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Abstract: An algorithm was developed detect the partial demagnetization of permanent-magnet
synchronous motors (PMSMs) under both stationary and nonstationary conditions. On the basis
of the recursive least-squares (RLS) method, the vital component of fault-related harmonics in the
current could be extracted on the line, and its proportion to fundamental component could be
regarded as the indicator of partial demagnetization faults. The proposed algorithm is fairly easy
to realize and could substitute conventional and complicated signal processing methods such as
Fourier transform and wavelet transform when detecting partial demagnetization. Experiments
with inverter-fed healthy and partially demagnetized PMSMs are carried out to substantiate the
effectiveness of proposed algorithm under both stationary and nonstationary conditions. At the end,
a way to eliminate the impact of eccentricity fault on the partial demagnetization diagnosis is given.

Keywords: permanent-magnet synchronous motors (PMSMs); partial demagnetization; fault
diagnosis; recursive least squares (RLS)

1. Introduction
1.1. Motivations

Permanent-magnet synchronous motors (PMSMs) are deployed on a large scale for
their inherent merits of high torque and power density, and high efficiency [1]. However,
the demagnetization of permanent magnets installed in PMSMs has raised major concerns
in the academic and industrial fields. Demagnetization occurs in some harsh operation
environments such as high temperatures and large currents [2]. In addition, mechanical
failures may cause demagnetization faults [3]. In some applications that require high
reliability [4–7], demagnetization faults must be reported early [8].

1.2. Demagnetization Phenomena

In partial demagnetization [9], one or some parts of permanent magnets are demagne-
tized, which results in the spatial asymmetry of the magnetic field in the air gap. Due to
spatial asymmetry, with specific combinations of poles and slots [10,11], back electromotive
force (EMF) contains fault-related harmonics that are the source of current harmonics.
Many studies proved that this kind of harmonics can be expressed as follows [12–17]:

f f ault = fe(1± n/p) (1)

where ffault refers to the fault-related harmonic frequency, fe is the electrical fundamental
frequency, p denotes the number of pole pairs, and n is an integer that can be 1, 2, 3, . . . . . .
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1.3. Related Works

In the literature, many methods emerged to detect partial demagnetization. To directly
identify the distribution of magnetic flux, signals measured by the Gaussmeter [18] and
Hall sensors [19,20] are analyzed. Since faulted-related harmonics in (1) are introduced in
back-EMF, back-EMF could be measured to detect partial demagnetization [21]. However,
in most cases, back-EMF cannot be directly measured for PMSMs under operation. Methods
based on motor current signature analysis (MCSA) [22–26] were developed and widely
commercialized since fault-related harmonics in currents occur simultaneously due to
back-EMF harmonics [26]. In addition, information on output torque [27], vibration,
and acoustics [28] can also be used to analyze partial demagnetization. In this paper,
MCSA was adopted to detect partial online demagnetization due to its feasibility and
easy implementation.

According to orders of a fault-related harmonic frequency, partial demagnetization
can be recognized by using signal processing methods such as fast Fourier transform
(FFT) [22,23], wavelet transform (WT) [24], and Hilbert–Huang transform (HHT) [25].
When PMSMs are operated under stationary conditions, FFT is the most common approach
to gain components of fault-related harmonics [26]. However, rigorous conditions must
be satisfied when using FFT: (1) integer periods need to be sampled or spectral leakage
may happen; (2) sample frequency must be twice higher than the maximal frequency
that needs to be analyzed; (3) the number of sample points should be 2N to achieve fast
operation of the algorithm [29]. Although the above conditions can be satisfied, there
are still some other problems when using FFT, such as complex calculation, and FFT not
being suitable when PMSMs are operated under nonstationary conditions since FFT can
only reflect the frequency spectrum, but is not able to correlate to time [26]. However, in
most applications, such as electrical vehicles and pumps, PMSMs are often operated under
nonstationary conditions.

In order to detect partial demagnetization under nonstationary conditions, many time–
frequency methods were investigated, including short-time Fourier transform (STFT) [30],
continuous and discrete wavelet transform (CWT/DWT) [13,24], and S-transform [21]. The
main problem of these time–frequency methods is the resolution of time and frequency [31].
If time resolution is too low, it is difficult to accurately catch the change in frequency during
transient processes; if the frequency resolution is too low, the previous frequency cannot
be obtained at a specific time. Tme and frequency resolution cannot simultaneously be at
a high level according to the Heisenberg uncertainty principle [32]. In order to overcome
resolution problems, harmonic order tracking analysis (HOTA) was proposed by means of
Gabor transform [33–35]. However, this still requires a window of sample data that must
be stored in the memory, and needs complex calculation.

