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Abstract: The operation data of a tunnel boring machine (TBM) reflects its geological conditions and
working status, which can provide critical references and essential information for TBM designers and
operators. However, in practice, operation data may get corrupted due to equipment failures or data
management errors. Moreover, the working state of a TBM system usually changes, which results
in patterns of operation data that vary comparatively. This paper proposes a denoising approach
to process the corrupted data. This approach is combined with low-rank matrix recovery (LRMR)
and sparse representation (SR) theory. The classical LRMR model requires that the noise must be
sparse, but the sparsity of noise cannot be fully guaranteed. In the proposed model, a weighted
nuclear norm is utilized to enhance the sparsity of sparse components, and a constraint of condition
number is applied to ensure the stability of the model solution. The approach is coupled with a fuzzy
c-means algorithm (FCM) to find the natural partitioning using the TBM operation data as input.
The performances of the proposed approach are illustrated through an application to the Shenzhen
metro. Experimental results show that the proposed approach performs well in corrupted TBM data
denoising. The different excavation status of the TBM recognition accuracy is improved remarkably
after denoising.

Keywords: tunnel boring machine; industrial data denoising; low rank; sparse representation; fuzzy
c-means clustering

1. Introduction

Tunnel boring machine (TBM), as an important complex engineering system, have
been widely used in various forms of tunnel construction, such as in metros, railways,
highways, etc. With the application of cyber-physical systems and sensing technologies,
massive amounts of operation data have been measured and recorded, which can reflect
TBM conditions and working status and promotes the development of data-driven design,
analysis, and control of TBM [1–3]. However, the TBM used in mixed ground conditions
faces many challenges, such as geological hazards, instrument damage, instability of the
excavation face, and change in working state, which may result in noise and data pattern
changes. These disturbances cannot be fully avoided in the construction process and
seriously reduce the quality and reliability of data, so it is necessary to develop approaches
and techniques to remove the noises from recorded TBM parameters and identify the
different excavation states of the TBM.

In recent years, data denoising technology has received tremendous attention, with
researchers proposing a series of effective methods [4–6]. The common methods of data
denoising for data preprocessing include traditional filtering denoising [7,8], wavelet trans-
form (WT) denoising [9,10], and empirical mode decomposition (EMD) denoising [11,12].
The filtering denoising methods, such as median filtering denoising [13], Kalman filter-
ing [14] and Winer filtering [15], are rarely used in TBM data denoising due to the lack of
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prior knowledge of noise statistical characteristics. With respect to tunneling data denois-
ing, Zhang and Liu [16] calculated the Mahalanobis distance at first, and removed the data
outside of the p90 percentile, before finally employing the DB4 wavelet with two-layer
decomposition and soft thresholding to denoise the operation data. As a solution, Zhou
and Xu [17] also utilized the wavelet transform to remove noise before building a dynamic
predictive model of TBM data. However, the pre-divided temporal frequency features and
the linear non-adaptive transformation of the WT limit its application ability in nonlinear
TBM systems. EMD decompose the signal into a finite number of intrinsic mode functions
(IMFs), which has been successfully used in data denoising in various fields such as seismic
data [18], electrochemical data [19], and global navigation satellite system (GNSS) position
data [20]. Unfortunately, the true physical processes could be obscured by the disruption of
a given signal, when the signal contains intermittent processes [21].

In general, there are various kinds of noise in TBM operation data during the tunneling
process, and the aforementioned methods are potentially restricted for particularly noisy
operation data. As a matter of a fact, some attributes of TBM operational data are highly
correlated. In addition, the parameters correlation can effectively boost the denoising
results. Rank minimization is a common method for exploring the correlation, and some
well-performed denoising methods based on low-rank matrix recovery (LRMR) have been
proposed. For instance, Li and Wang [22] proposed an effective sparse representation model
for image fusion and denoising, which decomposes noisy images into two different compo-
nents and exploits a weight nuclear norm sparse regularization term to avoid corruption
by noises. With respect to hyperspectral image denoising, Zhao and Yang [23] utilized the
local and global redundancy and correlation (RAC) in spatial and spectral domains jointly
because it is has particularly global and local RAC in spatial and spectral dimensions. As a
solution, Gomes and Costa [24] employed low-rank tensor approximation to denoise data
in R-D sensor array processing problems. However, most methods mentioned above are
mostly used for computer vision applications. The literature survey showed that the LRMR
method has not yet been used in tunneling data denoising.

