conditions. (a) Bhainsdehi (high cloud-cover variability); (b) Bhains-
dehi (low cloud-cover variability); (c) Osmanabad (high cloud-cover variability); (d) Osmanabad
(low cloud-cover variability); (e) Khaga (high cloud-cover variability); (f) Khaga (low cloud-cover
variability).
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2. Deep-Learning Models

ANN in the learning phase is unable to utilize information learned from the past time
steps while processing the current time step, which is the major drawback of traditional
neural networks. An RNN can solve this problem and is one of the deep-learning models
designed to handle sequential data. To preserve information, it recursively transfers
learning from previous time steps of the network to the current time step. However, it
is susceptible to the vanishing gradient problem. As a result, it is unable to remember
long-term dependencies.

LSTMs are a special type of RNN that is especially designed to learn both long- and
short-term dependencies [15]. Compared to a traditional neural network, LSTM units
encompass a ‘memory cell’ that can retain and maintain information for long periods of
time [28]. Figure 3 is a schematic diagram of an LSTM cell. A set of gates are used to
customize the hidden states. Three different gates are used, representing input, forget,
and output. The functionality of each gate is summarized as follows.

• Forget gate [29] ( ft) = σ(w f [ht−1, xt] + b f ): On the basis of certain conditions such
as xt, ht−1, and a sigmoid layer, a forget gate produces either 0 or 1. If 1, memory
information is preserved; otherwise, it is discarded.

• Input gate [29] (it) = σ(wi[ht−1, xt] + bi): helps in deciding which values from the
input are used for the current memory state.

• Cell state [29] (ct) = tanh(wc[ht−1, xt] + bc): new cell state ct is the summation of
ct−1 ∗ ft, and ĉt ∗ it. ct−1 ∗ ft decides the fraction of the old cell state that is discarded,
and the amount of new information that is added is decided through ĉt ∗ it.

• Output gate [29] (ot) = σ(wo[ht−1, xt] + bo): decides what to output on the basis of
the current input and previous hidden state.

• Hidden state [29] (ht) = ot ∗ tanh(ct): current hidden state is computed by multiply-
ing the output gate by the current cell state using the tanh function.

Figure 3. Schematic diagram of an LSTM cell.

Here, w f , wi, wc and wo are weight matrices. b f , bi, bc and bo are biases for individual
gates. σ indicates a sigmoid activation function. * stands for element-wise multiplication,
and + implies element-wise addition.

3. Materials and Methods
3.1. Dataset Description and Preprocessing

We merged two sources of data for this analysis. The first was obtained from Modern-
Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) [30] satellite.
This provides information on PM2.5, surface wind speed (m/s), surface air temperature
(k), total cloud area fraction, dew point temperature at 2 m (k), 2 m eastward wind (m/s),
and 2 m northward wind (m/s). The second set of data was extracted from from the
National Renewable Energy Laboratory (NREL) [31] for 2013. This contains information
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on DHI, DNI, GHI, clear-sky DHI, clear-sky DNI, clear -sky GHI, and solar zenith angle.
The clearness index at time t (denoted by Kt) was calculated on the basis of GHI values.
These two datasets were merged on the basis of latitude and longitude. For each location
(unique combination of latitude and longitude), a 10 km radius was used for the merge.
Table 2 describes the nine solar stations studied in this paper.

Table 2. Dataset description.

Latitude and Longitude Region Climatic Zone Location

23.50 and 78.75 Inland Composite Begamganj (Madhya Pradesh)
22.50 and 81.25 Inland Composite Dindori (Madhya Pradesh)
25.50 and 81.25 Inland Composite Khaga (Uttar Pradesh)
21.50 and 77.50 Inland Hot and dry Bhainsdehi (Madhya Pradesh)
16.50 and 73.75 Coastal Hot and dry Vaibhavwadi (Maharashtra)
18.00 and 76.25 Coastal Hot and dry Osmanabad (Maharashtra)

10.00 and 78.125 Inland Warm and humid Madurai (Tamil Nadu)
11.00 and 78.75 Coastal Warm and humid Tiruchirappalli (Tamil Nadu)

10.00 and 76.875 Coastal Warm and humid Idukki (Kerala)

After collecting solar data (time series) from the PV module, they were stored in a
database, and a series of standard preprocessing steps were applied.

• Night hours (8 p.m. to 7 a.m.) are removed.The resolution of the collected data was
15 min.