In this paper, an RLS-based algorithm to detect the partial demagnetization of PMSMs
under both stationary and nonstationary conditions is presented. Some regression models,
such as neural networks [36], ADALINE filters [37], convolutional neural networks (CNNs),
the support vector regression method (SVRM) [38], and RLS [39] were applied in most
applications, but none of these models was utilized in the field of partial demagnetization
detection, where they may present sremarkable merits under stationary and nonstationary
conditions. Among these regression models, RLS is comparatively easy to realize and was
hence used in this paper. Another advantage of methods such as RLS is the fact that the
result is physically interpretable, which is not always true with advanced methods. The pro-
posed RLS-based algorithm can be executed in real time, and magnitudes of fault-related
harmonics are established to indicate the health of PMSMs. Moreover, there is no need to
store previous data in the proposed algorithm, which enables the use of the algorithm in
embedding devices with small-capacity memory. The proposed algorithm could substitute
conventional and complicated signal-processing methods, such as Fourier transform and
wavelet transform, when detecting partial demagnetization. Experiments with inverter-fed
healthy and partially demagnetized PMSMs were carried out to substantiate the effective-
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ness of proposed algorithm under both stationary and nonstationary conditions. Lastly, a
specific part of eccentricity faults and its impact is discussed.

2. Partial Demagnetization Model of PMSMs

To better illustrate the fault-related harmonics introduced in the current due to partial
demagnetization, a 9-slot and 8-pole PMSM with star-connected winding, whose structure
is presented in Figure 1, is investigated in this paper. The typical frequency spectrum
of phase back-EMF when one or more permanent magnets are partially demagnetized is
shown in Figure 2, in which magnitude refers to the ratio of the fundamental components.
Side frequencies around the fundamental component (2/4th-, 3/4th- and 5/4th-order) were
the predominant fault-related harmonics whose magnitudes are major indicators of partial
demagnetization faults.
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Figure 1. Structure of 9−slot and 8−pole PMSM.
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For inverter-fed PMSMs, back-EMF cannot be directly measured, so currents must
be sampled and used to detect partial demagnetization faults. To reduce computational
resources and use less memory storage, only a few orders of fault-related harmonics are
relevant, and phase current ia when partial demagnetization happens can be written as
follows [40]:

ia =
∞

∑
k=1

Ak sin(2π fet× k/p) + Bk cos(2π fet× k/p) (2)

When detecting a partial demagnetization fault, specific values of k are adopted instead
of all on the basis of the frequency spectrum. For instance, Figure 2 displays that the other
frequencies were near to zero except the 2/4th-, 3/4th-, 5/4th-order and fundamental
components; values of k in ia current expression (2) could be set as 2 (for the 2/4th order),
3 (for the 3/4th order), 4 (for the fundamental components), and 5 (for the 5/4th order).
However, the real current content was more complicated than the components above.
Some odd harmonics such as the 5th and 7th orders were included in the currents due to
magnet saturation, the slot effect, and inverter nonlinearity. Inphase fault-related harmonics
disappear in a symmetric three-phase winding; for instance, the 3/4th order harmonic
existing in phase back-EMF shown in Figure 2 was absent in the line-to-line back-EMF
and may not appear in the currents either. Due to the switching frequency of the inverter,
components around the switching and double switching frequencies are also involved in
the frequency spectrum of currents, but these high-frequency components could be simply
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eliminated by a low-pass filter (LPF) with a proper cut-off frequency. Hence, phase current
ia in (2) can be expressed as the combination of selected frequencies:

ia = A2 sin(2π fet× 2/p) + B2 cos(2π fet× 2/p) + A4 sin(2π fet× 4/p) + B4 cos(2π fet× 4/p)
+A5 sin(2π fet× 5/p) + B5 cos(2π fet× 5/p) + A20 sin(2π fet× 20/p) + B20 cos(2π fet× 20/p)
+A28 sin(2π fet× 28/p) + B28 cos(2π fet× 28/p)

(3)

Magnitude Mk of each component could be established as follows:

Mk =
√

Ak
2 + Bk

2 (4)

and phase ϕk of each component is calculated with:

ϕk = arctan
Bk
Ak

(5)

The magnitude of fault-related frequency could be deemed to be the indicator of
partial demagnetization. The key point is to identify values of Ak and Bk for each selected
frequency component, which is discussed in the next sections.