In this article, a new denoising approach based on LRMR is proposed for TBM data
preprocessing. The robust principal component analysis (RPCA) [25] is a typical LRMR
framework, which allows two facts that the high correlation of matrix can be captured by
low-rank prior, meanwhile the noise possesses sparse characteristics. In fact, the robustness
of RPCA is demonstrated by assuming that noise is sparse, regardless of noise intensity.
However, the sparsity of noise cannot be fully guaranteed, due to the complexity of the
noise sources in the tunneling data. In order to break the above hurdle, the weighted
nuclear norm is utilized to improve the ability of the model in sparse decomposition. The
weighted nuclear norm can also reduce the influence of singular values in the process of nu-
clear norms approximate to low-rank matrix. Besides this, we employ a Forbenius-2 norm
to improve the stability of model solutions. The proposed LRMR model is a jointly noncon-
vex problem, and we introduce the inexact augmented Lagrange multiplier (IALM) [26]
technique and an alternating minimization strategy to solve it.

Since there are different operation states of the TBM system, the patterns of opera-
tion vary greatly as well. It necessary to partition the data into different parts based on
characteristics to better help the design and analysis for TBM designers and operators. In
recent years, data clustering methods have been developed and widely used in the field of
engineering for the partition of operation data. Generally, these methods can be grouped
into two categories, hard clustering methods and fuzzy clustering methods. Different from
hard clustering, fuzzy clustering methods allows data to belong to multiple clusters with
varying degrees of membership. Thus, we utilize the fuzzy c-means algorithm (FCM) [27]
to classify the TBM operation status. By doing so, we can make a reasonable partitioning of
the TBM operation data.

Our main contributions are as follows:

(1) A new non-convex low-rank approximation that utilizes the weighted nuclear norm
and Forbenius norm is introduced for TBM denoising. This method can avoid the
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deficiencies of RPCA. To the best of the authors’ knowledge, the RPCA model has not
yet been used in tunneling data denoising.

(2) An efficient optimization framework based on IALM and alternating minimization
is designed to minimize the non-convex proposed model. Experimental results
with real-world datasets from a tunnel in China illustrate that the proposed method
performs well.

The remainder of the paper is organized as follows: Section 2 presents detailed
information on the proposed method and the optimization for this method. Experimental
results and analysis are reported in Section 3. Finally, the conclusions are given in Section 4.

2. Proposed Approach
2.1. Preliminary

Assume that the observed data matrix D ∈ Rm×n can be decomposed into a low-rank
matrix L ∈ Rm×n and a sparse matrix accounting for both small Gaussian noise and large
scale outliers S ∈ Rm×n, so that D = L + S.

To determine L and S, the RPCA algorithm aims to solve the minimization problem,
which can be described as follows:

min
L,S

rank(L) + γ‖S‖0 s.t. D = L + S (1)

where γ > 0 is a trade-off parameter, which is a balance of the relative contribution between
the rank of matrix L and the `0 norm of matrix S. It is obvious that the optimization problem
in (1) is highly non-convex for all matrix variables simultaneously, it cannot be solved
directly using the existing methods. By replacing the `0 norm with the `1 norm, and the
rank with the nuclear norm, then the problem can be relaxed into the following surrogate:

min
L,S
‖L‖∗ + γ‖S‖1 s.t. D = L + S (2)

where ‖·‖∗ is the nuclear norm defined as ‖·‖∗ = ∑i|σi(·)|, σi(·) is the i-th singular value
of ·, ‖·‖1 is the `1 norm, which can be calculated as the sum of the absolute values in
matrix ·. In the last decades, many effective methods have been proposed for solving the
optimization problem of (2). Specifically, the optimization problem (2) can be effectively
solved by the alternating direction method (ADM) algorithm [28] or the inexact augmented
Lagrange multipliers (IALM) algorithm [26].

