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Abstract: During oil fields operation, gas is extracted along with oil. In this article it is suggested
to use jet pumps for utilization of the associated oil gas, burning of which causes environmental
degradation and poses a potential threat to the human body. In order to determine the possibility
of simultaneous application of a sucker-rod pump, which is driven by a rocking machine, and a
jet pump (ejector) in the oil well, it is necessary to estimate the distribution of pressure along the
borehole from the bottomhole to the mouth for two cases: when the well is operated only be the
sucker-rod pump and while additional installation of the oil-gas jet pump above its dynamic level.
For this purpose, commonly known methods of Poettman-Carpenter and Baksendel were used. In
addition, the equations of high-pressure and low-pressure oil-gas jet pumps were obtained for the
case, when the working stream of the jet pump is a gas-oil production mixture and the injected stream
is a gas from the annulus of the well. The values which are included in the resulting equations are
interrelated and can only be found in a certain sequence. Therefore, a special methodology has been
developed for the practical usage of these equations in order to calculate the working parameters of a
jet pump based on the given independent working parameters of the oil well. Using this methodology,
which was implemented in computer programs, many operating parameters were calculated both
for the well and for the jet pump itself (pressures, densities of working, injected and mixed flows,
flow velocities and other parameters in control sections). According to the results of calculations,
graphs were built that indicate a number of regularities during the oil well operation with such a jet
pump. The main result of the performed research is a recommendation list on the choice of the oil-gas
jet pump location inside the selected oil well and generalization of the principles for choosing the
perfect location of such ejectors for other wells. The novelty of the proposed study lays in a systematic
approach to rod pump and our patented ejector pump operation in the oil and chrome plating of
pump parts. The result of scientific research is a sound method of determining the rational location of
the ejector in the oil well and the calculation of its geometry, which will provide a complete selection
of petroleum gas released into the annulus of the oil well. To ensure reliable operation of jet and
plunger pumps in oil wells, it is proposed to use reinforcement of parts (bushings, plungers, rods, etc.)
by electrochemical chromium plating in a flowing electrolyte. This has significantly increased the
wear resistance and corrosion resistance of the operational surfaces of these parts and, accordingly,
the service life of the pumps. Such measures will contribute to oil production intensification from
wells and improve the environmental condition of oil fields.
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1. Introduction

It is almost impossible to avoid associated gases extraction during the operation of oil
field. These associated gases consist of gas mixture, which contains methane and propane-
butane fraction. It requires separation into fractions in special gas processing plants, which
are not always present near oil producing areas. Therefore, in oil fields these gases are
often burnt in flares and the products of their combustion are a potential threat to the
human body.

The practice of associated oil gas utilization using flare units is very dangerous for the
environment [1]. For each ton of extracted oil there is from 25 m3 to 800 m3 of associated
gas [2]. During the combustion of oil gas, a large amount of mutagenic and toxic substances
(carbon oxides, nitrogen oxides, sulfur dioxide, hydrocarbons, soot) are released into the
environment, which, when they enter the living organism, lead to the development of
irreversible changes caused by the bioaccumulation effect [3–5]. In particular, in the regions
that are influenced by the combustion plants, the population is suffering from an increased
disease incidence of circulatory, respiratory, digestive and endocrine systems. The effect
from combination of several compounds is synergistically upset while the response from
the influence of several pollutants is greater than the summation of separate effects [6–9].

Oil producing countries and companies have created a partnership association “Global
Gas Flaring Reduction Partnership” GGFR. The purpose of this association is to reduce
the environmental impact from gas combustion at flare units through the creation of an
appropriate legislative framework and expansion of markets for the disposal of associated
gases [10]. Additionally, the promising method of associated gas utilization is using jet
pumps for its capturing. The potential energy of the associated oil gas, when properly used,
can serve to raise the production fluid to the surface [11–14]. Due to the gas adding to the
water–oil mixture of the well, it is possible to reduce the fluids density to such level that it
will even reduce the minimum required outlet pressure of the sucker-rod pump, which is
used for oil well operation [15,16]. The paper in [17] describes the fundamental possibility
of joint operation of the ground jet pump in the conditions of sinusoidal change of the
working flow and the rod pump.