3. Proposed Algorithm of Detecting Partial Demagnetization

The expression of ia in (3) is the linear combination of selected components; recursive
least-squares (RLS) is the simplest way to identify Ak and Bk. Under stationary conditions,
motor speed and electrical fundamental frequency fe are constant, while under nonstation-
ary conditions, motor speed and fe vary. In order to apply the RLS algorithm, motor speed
must be obtained from the position sensors. In this section, RLS is first briefly introduced,
and an algorithm of detecting partial demagnetization is proposed that is adaptive to the
change in speed and can be utilized under both stationary and nonstationary conditions.

3.1. Recursive Least Squares (RLS)

Consider a system with output that can be expressed as the linear combination of
inputs, which is presented in (6):

y(i) = w1(i)x1(i) + w2(i)x2(i) + . . . + wm(i)xm(i) = W(i)TX(i) (6)

where i is the i-th iteration of RLS algorithm; y is the output of the system; xm is the m-th
input of the system; and wm is the coefficient of the m-th input that needs to be identified.
Auxiliary variable s is inserted to represent the estimated output:

s(i) = ŵ1(i)x1(i) + ŵ2(i)x2(i) + . . . + ŵm(i)xm(i) =
^

W(i)TX(i) (7)

where ŵm is the estimated coefficient of the m-th input. The basic principle of RLS is to
minimize the error between estimated output s and real output y; hence, a cost function is
given by:

C =
1
2
[y(i)− s(i)]2 (8)

There are many other selections for cost functions, such as symmetric mean absolute
percentage error (SMAPE), given by:

C =
|y(i)− s(i)|

(|y(i)|+|s(i)|)/2
(9)

To simplify the algorithms, the cost function in (8) was selected in this paper.
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By using the gradient descent algorithm to minimize the value of C, the operation
process of updating the estimated coefficients could be written as:

^
W(i) =

^
W(i− 1) + K(i)[y(i)−

^
W(i− 1)TX(i)] (10)

K(i) =
P(i− 1)X(i)

λ + X(i)TP(i− 1)X(i)
(11)

P(i) = [I−K(i)X(i)T ]× P(i− 1)/λ (12)

where λ is the forgetting factor to deal with data saturation; a larger value of λ always
needs longer convergence time, while a smaller λ may cause the vibration of the results;
hence, the selection of λ is a trade-off between convergence time and vibration.

In the case of the RLS algorithm, the normal equations are as follows [41–43]:

n

∑
i=1

λn−iX(i)XT(i)
^

W(i) =
n

∑
i=1

λn−iX(i)y(i) +
n

∑
i=1

λn−iX(i)v(i) (13)

where v(i) is system noise. When the value of λ is close to 1, it is assumed that

1
n

n

∑
i=1

λn−iX(i)v(i) ≈ E(X(n)v(n)) = 0 (14)

where E is the mathematical expectation. Then,

n

∑
i=1

λn−iX(i)XT(i)
^

W(i) =
n

∑
i=1

λn−iX(i)y(i) =
n

∑
i=1

λn−iX(i)XT(i)W(i) (15)

Thus,
^

W(i) = W(i) (16)

which means that the estimated values can be well-converged to the real values when the
value of λ is close to 1. When the value of λ is much less than 1,

1
n

n

∑
i=1

λn−iX(i)v(i) 6= 0 (17)

Lastly, estimated values are impacted by system noise, leading to the instability of the
RLS algorithm.

3.2. Methodology of Partial Demagnetization Detection

By virtue of the RLS algorithm introduced above, the coefficients of each component
Ak and Bk can be estimated. Then, their magnitudes can be regarded as indicators of
partial demagnetization:

y(i) = ia(i) (18)

X(i) = [sin(2π fet× 2/p), cos(2π fet× 2/p),
sin(2π fet× 4/p), cos(2π fet× 4/p),
sin(2π fet× 5/p), cos(2π fet× 5/p), . . .]T

(19)

W(i) = [A2, B2, A4, B4, A5, B5, . . .]T (20)

The proposed methodology estimates values of Ak and Bk. Figure 3 shows the
flowchart of the proposed methodology.
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Figure 3 shows that fe and t are used to calculate the selected components in (3), and ia, 0
measured with current sensors, is system output y. After the system initialization of i, λ, P(0)

and
^

W(0), the values of K(i), P(i), and
^

W(i), can be established. Through several iterations,
the results of Ak and Bk are able to converge to their real values. Then, the magnitude of
each fault-related harmonic component and the fundamental component in the currents
are identified through Equation (4). The magnitude values of fault-related harmonic
components can help in distinguishing healthy PMSMs from partially demagnetized ones
by selecting proper threshold value ε.