• Next, a standard sliding-window approach was applied to the time-series data to
convert them into a suitable representation (supervised) for deep-learning models.
Figure 4 depicts the generic approach of a sliding window with input and output
window sizes n and m. The input window covered n past observations, such as {X1,
X2, X3, . . . , Xn}, and used to predict the next m observations as {Xn+1, . . . , Xn+m}.
After that, the input window is shifted one position to the right as {X2, X3, X4, . . . ,
Xn+1}, and {Xn+2, . . . , Xn+m+1} are the new input and output sequences. This process
continues until no data points of the time series are left.

Figure 4. Sliding-window approach.

3.2. Locally and Remotely Derived Variables for Clustering

Variables that were obtained on the basis of the meteorological parameters of the
forecast site are called locally derived variables, while variables acquired depending upon
the neighboring forecasting sites are called remotely derived variables. Derived variables
were obtained following [23].

Neighboring solar stations relative to the forecast site were selected as follows:

• A radius of 120 km was used to select the solar stations around the forecasting site.
• DTW [32] was used as the similarity measure of clearness index (Kt).
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• Three solar stations with the best similarity score were selected and used for clustering.

Table 3 lists all locally and remotely derived variables.

Table 3. Variables used for K-medioid clustering.

Predictors Equation Description

Locally derived variables

kttrend KtPrev15−KtPrev30 It was calculated to capturethe most recent trend

Kt temporal variability (Stdev 1-h) σ(KtPrev15, KtPrev30, KtPrev45, KtPrev60) Computed by taking the standard deviation
of the four subsequent observations in an hour

Kt Slope (1-h) β0 + β1KtPrev15 + β2KtPrev30 + β3KtPrev45 + β4KtPrev60 It was calculated by fitting a linear equation
through four consecutive observations of the clearness index.

Remotely derived variables

KtPrev15 nearby mean µ(KtPrev15Source1, KtPrev15Source2, KtPrev15Source3) It was computed by taking
the mean of the clearness index of three neighboring sites.

KtPrev15 nearby std σ(KtPrev15Source1, KtPrev15Source2, KtPrev15Source3) It was computed by taking the standard
deviation of the clearness index of three neighboring sites.

Cloud-cover variability (Stdev) σ(CVSource1, CVSource2, CVSource3)
It is the standard deviation of the cloud

cover of neighboring solar stations.

Cloud Cover Squired (µ(CVSource1, CVSource2, CVSource3))
2 It is the squared value of the mean of cloud covers

of three neighboring sites.

3.3. Multivariate LSTM (M-LSTM)

Figure 5b describes the architecture of the multivariate LSTM model, summarized as
follows:

• It is a site-specific model where predictors are directly used from the forecasting site.
The model uses additional information on predictors such as temperature, dew point,
wind speed, and cloud cover.

• A stateful LSTM was used for maintaining inter- and intrabatch dependency. The input
layer of an LSTM consists of 5 input features of 16 time steps (4 h) each. Two hidden
layers and a tanh activation were used.

3.4. Spatiotemporal LSTM (ST-LSTM)

This implementation led to a spatiotemporal model, as information from the forecast
site is used together with information from neighboring sites.

Figure 5a shows the architecture in detail and can be summarized as follows:

• A spatiotemporal dataset was created by combining information on meteorological
parameters, including dew point, temperature, wind speed, and cloud cover from the
three neighboring sites and from the forecast site.

• Stateful LSTM was used. The input layer consisted of 20 input features of 16 time
steps each. Two hidden layers were used with a dropout rate of 20%. As hidden-layer
activation, tanh was used.

• A spatiotemporal dataset was used to train the LSTM and forecast clearness index for
three different times of the day.
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Figure 5. Architecture of—(a) spatiotemporal and (b) multivariate forecasting models.

3.5. Clustering-Based ANN (CB-ANN) and LSTM (CB-LSTM)

CB-ANN was designed following [23]. CB-LSTM is a global forecasting model, de-
signed using K-medoid clustering followed by LSTM. Meteorological parameters collected
from the neighboring sites together with clearness index values from the forecast site were
not directly used as predictors. As mentioned in Section 3.2, derived features were extracted
for Kt from the forecast site and cloud cover information from neighboring sites.