2.2. Denoising Method

In this paper, a data denoising method guided by RPCA is proposed. As analyzed
above, TBM data denoising aims to reconstruct clean data L ∈ Rm×n from its noisy mea-
surement D ∈ Rm×n, where L ∈ Rm×n is low rank and the noise S ∈ Rm×n is sparse. In
practice, the sparsity of noise cannot be fully guaranteed, due to the complexity of the noise
sources in the TBM operation data. Moreover, the nuclear norm minimization (NNM)-being
a low-rank matrix treats different rank components equally, which may result in severe
shrinkage of the underlying information [29]. Hence, we introduce a weighted nuclear
norm, which assigns different weights to different singular values, to regularize the L. Thus,
we can reformulate the objective function (2) as:

min
L,S
‖L‖ω,∗ + γ‖S‖1 s.t. D = L + S (3)

where ‖·‖ω,∗ is the weighted nuclear norm defined as ‖·‖ω,∗ = ∑i|ωiσi(·)| [30], ωi > 0 is
the i-th weight assigned to σi(·). In Equation (3), different singular values are differently
in the weighted nuclear norm, which is very beneficial to reduce the influence of singular
values in the process of nuclear norm approximation of matrix rank.

However, during noise removal, the stability and sparsity of the model solution cannot
be guaranteed [30]. As we know, the condition number is an effective measure of the stability
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of a linear system. From an optimization point of view, the Forbenius norm is conducive to
dealing with the problem of matrix inversion when it is ill-conditioned. Thus, we introduce
the Forbenius norm constraint on the L, through which we force the stability of the matrix
to be restored. Then, the above optimization problem (3) can be re-described as:

min
L,S
‖L‖ω,∗ + γ‖S‖1 + λ‖L‖2

F s.t. D = L + S (4)

where λ > 0 is a regularization parameter and it is used to adjust the role of ‖L‖2
F in the

denoising model.

2.3. Optimization and Algorithm

In this section, we provide a detailed description of solving optimization problem (4).
In the present paper, the inexact augmented Lagrange multiplier (IALM) [26] technique
is used to solve the optimization problem (4). For further optimization, we first need to
determine the value of weight ωi. According to the literature [31], the weighted term
should be inversely proportional to the weighted term. The algorithm steps of weight
updating is shown in Algorithm 1.

Algorithm 1 Algorithm for update weight

Input: Initial L and S and ωi(i = 1, 2, . . . , κ) and maximum number of κ.
Initialize: ω(0) = 1 ∗ 1T ∈ Rm×n, ε = 0.01
while κ not reach do
(a) Update Land S
(b) Update weight via ωi+1

j = 1
σi

j+ε

end while if the maximum number of κ has been reached.
Output: ω

Then, we write its IALM form as follows:

L(L, S, X, η) = ‖L‖ω,∗ + γ‖S‖1 + λ‖L‖2
F + 〈X, D− L− S〉+ η

2
‖D− L− S‖2

F (5)

where X ∈ Rm×n is the Lagrange multiplier matrix, and η > 0 is the penalty parameter. We
introduce an auxiliary variable A and relax (5) into the following problem:

L(L, S, X, η) = ‖L‖ω,∗ + γ‖S‖1 + λ‖A‖2
F + 〈X1, D− L− S〉+ η1

2 ‖D− L− S‖2
F

+〈X2, A− S〉+ η2
2 ‖A− S‖2

F

(6)

where X = (X1, X2) and η = (η1, η2). To facilitate the optimization, the optimization
problem (6) can be rewritten as:

L(L, S, X, η) = ‖L‖ω,∗ + γ‖S‖1 + λ‖A‖2
F +

η1

2

∥∥∥D− L− S + η−1
1 X1

∥∥∥2

F
+

η2

2

∥∥∥A− S + η−1
2 X2

∥∥∥2

F
(7)

For each of the five matrices S, L, A, X1 and X2 to be solved in problem (7), the cost
function is convex with respect to one and fixed others. We use an alternating minimization
strategy to solve the problem (7).