Under stationary conditions, motor speed and fe are fixed, and the proposed algorithm
functions are the same as in the FFT method to gain the amplitude of each component.
Under nonstationary conditions, motor speed and fe vary and must be obtained from
position sensors; hence, the proposed algorithm is adaptive to speed changes, which allows
for dealing with nonstationary situations like in methods of time–frequency analysis. In
addition, the proposed algorithm focuses on several dominant components that can avoid the
resolution problems of existing time–frequency analysis and reduce computational resources.

4. Experimental and Simulation Validation

In order to substantiate the effectiveness of proposed algorithm, experimental valida-
tion was carried out and is described in Figure 4. The main parameters of the tested PMSM
are listed in Table 1. The details of RLS algorithms are given in Table 2.
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Table 1. Tested PMSM parameters.

Parameter Value

Number of poles and slots 8 poles and 9 slots
Winding connection Star-connected winding

Rated speed 1000 rpm
Rated current 2.6A (peak)
Rated voltage 100 V

Stator resistance 2.54 ohm
Stator inductance 7.1 mH

Flux linkage 0.062 Wb

Table 2. Details of RLS algorithms.

Sampling Number Forgetting Factor λ Sampling Step

Sampling in each PWM
period (0.1 ms) 0.999 0.1 ms

The tested PMSM was partially demagnetized while PMSM load was healthy. More-
over, another healthy PMSM was tested in order to compare the current difference between
healthy and partially demagnetized PMSMs. The tested healthy and partially demagne-
tized PMSMs were both driven by commercial inverter box with the TMS320F28335 DSP
and controlled with field oriented control (FOC) strategy, the overall control block is shown
in Figure 5:
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Figure 5 shows that ia was measured from the terminal of the motor. Additionally, mo-
tor speed was monitored by the encoder installed in the rotor, and fundamental frequency
fe could be established. Values of ia and fe were used to execute the proposed algorithm, as
shown in Figure 3, to detect partial demagnetization in real time. Both the stationary and
nonstationary operations of the tested PMSM were analyzed in the experiments.

4.1. Stationary Conditions

First, the case when the tested PMSMs were operated under stationary conditions was
examined. PMSMs are maintained at rated speed of 1000 rpm, and rated phase current
ia had a peak value of 2.6 A. Figure 6 shows the waveforms of ia for both healthy and
demagnetized PMSMs.
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By using the proposed algorithm in Figure 3, coefficient values of each selected
component in (3) Ak and Bk could be established. Through Equation (4), the magnitude
of each fault-related harmonic in current ia can then be calculated. In order to vividly
depict the effectiveness of the proposed algorithm and consider the magnitude change
of fundamental component, explicit indicator value η of partial demagnetization can be
expressed as:

η =
Mk
M4
× 100% =

√
Ak

2 + Bk
2√

A4
2 + B4

2
× 100% (21)

which is the magnitude ratio of the k/4th-order harmonic component to the fundamental
component. Figure 7a,b show the ratio comparisons of 2/4th- and 5/4th-order harmon-
ics, respectively, between partially demagnetized and healthy PMSMs under stationary
conditions. Figure 7 shows that the fault-related harmonic ratio of the partially demagne-
tized PMSM was larger than that of the healthy PMSM. Figure 7a shows that the ratio of
the 2/4th-order harmonic to the fundamental component for the partially demagnetized
PMSM was 1.4%, while the ratio for the healthy PMSM was less than 0.2%. In terms of the
5/4th-order harmonic, as shown in Figure 7b, the ratio was 2.5% for the partially demagne-
tized PMSM, and 1.0% for the healthy PMSM. The first 0.2 s in Figure 7 is the convergence
time of the proposed algorithm that is related to the value of λ. If the forgetting factor is
too small, previous data are forgotten faster, leading to possible numerical instability. On
the other hand, data saturation may occur with a larger forgetting factor, resulting in a slow
convergence rate. Thus, there is a trade-off when selecting the value of the forgetting factor;
in this paper, the final value of the forgetting factor was 0.999. Experimental results with
different values of forgetting factor (0.999 and 0.9) are presented in Figure 7.