Figure 6 shows a cluster-specific feature identification to understand the important
features of a cluster. For each forecasting site, a spatiotemporal dataset was created
that was split into training (80%) and test sets (20%). A global dataset was created by
combining the training sets of all the forecast sites, and normalized using the min–max
normalizer [33]. Next, the optimal number of clusters was determined on the basis of
the elbow–silhouette [34] method. The K-medoids algorithm is used to cluster the time
windows in the dataset. As the input attributes were related to cloud formation, the clusters
intuitively represent different cloud types. As a result, the dataset was split into k clusters,
where each cluster center was represented by a medoid.
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Figure 6. Cluster-specific best feature identification strategy.

The proposed approach is presented in Figure 7 and is described as follows:

• For each cluster, separate stateless LSTM was built. The network was implemented us-
ing the keras package of version 2.7.0 in Python.The input layer of the LSTM consisted
of 13 input features of 1 time step each. In the hidden layers, hyperbolic tangent acti-
vation function (tanh) was used. After each hidden layer, a batch-normalization [35]
layer was used to transform inputs into a mean of 0 and a standard deviation of 1.
We used a dropout and L2 regularization [36] to protect the network from overfitting.
The network weights were initialized using the Xavier uniform initializer [37]. The out-
put layer consisted of 8 nodes with linear activation and was used to forecast Kt for the
next two hours. Figure 8 shows the network configuration of CB-LSTM together with
input and output features. For obtaining the best performance of CB-LSTM, specific
hyperparameters such as number of layers, number of nodes in each layer, batch size,
number of epochs, dropout, and learning rate were optimized. The tree-structured
Parzen estimator (TPE) [38] algorithm was used for optimization. Table 4 presents
the hyperparameter settings. Table 5 shows the optimal hyperparameter settings for
the proposed approach (CB-LSTM) in Section 4.

• Overall forecasting accuracy was computed for each site using the weighted average
of the generated accuracy by the different LSTM models. Forecasting accuracy was
separately computed for three times of the day.

Table 4. Hyperparameters to optimize.

Model Hyperparameter Value

Number of layers 1, 2, 3
Nodes in layers 25, 50, 75, 100

CB-LSTM Learning rate 0.1, 0.01, 0.001
Batch size 1, 10, 20, 50, 100

Epoch 25, 50, 100, 150, 200
Dropout 0.05, 0.1, 0.2
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Figure 7. Architecture of clustering-based forecasting model.

Figure 8. Network configuration of CB-LSTM.
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Table 5. Optimal hyperparameter settings for CB-LSTM in different cloud conditions.

Hyperparameters Broken Clear/Sunny Broken/Overcast

Number of hidden
layers 2 2 2

Nodes in hidden
layer one 100 25 100

Nodes in hidden
layer two 100 25 100

Learning rate 0.001 0.001 0.001
Batch size 1 1 1

Epochs 200 200 100
Dropout 0.2 0.2 0.2

Model parameters 127,608 9408 127,608

3.6. Evaluation

Forecasting performance was evaluated using three performance evaluation metrics,
namely, mean absolute error (MAE) [39], RMSE [40], and NRMSE [39]. They are defined as
follows:

MAE =
1
N

N

∑
i=1
|ŷi − yi| (1)

RMSE =

√
∑N

i=1(ŷi − yi)2

N
(2)

NRMSE =

√
∑N

i=1(ŷi−yi)2

N
µ

(3)

NRMSE(%) =

√
∑N

i=1(ŷi−yi)2

N
µ

∗ 100% (4)

4. Result and Discussion

Figure 9 shows the average value and standard deviation of the clearness index for all
forecasting sites. Greater variability was observed for Idukki, Vaibhavwadi, Tiruchirappalli,
and Osmanabad. Khaga had the lowest variability.

Figure 10 shows cluster-specific features, and K-medoids led to three clusters. Features
were selected on the basis of the reduction in impurity scores. For Cluster 0, the mean
decrease in impurity was highest for features Kt slope (1-h) and KtPrev15. For Cluster
1, cloud cover squared and KtPrev15-nearby-mean were the most important features.
For Cluster 2, cloud cover squared and Kt Slope (1-h) were the most important features.
To understand the cloud type of each cluster, we calculated the percentage of cloud-cover
information falling in each cluster, and this is illustrated in Figure 11. For Cluster 0,
the majority of observations belonged to the broken-cloud type. In Cluster 1, the majority
of observations belonged to the clear/sunny-sky type. For Cluster 2, the total numbers of
observations in the broken and bvercast cloud types were relatively similar.