(1) Updating S

When we update matrix S, we fix L, A, X1 and X2. Thus, the problem is reduced to:

S = arg min
S

{
γ‖S‖1 +

η1

2

∥∥∥D− L− S + η−1
1 X1

∥∥∥2

F

}
(8)
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Obviously, this is a typical `1 minimization problem which can effectively be solved
by the iterative shrinkage algorithm (ISA) [32] or the fast iterative shrinkage thresholding
(FIST) [33]. By introducing the shrinkage operator S [34], the solution is:

Sk+1 = Sγ/η1

(
D− Lk+1 + Xk

1/η−k
1

)
(9)

(2) Updating A

Similarly, when we update A, we assume that S, L, X1 and X2 are all fixed. So (7) can
be reformulated as:

A = arg min
A

{
λ‖A‖2

F +
η2

2

∥∥∥A− L + η−1
2 X2

∥∥∥2

F

}
(10)

which is an ordinary least squares problem, we can obtain the following closed-
form solution:

A =
η2

2λ + η2

(
L− η−1

2 X2

)
(11)

(3) Updating L

To update L, we keep the other variables fixed. By removing irrelevant items from the
objective function (7), L can be obtained by solving:

L = arg min
L

{
‖L‖ω,∗ +

η1

2

∥∥∥D− L− S + η−1
1 X1

∥∥∥2

F

}
(12)

Problem (12) is a weighted nuclear norm minimization that can be found using the
method developed in [35]. By introducing the singular value thresholding D [36], and the
solution is:

Lk+1 = D
ω(ηk

1+ηk
2)
−1

[
ηk

1

(
D− Sk+1 + η−k

1 Xk
1

)
+ ηk

2

(
Ak+1 + η−k

2 Xk
2

)]
(13)

(4) Updating X1 and X2

Similarly, fixing other variables, the Lagrange multiplier matrices X1 and X2 can be
updated by solving:

X1 = arg min
X1

{
η1

2

∥∥∥D− L− S + η−1
1 X1

∥∥∥2

F

}
(14)

X2 = arg min
X2

{
η2

2

∥∥∥A− L + η−1
2 X2

∥∥∥2

F

}
(15)

We have closed-form solutions:

Xk+1
1 = Xk

1 + ηk
1(D− Lk+1 − Sk+1) (16)

Xk+1
2 = Xk

2 + ηk
2(Ak+1 − Lk+1) (17)

A detailed optimization produce of problem (7) is provided in Algorithm 2.
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Algorithm 2 Data Denoising Algorithm

Input: Initial D and parameter λ.
Initialize: X0 = 0, S0 = 0, x0 = 0 k = 1
while not converged do
(a) Update S via Equation (9)
(b) Update A via Equation (11)
(c) Update L via Equation (13)
(d) Update X1 and X2 respectively via Equations (16) and (17)
end while
Output: L and S

A detailed flowchart of the proposed denoising method is described in Figure 1.

Figure 1. Flowchart of the proposed denoising method.