Energies 2022, 15, 3509 9 of 17Energies 2022, 15, x FOR PEER REVIEW 9 of 16 
 

 

  
(a) (b) 

 
(c) 

Figure 7. Comparison of harmonics between healthy and partially demagnetized PMSMs under 
stationary conditions (1000 rpm, 2.6A, in experiment). (a) 2/4th-order harmonic, λ = 0.999; (b) 2/4th-
order harmonic, λ = 0.9; (c) 5/4th-order harmonic, λ = 0.9. 

Fault-related harmonics in a healthy PMSM are ideally zero, but due to the inherent 
spatial asymmetry caused by the mechanical installation of rotor shafts and permanent 
magnets, some small fault-related harmonics exist in the current for healthy PMSMs, 
which is why current magnitudes of 2/4th- and 5/4th-order harmonics for healthy PMSMs 
were not absolutely zero in the experiment. 

To evaluate the proposed algorithm against a conventional FFT, the magnitudes of 
corresponding harmonic components in the current with different motor health condi-
tions were also computed through FFT and are listed in Table 3. Important points from 
Table 3 are as follows: 
1. Comparing Columns 2 and 3, and Columns 4 and 5 shows that the magnitudes of 

each fault-related harmonic component were similar through different algorithms 
(FFT and RLS) for the partially demagnetized PMSM. The same was true in compar-
ing Columns 4 and 5 for the healthy PMSM, which means the proposed algorithm 
with RLS could substitute FFT when analyzing the frequency spectrum in real-world 
use. Minor errors between FFT and RLS may be due to the spectral leakage of FFT, 
the data saturation of RLS, and other factors. 

2. For the partially demagnetized PMSM, the magnitudes of fault-related harmonics 
components are larger than the ones of healthy PMSM, which can be seen from the 
column 2 and column 4 as well as the column 3 and column 5 in Table 3. This char-
acteristic can be regarded as the indicator of the partial demagnetization fault. 

3. Since the proposed algorithm is in the recursive form, the computational resources 
can be reduced significantly. The execution time of one iteration in the proposed al-
gorithm is 0.2 ms, while under stationary conditions, the execution time of 512-point 
FFT in the TMS320F28335 DSP is more than 10 ms. In addition, the FFT requires more 
memory capacity to store the data points. 

Table 3. Magnitude of each fault-related harmonic component in current with different algorithms 
and different health status (unit: A). 

Harmonic Order Demagnetized  
PMSM (FFT) 

Demagnetized  
PMSM (RLS) 

Healthy 
PMSM (FFT) 

Healthy 
PMSM (RLS) 

2/4th 0.0335 0.0375 0.0007 0.0027 
4/4th 2.6299 2.6301 2.5171 2.5197 
5/4th 0.0699 0.0662 0.0324 0.0325 

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

2/
4t

h 
or

de
r (

%
)

time(s)

 health  demagnetization

0.0 0.2 0.4 0.6 0.8 1.0
0
2
4
6
8

10

2/
4t

h 
or

de
r (

%
)

time(s)

 health  demagnetization

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

5/
4t

h 
or

de
r (

%
)

time(s)

 health   demagnetization

Figure 7. Comparison of harmonics between healthy and partially demagnetized PMSMs under
stationary conditions (1000 rpm, 2.6A, in experiment). (a) 2/4th-order harmonic, λ = 0.999; (b) 2/4th-
order harmonic, λ = 0.9; (c) 5/4th-order harmonic, λ = 0.9.

Fault-related harmonics in a healthy PMSM are ideally zero, but due to the inherent
spatial asymmetry caused by the mechanical installation of rotor shafts and permanent
magnets, some small fault-related harmonics exist in the current for healthy PMSMs, which
is why current magnitudes of 2/4th- and 5/4th-order harmonics for healthy PMSMs were
not absolutely zero in the experiment.