Table 5 shows the optimal hyperparameters of the proposed approach (CB-LSTM)
for three different cloud conditions of broken, clear/sunny, and broken/overcast. Com-
plex cloud conditions (broken or overcast) require more hidden nodes and parameters to
produce good forecasting. Nevertheless, model complexity is less in clear/sunny sky con-
ditions.

Table 6 provides information on the climatic zone-specific forecasting performance
of ST-LSTM and a comparison with M-LSTM. For the composite climatic zone, ST-LSTM
achieved 5.96%, 3.71%, and 8.80% less RMSE, NRMSE, and MAE, respectively, than the
M-ULSTM did. For the hot and dry climatic zone, the corresponding values were 1.58%,
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1.44%, and 0.25% respectively. The biggest gain was in the warm and humid climatic zone,
with corresponding percentages at 8.65%, 8.34%, and 11.55% respectively.

Figure 9. Average value and variability of clearness index of forecasting sites.
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Figure 10. Cluster-specific best features in terms of mean decrease in impurity.

Figure 11. Understanding cloud patterns via cluster-specific distribution of cloud type.
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Table 6. Forecasting performance of spatial LSTM compared to univariate and multivariate LSTMs.

M-LSTM ST-LSTM
Forecasting Sites RMSE NRMSE MAE RMSE NRMSE MAE

Composite

Bhainsdehi 0.1429 0.2550 0.0870 0.1408 0.2515 0.0812
Begamganj 0.2211 0.3568 0.0952 0.2090 0.3410 0.0960

Dindori 0.2430 0.3541 0.1258 0.2164 0.3352 0.1358

Hot and dry

Tiruchirappalli 0.2859 0.5426 0.1894 0.2854 0.5419 0.1888
Idukki 0.3087 0.6243 0.1957 0.2969 0.6037 0.1837

Madurai 0.2725 0.5497 0.1746 0.2704 0.5447 0.1845

Warm and humid

Khaga 0.2253 0.3888 0.1049 0.1890 0.3300 0.1113
Vaibhavwadi 0.2911 0.4708 0.1821 0.2726 0.4423 0.1831
Osmanabad 0.3001 0.4541 0.2188 0.2896 0.4408 0.1941

Table 7 demonstrates the superiority of CB-LSTM over CB-ANN and ST-LSTM in terms
of RMSE, NRMSE, and MAE. For the composite climatic zone, CB-LSTM outperformed
CB-ANN by 27.16%, 29.49%, and 38.86% in terms of RMSE, NRMSE, and MAE, respectively.
For the hot and dry climatic zone, percentages were -5.28%, 8.03%, and 8.85%, respectively.
For the warm and humid climatic zone, CB-LSTM achieved 9.80%, 22.04%, and 19.94%
less RMSE, NRMSE, and MAE, respectively, as compared to CB-ANN. ST-LSTM was
dominated by CB-LSTM in the composite climatic zone by 33.77%, 28.49%, and 19.64%
in terms of RMSE, NRMSE, and MAE, respectively. In the hot and dry climatic zone, CB-
LSTM led to reductions of 35.37%, 35.26%, and 34.74% in RMSE, NRMSE, and MAE,
respectively, as compared to ST-LSTM. For the warm and humid climatic zone, CB-LSTM
led to corresponding reductions of 27.65%, 17.78%, and 25.34%, respectively.

The largest gain was observed in the composite climatic zone compared to CB-ANN in
terms of RMSE, NRMSE, and MAE. On the other hand, compared to CB-LSTM, the greatest
gain was seen in the hot and dry climatic zone. Thus, CB-LSTM led to less forecasting error
than that of the M-LSTM and ST-LSTM. CB-LSTM dominated both M-LSTM and ST-LSTM
at each of the three different times of day in terms of NRMSE.

Table 7. Forecasting performance of CB-LSTM compared to multivariate and spatiotemporal LSTM.