3. Engineering Application on the Operation Data Analysis of TBM
3.1. Project Review

In this subsection, the proposed method is applied to denoising a real operation dataset
from a TBM. The TBM operational data used for analysis in this study belong to a tunnel in
Shenzhen, China (as shown in Figure 2). The length of the main tunnel is 2000 m and its
diameter is 6.4 m. The ground surface elevation ranges from 0.2–5.8 m, and the depth of
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the tunnel floor from the ground surface ranges from 11.8–25.4 m. From the ground surface
to the tunnel floor, various geological layers, such as clay, sand, and rock, are unevenly
distributed, as shown in Figure 3. During the TBM excavation process, an earth pressure
balance (EPB) shield TBM is used, as show in Figure 4. The basic equipment parameters
are listed in Table 1. This TBM system consists of a cutterhead, chamber, screw conveyor,
tail skin and other auxiliary subsystems, which have a diameter of 6.2 m and a total mass
of over 500,000 kg. During the tunneling process, the operational and state data of the
TBM was recorded by a PLC, which was further read by an industrial computer at regular
intervals and stored in the database. Thus, the fresh data in the database are added to
in batches during the tunneling process. The collected operation dataset represents the
operational information and status parameters along the length of tunnel, which contains
about 53 attributes that were continuously measured with a frequency of 1 Hz. Some
key attributes are listed in Abbreviations. In the process of dynamic cutterhead torque
prediction, the data come in batches. As can be seen from Figure 5, the tunneling data
contain extremely large values and extremely small values far from the general level
of numerical values. The data acquisition process of TBM is inevitably corrupted by
background noise and interference induced by the measuring system. The raw data must
be denoised. In addition, the geological properties in tunnels are greatly different from each
other, which results in considerable variation in the TBM operating state during tunneling.
Two operational datasets of this tunnel are used to validate the denoising algorithm, in
which the geological conditions are unlabeled and unknown.

Figure 2. Schematic diagram of research area.

Figure 3. Geological sampling results of the tunnel.
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Figure 4. The earth pressure balance shield TBM used.

Table 1. Basic parameters of the TBM used.

Parameters of TBM Value Unit

Excavation diameter 6280 mm
Length 75.5 m
Weight ≈500 T

Maximum rotation speed of cutterhead 3.7 r/min
Rated torque of cutterhead 6000 KN·m
Maximum propelling speed 80 mm/min

Number of drive motors 8 1

Figure 5. Some attributes with outliers: (a) propelling pressure and (b) penetration rate.

3.2. Datasets and Experimental Setup

Two datasets of sequence data are used to evaluate the effectiveness of the proposed
denoising approach. Some attributes whose values are constant or barely changing should
be eliminated first. Then, we eliminated the attributes which are detected independently
and have no correlation like temperature with other attributes with the assistance of TBM
operators and managers. The two selected datasets have different durations and contain
different numbers of attributes, and the details of datasets used in the experiments are
described in Table 2.

Table 2. Details of datasets used in the experiments.

Dataset Attributes Count Samples Count

Dataset 1 39 1480

Dataset 2 43 860
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The proposed approach is compared with other denoising methods to prove its ef-
fectiveness. These competing methods include hard threshold (HT) denoising [9], soft
threshold (ST) denoising [10], and variational mode decomposition (VMD) denoising [37].
The rate mean-square error (RMSE) and mean absolute error (MAE) are used to quantita-
tively evaluate the quality of a denoised result. The MSE equation is defined as:

RMSE =

√
1
N ∑N

i=1 (xi − x̃i)
2 (18)

where xi represents the desired output corresponding to the input, x̃i represents the value
obtained by the denoising approach, and N represents the number of samples.

The MAE is defined as:

MAE =
1
N ∑N

i=1|xi − x̃i| (19)

The lower the MSE and the MAE are, the better the quality of the denoising validity is.
The FCM algorithm is applied to partition original data and denoised data. The original

parameter settings of FCM are preferred. In this paper, the clustering performance is evalu-
ated in terms of the partition coefficient (PC) [38–40] and partition entropy (PE) [41,42]. The
partition coefficient is calculated as follows:

PC =
1
n

c

∑
i=1

n

∑
k=1

µ2
ik (20)

The higher the PC is, the better the quality of the cluster validity is.
The partition entropy is defined by:

PE = − 1
n

c

∑
i=1

n

∑
k=1

µik log2 µik (21)

The lower the PE is, the better the quality of the cluster validity is.
The numerical experiments were performed on a computer with an Intel Core i7-10700

CPU at 3.8 GHz, 32 G RAM.