To evaluate the proposed algorithm against a conventional FFT, the magnitudes of
corresponding harmonic components in the current with different motor health conditions
were also computed through FFT and are listed in Table 3. Important points from Table 3
are as follows:

1. Comparing Columns 2 and 3, and Columns 4 and 5 shows that the magnitudes of each
fault-related harmonic component were similar through different algorithms (FFT
and RLS) for the partially demagnetized PMSM. The same was true in comparing
Columns 4 and 5 for the healthy PMSM, which means the proposed algorithm with
RLS could substitute FFT when analyzing the frequency spectrum in real-world use.
Minor errors between FFT and RLS may be due to the spectral leakage of FFT, the
data saturation of RLS, and other factors.

2. For the partially demagnetized PMSM, the magnitudes of fault-related harmonics
components are larger than the ones of healthy PMSM, which can be seen from
the column 2 and column 4 as well as the column 3 and column 5 in Table 3. This
characteristic can be regarded as the indicator of the partial demagnetization fault.

3. Since the proposed algorithm is in the recursive form, the computational resources
can be reduced significantly. The execution time of one iteration in the proposed
algorithm is 0.2 ms, while under stationary conditions, the execution time of 512-point
FFT in the TMS320F28335 DSP is more than 10 ms. In addition, the FFT requires more
memory capacity to store the data points.
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Table 3. Magnitude of each fault-related harmonic component in current with different algorithms
and different health status (unit: A).

Harmonic
Order

Demagnetized
PMSM (FFT)

Demagnetized
PMSM (RLS)

Healthy
PMSM (FFT)

Healthy
PMSM (RLS)

2/4th 0.0335 0.0375 0.0007 0.0027
4/4th 2.6299 2.6301 2.5171 2.5197
5/4th 0.0699 0.0662 0.0324 0.0325

5th 0.0139 0.0143 0.0167 0.0199
7th 0.0084 0.0086 0.0090 0.0087

To prove the robustness of the proposed algorithm when the load changes, the PMSMs
are operated at the same speed of 1000 rpm with the different peak current of 0.6A. After
implementing the proposed algorithm in Figure 3, the extracted 2/4th and 5/4th harmonics
are displayed in Figure 8. Similarly, 2/4th and 5/4th harmonic magnitudes when the
PMSM was partially demagnetized were larger than those of the healthy PMSM.
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Figure 8. Comparison of harmonics between healthy and partially demagnetized PMSMs under sta-
tionary conditions: (a) 2/4th-order harmonic (1000 rpm, 0.6 A); (b) 5/4th-order harmonic (1000 rpm,
0.6 A).

4.2. Nonstationary Conditions

Under nonstationary conditions, PMSM speed is not constant. Normal FFT cannot
analyze the content of harmonic components with the change in time, which hinders recog-
nizing partial demagnetization faults. Many time–frequency analyses were investigated to
overcome the problem of FFT under nonstationary conditions, but these methods tend to
require complicated calculations, and have poor resolution of time and frequency. Using
the proposed algorithm in this paper, it is possible to deal with the above problems. To
prove that, the tested partially demagnetized PMSM was operated under nonstationary
conditions, and current ia was measured and analyzed with the proposed algorithm in
Figure 3. Under nonstationary conditions, motor speed or fundamental frequency fe is a
crucial factor that greatly impacts the accuracy of the proposed algorithm; hence, motor
speed should be precisely sampled through speed sensors.

Waveforms of phase current ia and speed for the partially demagnetized PMSM under
nonstationary conditions are given in Figure 9. During the first 3 s, motor speed was
maintained at 900 rpm, and peak current was 0.5A. At 3 s, the motor began to decelerate
to 450 rpm, and the current was decreased to 0.4 A. After the transient process, the motor
speed was held at 450 rpm.
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Figure 9. Experimental waveforms of current ia and speed for partially−demagnetized PMSM under
nonstationary conditions. (a) Current waveform of ia; (b) speed waveform.

Using the proposed algorithm in Figure 3 under nonstationary conditions, the mag-
nitudes of fundamental and harmonic components in the current could be extracted, and
results are presented in Figure 10, showing that the magnitude of the fundamental compo-
nent in current ia began to decrease at 3 s. Results in Figure 10 prove that, with the change
in time, the proposed algorithm enables gaining the magnitude of each predominant com-
ponent in the frequency spectrum of the current under nonstationary conditions, just like
other methods of time–frequency analyses.
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Figure 10. Magnitudes of fundamental and harmonic components in current for partially demagne-
tized PMSM under nonstationary conditions (experiment).