CB-LSTM CB-ANN ST-LSTM
Forecasting Sites RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE

Composite

Bhainsdehi 0.1096 0.1936 0.0677 0.1569 0.2762 0.1243 0.1408 0.2515 0.0812
Begamganj 0.1148 0.2016 0.0751 0.1664 0.3118 0.1384 0.2090 0.3410 0.0960

Dindori 0.1426 0.2530 0.1079 0.1790 0.3440 0.1445 0.2164 0.3352 0.1358

Hot and dry

Tiruchirappalli 0.1605 0.2903 0.1094 0.1617 0.3414 0.1173 0.2854 0.5419 0.1888
Idukki 0.2118 0.4934 0.1339 0.2001 0.5288 0.1376 0.2969 0.6037 0.1837

Madurai 0.1793 0.3208 0.1193 0.1619 0.3288 0.1447 0.2704 0.5447 0.1845

Warm and humid

Khaga 0.1483 0.2641 0.1139 0.1623 0.3195 0.1258 0.1890 0.3300 0.1113
Vaibhavwadi 0.2009 0.3599 0.1200 0.2109 0.4980 0.1475 0.2726 0.4423 0.1831
Osmanabad 0.1879 0.3757 0.1089 0.2238 0.4760 0.1595 0.2896 0.4408 0.1941

Table 8 illustrates the climatic-zone-specific forecasting superiority of CB-LSTM com-
pared to three benchmark models [21,23,41]. In the hot and dry climatic zone, CB-LSTM
achieved maximal gain with 8.86% and 26.81% lower NRMSE compared to [21,41]. On the
other hand, in the composite climatic zone, the best NRMSE was 30.56% compared to [23].
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Table 8. Forecasting performance of CB-LSTM compared with benchmark models in terms of NRMSE (%).

Forecasting Sites CB-LSTM [21] [41] [23]

Composite

Bhainsdehi 19.36% 22.75% 26.09% 27.62%
Begamganj 20.16% 20.74% 26.39% 31.18%

Dindori 25.30% 25.09% 27.93% 34.40%

Hot and dry

Tiruchirappalli 29.03% 38.06% 47.62% 34.14%
Idukki 49.34% 49.82% 54.04% 52.88%

Madurai 32.08% 34.14% 47.67% 32.88%

Warm and humid

Khaga 26.41% 20.90% 24.02% 31.95%
Vaibhavwadi 35.99% 45.70% 46.61% 49.80%
Osmanabad 37.57% 48.89% 41.98% 47.60%

Figure 12a shows climatic-zone-specific variability in predictions of CB-LSTM in terms
of NRMSE. clustering-based ANN [23] for the composite and hot and dry climatic zone,
and RF-SVR [21] for the warm and humid climatic zone were the worst-performing models.
For all climatic zones, CB-LSTM achieves the least prediction error.

Figure 12b shows region-specific variability in predictions of CB-LSTM in terms of
NRMSE. CB-LSTM had the least prediction error in both inland and coastal regions.

Composite Hot & Dry Warm & Humid
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(a) (b)

Figure 12. (a) Climatic-zone-specific variability in predictions; (b) region-specific variability in predictions.
The symbol “†” indicates an outlier.

Table 9 shows a comparison of the overall forecasting performance of CB-LSTM to
that of three benchmark models in terms of NRMSE and mean rank. CB-LSTM showed the
lowest overall NRMSE and mean rank.

Table 9. Overall forecasting performance of CB-LSTM compared to that of benchmarks.

Models Overall NRMSE Mean Rank

[41] 0.3803 3.11
[21] 0.3378 2.11
[23] 0.3805 3.33

CB-LSTM 0.3058 1.44
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5. Conclusions

CB-LSTM achieved better forecasting performance than that of M-LSTM and ST-
LSTM for all climatic zones and regions. In terms of RMSE, MAE, and NRMSE, CB-LSTM
dominated M-LSTM and ST-LSTM by 32.07%, 26.50%, 30.59%, 32.26%, 26.57%, and 27.18%.

CB-LSTM also outperformed three benchmark models [21,23,41] by 10.46%, 24.42%,
and 24.36% in terms of overall NRMSE. CB-LSTM achieved the best mean rank compared
to all the benchmark models. This holds for all the climatic zones and regions compared to
the three benchmark models.

Thus, the performance of CB-LSTM was robust under differing conditions. We also
obtained insights into the common nature of cloud patterns in India, as the clustering
algorithm indicated relevant features about cloud patterns that could lead to improved fore-
casts.

The proposed model helps grid operators in better distributing power across the
national grid. A future goal is to validate our model for more locations across other climatic
zones, seasons, and topographical regions of India.
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