3.3. Data Denoising Results and Discussion

To examine the denoising performance of our approach with published approaches, we
run experiments using three typical schemes, and compare the visual effects and objective
evaluations. The wavelet basis function applied in HT denoising and ST denoising is
Daubechies 6 (Db6) which comes from the Daubechies wavelet family. Since the wavelet
transform has some limitations in the denoising of high-dimensional data, and VMD can
only decompose one-dimensional data at one time, we analyze the penetration rate of
dataset 1 and the rotation speed of the cutterhead of dataset 2. The penetration rate (V)
and rotation speed of the cutterhead (RC) are both important reference attributes for TBM
designers and operators in design, analysis, and control of TBM.

For visual comparison, the real values and denoised values with these models are
provided in Figures 6 and 7. It can be seen that the HT method and ST method cannot
eliminate outliers, which is not conducive to subsequent data analysis. We also tested other
wavelet basis functions, and most of them failed to eliminate outliers. The ST method can
eliminate noise more precisely than the HT method and avoid local jitter after denoising.
Both the VMD method and the proposed method can reduce the influence of outliers on the
dataset. Moreover, due to the proposed method considering the correlation between other
attributes, it has a reasonable approximation to the outliers. Although the denoising data
obtained by VMD looks smoother than other methods, some local trends have changed, as
can be seen from two figures. The tunneling data are characterized by weak periodicity
and the change in local trend is very unfavorable.
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Figure 6. Comparisons between real and denoised data for dataset 1.

Figure 7. Comparisons between real and denoised data for dataset 2.
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The quantitative results of the RMSE and MAE for different denoising results are listed
in Table 3. The part of the sequence containing outliers was deleted to evaluate the denoising
performance. Of course, this result does not mean that the performance of other denoising
methods is not good, but they may not be suitable for data denoising of TBM data.

Table 3. Denoising performance comparison of different methods.

Method
Dataset 1 Dataset 2

RMSE MAE RMSE MAE

HT 2.6603 3.7010 0.0129 0.0048
ST 2.4648 3.4039 0.0128 0.0047

VMD 3.2004 4.5471 0.0191 0.0064
Proposed 1.4159 2.0590 0.0178 0.0037

In fact, our method can denoise data for all attributes in the dataset. In order to
further demonstrate the denoising performance of the proposed method, the real values
and denoised values of other attributes are provided in Figure 8.

Figure 8. Denoising results of proposed method: (a) rotation speed of cutterhead and (b) pressure of
tail skin system at top right front.

3.4. Data Clustering Results and Discussion

In real world applications, in-suit engineering data contain noise and outliers, and
that are disturbances for clustering methods. As a well-known method, FCM is applied to
cluster data in unsupervised learning. In this framework, the distance metric is utilized, but
the existence of outliers has a bad effect on the division of clusters. The proposed denoising
method can provide a reasonable approximation to outliers by considering the relationship
between different attributes. In order to verify data denoising that can improve clustering
accuracy, clustering experiments are carried out on the original data set and the denoised
data set, respectively. Since the clear cluster number of the dataset was unknown, five
groups of experiments with cluster numbers of 4, 5, 6, 7, 8 were carried out, respectively.

The clustering comparisons of TBM operational data before and after the proposed ap-
proach denoising is shown in Tables 4 and 5. It can be seen that the clustering performance
of the denoising data is obviously better than that of the original data, which indicates the
effectiveness of data denoising for helping the TBM data clustering task. For dataset 1, the
mean PC and PE values of no-denoising data are 0.882 and 0.366. After data denoising
using the proposed method, the mean PC value increases to 0.890, and the mean PE value
drops to 0.341, respectively. For dataset 2, the mean PC value increased from 0.836 to 0.864,
and the mean PE value decreased from 0.456 to 0.384. Moreover, it is observed that all
cluster validity indexes achieve the best results when the cluster is 4.
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Table 4. Clustering performance comparison of different datasets for Dataset 1.

Cluster
Original Data Denoised Data

PC PE PC PE

4 0.934 0.203 0.936 0.196
5 0.899 0.314 0.905 0.294
6 0.884 0.365 0.890 0.340
7 0.855 0.446 0.869 0.403
8 0.837 0.500 0.849 0.471

Table 5. Clustering performance comparison of different datasets for Dataset 2.