Figure 11 shows the magnitude ratios of the 2/4th-order component to the fundamen-
tal component, which uses indicator value η in (15) to evaluate partial demagnetization. In
terms of the 2/4th-order harmonic, the ratio to the fundamental component was 1% for
the partially demagnetized PMSM, and less than 0.1% for the healthy PMSM. In addition,
Figure 12 displays the magnitude ratios of the 5/4th-order component to the fundamental
component; the ratio for the partially demagnetized PMSM was much larger than that
of the healthy PMSM. Under nonstationary conditions, magnitudes of fundamental and
harmonic components vary, as shown in Figure 10, which hinders setting a threshold value
for judging the occurrence of demagnetization. To overcome this problem, the ratio of
harmonic component to fundamental component can be regarded to be a unified and
per-unit value. When the motor is operated under nonstationary conditions, the ratio is
on the same or a similar level, and it is convenient to set threshold value ε to recognize
partial demagnetization.
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Figure 11. Comparison of 2/4th-order harmonic between partially demagnetized and healthy PMSMs
under nonstationary conditions (experiment).
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Figure 12. Comparison of 5/4th-order harmonic between partially demagnetized and healthy PMSMs
under nonstationary conditions (experiment).

4.3. Comparison with Other Time–Frequency Analyses under Nonstationary Conditions

Furthermore, other tools of time–frequency analysis were compared when the PMSM
is operated under nonstationary conditions. As mentioned in Section 1, problems of
time and frequency resolution are major concerns when using these tools. For instance,
Gabor transform possesses the highest resolution and concentration in the time–frequency
domain [35], which can be expressed as:

G(t, f ) = 4
√

σ
∫ ∞

−∞
e−σπ(τ−t)2

e−j2π f τx(τ)dτ (22)

To describe resolution problems in detail, Gabor transform was adopted to track fault-
related harmonics in the nonstationary current in Figure 9. Results when σ = 0.5 and σ = 50
are shown in Figures 13 and 14., respectively.
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Figure 13 shows that, when σ was smaller (σ = 0.5), the resolution in the frequency
domain was higher, while the resolution in the time domain was not satisfactory, which
hindered catching the change in frequency during the transient process in time. Figure 14
shows the opposite: when the value of σ was larger (σ = 50), resolution in the time domain
was higher, so the frequency change was clearer under nonstationary conditions. However,
the improvement of resolution in the time domain sacrifices resolution in the frequency
domain, which obstructs distinguishing fault-related harmonics in the frequency spectrum,
for instance, the 5/4th harmonic component can hardly be seen in Figure 14. Therefore,
it is crucial to find a proper value of σwhen utilizing Gabor transform. For other tools of
time–frequency analysis such as wavelet transform, a similar problem also occurs. By using
the proposed algorithm in this paper, the resolution problem in the time and frequency
domains could be avoided.



Energies 2022, 15, 3509 13 of 17

There are also other potential merits of our proposed algorithm compared with other
existing methods of time–frequency analysis. The execution time of one iteration in the
proposed algorithm is 0.2 ms under both stationary and nonstationary conditions. The
execution time of other time–frequency analyses is much longer under nonstationary
conditions, for instance, it takes more than 2 ms to complete one-point calculation (for
one specific time and one specific frequency) on the time–frequency plane. To finish the
whole map of the time–frequency plane, it usually takes several hours when the dataset
is too large, which hinders using these time–frequency analyses in embedded devices. In
addition, other methods of time–frequency analysis require large memory capacity to store
data points within the specific window. The proposed algorithm only needs one data point
at the current moment, which pronouncedly reduces the memory burden of embedded
devices. The merits and demerits of FFT, time–frequency (TF) analyses, and RLS are listed
in Table 4.

Table 4. Merits and demerits of different analytical tools.

Tools Merits Demerits

FFT

(1) Most known and mature way to analyze
spectrum.

(2) No resolution problems, since it can only
analyze the frequency domain along with a
long stationary time of 0.0335.

(1) Cannot detect the fault under nonstationary
conditions.

(2) Integer periods need be sampled or spectrum
leakage may happen. Sample frequency
must be twice higher than the maximal
frequency that needs to be analyzed.

(3) The number of sample points should be 2N
to achieve fast algorithm processing.

TF(Gabor)
(1) Able to detect faults under both stationary

and nonstationary conditions.

(1) Resolution problem in time and frequency
domains.

(2) Complicated calculation (2 ms to complete
one-point on time–frequency plane, more
time to complete analysis).

RLS

(1) Able to detect faults under both stationary
and nonstationary conditions.

(2) No resolution problem in time and frequency
domains.

(3) Execute in recursive form to reduce
computational burden (only 0.2 ms for one
iteration).

(1) Careful selection of forgetting factor λ.
(2) Needs precise speed information.

4.4. Elimination of Eccentricity Faults

Eccentricity faults also introduce the fault harmonics presented in (1) [11,13,17,20],
which lead to false diagnoses of partial demagnetization. Some measures should be taken
to eliminate the impact of eccentricity faults. Hence, two different kinds of eccentricity,
namely, static and dynamic eccentricity (SE and DE), are discussed here. Using finite
element analysis (FEA), 3-phase back-EMFs are shown in Figure 15 when the 9-slot and
8-pole PMSM was healthy or suffering from partially demagnetization, and with SE and
DE faults.
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Figure 15. Simulated three−phase back−EMFs for 9−slot and 8−pole PMSM at 1000 rpm. (a) Healthy
condition; (b) partial demagnetization fault; (c) static eccentricity fault; (d) dynamic eccentricity fault.

On the one hand, SE causes different distances between 3-phase windings on the
stator and permanent magnets on the rotor, which obviously resulted in the unbalance
of 3-phase back-EMFs in Figure 15c. For one-phase or line-to-line back-EMF, the fault-
related harmonics in (1) would not be present, which the frequency spectrum of EAB in
Figure 16a shows.
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Figure 16. Frequency spectrum of EAB for 9−slot and 8−pole PMSM. (a) Static eccentricity fault at
1000 rpm; (b) dynamic eccentricity fault at 1000 rpm.

On the other hand, a DE fault introduces the fault-related harmonics shown in
Figure 16b. However, the rotor is always dynamically decentered to one direction along
with time when the DE fault occurs, which causes the back-EMF amplitude to be much
larger than that of healthy motors. Hence, a DE fault can be simply excluded by capturing
the largest peak value of EAB in one mechanical period, depicted in Figure 15b,d. As shown
in Table 5, the largest peak value of EAB in one mechanical period under different conditions
is listed. When DE occurs, the largest peak value is larger than that of healthy motors; when
partial demagnetization happens, the largest peak value is always near that of a healthy
motor. By using this characteristic, the impact of eccentricity could be eliminated from the
partial demagnetization fault. Because manufacturing eccentric PMSMs always takes a
long time, and the main focus of this paper is the application of RLS algorithm in the field
of partial demagnetization, the experimental validation of eccentricity faults is absent.

Table 5. Largest peak value of EAB in one mechanical period under different conditions (for 9-slot
and 8-poles motor at 1000 rpm).

Healthy DE 25% DE 100% DEMAG
1.78%

DEMAG
3.57%

DEMAG
5.35%

DEMAG
7.14%

DEMAG
8.92%

DEMAG
10.71%

58.2 V 65.5 V 88.5 V 58.4 V 58.3 V 58.1 V 58.1 V 58.1 V 58.1 V

5. Conclusions

This paper proposed a RLS-based algorithm to detect partial demagnetization under
both stationary and nonstationary conditions. With the use of RLS, the proposed algo-
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rithm enables extracting the fault-related harmonic components introduced in the current;
magnitudes of these fault-related harmonics can be regarded as an indicator of partial
demagnetization. To better set the threshold value to evaluate the occurrence of partial
demagnetization, a magnitude ratio of fault-related harmonics to fundamental compo-
nent is given that can also be used when the magnitude of current changes with time.
Experimental results show the effectiveness of the proposed algorithm under stationary
and nonstationary conditions. Furthermore, comparisons with other existing methods of
time–frequency analysis show that the proposed algorithm is an alternative method to
detect partial demagnetization while overcoming time- and frequency-domain resolution
problems, reducing computational burden and memory storage. Lastly, the impact of ec-
centricity faults was discussed. Experimental validation of the impact of eccentricity could
and the distinction of different faults could future research directions. Although a method
was proposed in the paper to eliminate the impact of eccentricity, the method is still not
applicable. In addition, it was impossible to apply all faults in one paper; hence, the impacts
of other possible faults on the detection of demagnetization still need further investigation.
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