Cluster
Original Data Denoised Data

PC PE PC PE

4 0.852 0.404 0.881 0.331
5 0.843 0.427 0.866 0.370
6 0.847 0.426 0.874 0.357
7 0.845 0.446 0.877 0.354
8 0.793 0.577 0.824 0.509

4. Conclusions

In this paper, a new denoising approach was proposed for TBM in mixed ground
conditions. According to the results, it can be concluded that the improved LRMR model
is effective in eliminating noise and outliers of TBM, and can improve the accuracy of
data clustering. In fact, there are various kinds of noise in TBM operation data during the
tunneling process, and some attributes of TBM operational data are highly correlated. It
novel to attempt to eliminate the noise between shield data by considering the correlation
between parameters. Rank minimization is a common method for exploring correlation,
and our research is constructed under the RPCA framework. To overcome the difficulty
that the sparsity of noise cannot be fully guaranteed, the weighted nuclear norm is utilized
to improve the ability of the model in sparse decomposition. Besides this, we employ a
Forbenius norm to improve the stability of model solutions. The proposed LRMR model
is a jointly nonconvex problem, we introduce the IALM technique and an alternating
minimization strategy to solve it. The existence of outliers and noise will affect the clustering
accuracy because most clustering methods use distance to measure the relationship between
different clusters. By comparing the clustering performance of original data and denoised
data, the clustering accuracy of the denoised data is obviously improved. However, there
still exist some issues we have not discussed. In future, it would be an interesting and
helpful task to simultaneously achieve noise suppression and accurately cluster in noisy
TBM data clustering.
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Abbreviations

Abbreviation Attribute and Unit
RC Rotation speed of cutterhead (r/min)
FP Propelling pressure (bar)
FPA Pressure of A group of hydraulic cylinders (bar)
FPB Pressure of B group of hydraulic cylinders (bar)
FPC Pressure of C group of hydraulic cylinders (bar)
FPD Pressure of D group of hydraulic cylinders (bar)
PEB Pressure of equipment bridge (bar)
PAS Pressure of articulation system (bar)
PTSTRF Pressure of tail skin system at top right front (bar)
PTSRF Pressure of tail skin system at right front (bar)
PTSBRF Pressure of tail skin system at bottom right front (bar)
PTSTLF Pressure of tail skin system at top left front (bar)
PTSRB Pressure of tail skin system at top right back (bar)
PTSBLF Pressure of tail skin system at right front (bar)
PTSBRB Pressure of tail skin system at bottom right back (bar)
PTSTLB Pressure of tail skin system at top left back (bar)
PSCP Pressure of screw conveyor pump (bar)
PCTL Pressure of chamber at top left (bar)
PCT Pressure of chamber at top (bar)
PCBL Pressure of chamber at bottom left (bar)
PCTR Pressure of chamber at top right (bar)
PB Pressure of bentonite (bar)
GPTL Grout pressure at top left (bar)
GPTR Grout pressure at top right (bar)
GPBL Grout pressure at bottom left (bar)
PTSLF Pressure of tail skin system at left font (bar)
PTSBLF Pressure of tail skin system at bottom left front (bar)
PTSLB Pressure of tail skin system at left back (bar)
PTSBLB Pressure of tail skin system at bottom left back (bar)
BPSS Bentonite pressure of shield shell (bar)
PSCF Pressure of screw conveyor at front (bar)
SA Displacement of A group of thrust cylinders (mm)
SB Displacement of B group of thrust cylinders (mm)
SC Displacement of C group of thrust cylinders (mm)
SD Displacement of D group of thrust cylinders (mm)
SATR Displacement of articulated system at top right (mm)
SABR Displacement of articulated system at bottom right (mm)
SATL Displacement of articulated system at top left (mm)
SABL Displacement of articulated system at bottom left (mm)
F Thrust of cutterhead (kN)
V Penetration rate (mm/s)
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