A perspective solution for the creation of a gas–water–oil mixture inside the well is
inserting of a jet pump in it. Such jet pump, due to the flow of production fluid that will
pass through it, will offtake free oil gas from the annulus, mix it with fluid and such mixture
of a significantly lower density will be pumped to the mouth of the well. Jet pump can
be installed either inside the tubing or in the annulus. With a correctly selected location
for such an oil–gas jet pump in the well it will reduce the tubing load and decrease the
electric energy consumption of the plunger pump. In addition, to ensure efficient operation
of wells, it is necessary to increase the service life of pumps, as their replacement requires
significant resources and leads to the cessation of oil production.

Analysis of the method of calculating the pressure distribution in the well, as well as
its improvement proposed to clarify the results by the methods of Poettman-Carpenter and
Baksendel was given by the authors in the previously published article [18].

1.1. State of the Current Development of the Problem and Formulating a Research Task

Oil and gas equipment, plunger, centrifugal and jet pumps are operated in extreme
conditions during oil production. They are subject to high alternating loads in aggressive
environments with the content of solid abrasive particles of rock at elevated tempera-
tures [19]. The action of these factors leads to intensive corrosion and mechanical wear
and destruction of machine parts, so the design, materials for their manufacture and tech-
nologies for strengthening parts are subject to increased requirements. Jet pumps are
widely spread in different areas of modern technology. In recent decades, they have been
used directly in oil production. For many cases, during oil wells operation with electrical
submersible pump (ESP), additional jet pump usage ensured the stabilization of the ESP
work. At the same time, this allowed to use the energy of free petroleum gas, which is
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always present in the injected flow and, to a certain extent, this provides an increase in the
well’s flow rate [20]. In this case the jet pump was installed directly above the ESP.

To create reliable and efficient jet pumps for oil production, it is necessary to develop
a theory of their operation. Theoretical issues related to the operation of jet pumps in oil
wells were considered in the works in [21,22]. Practical issues related to the efficiency and
reliability of pumping equipment are considered in [23–25]. A case of placing the jet pump
above the dynamic level of the well is also used in order to extract gas from its annulus,
which made it possible to stabilize the dynamic level and increase the reliability of the ESP
system [26]. In this case, the injected flow of the jet pump is oil gas, which is accumulated
in the annulus.

After this technology showed its effectiveness, such oil-gas jet pumps were proposed
to be used together with sucker-rod pumps [27] or individually in complicated production
conditions [28,29]. It should be noted here that a sucker rod string could be subjected to
abnormal static and dynamic loads [30–32] especially for complex profile wells. Some
authors [33–35] consider vibration reduction of oil equipment as a guarantee of dynamic
stability of pump rod strings and ensuring the stability of submersible pumps. Actual
problems of anti-vibration device designing for long structures (rod strings, pipe strings,
etc.) were considered in [36–38], recommendations for over-loaded pump reliability are
given in [39–41].

The high profitability of oil-gas jet pumps was also proven in case of their application
for gas-lifting operation of wells [42–44]. In general, jet pumps can improve the operation
of the equipment they work with, extend its overhaul period and increase oil recovery.
Due to such a list of advantages, jet pumps are installed in different places inside of oil
wells (near the bottomhole, above and below the dynamic level, on the surface and near
the mouth) [45].

A technique for selection of the geometrical parameters for the downhole ejection
system’s body with an external placement of several jet pumps is presented [46]. To assess
the strength of the jet pump’s bodies, the theory of membrane-free shells with via openings
or cutouts is used [47,48]. The presence of technological openings, designed to attach
jet pumps, contributes to the uneven distribution of stresses and, as a result, reduce the
fatigue life of such structures. The problems of stress concentration in shell systems under
conditions of contact interaction while complex loading were considered in [49–51]. When
designing such equipment, engineers pay special attention to the accuracy and tightness
of threaded joints [52–54], increasing thread [55–57] and preventing self-unscrewing of
threaded joints [58,59].

Concerning the features of the design of modern ejection systems that are operated
under aggressive conditions, some authors suggest the use metallic ceramics or ceramic
coatings to provide the required operational life of the nozzle [60–62]. Recommendations
have been made on the technology of forming, optimal design and calculation of the
operational properties of single layer [63,64], flexible [65,66] or multilayer ceramic coat-
ings [67–69]. Thermoplastic composite materials are also widely used [70–73]. For surface
hardening of parts of elite models of downhole ejection systems, chromium plating in a
flowing electrolyte is used, as well as functionally gradient coatings of required parts of
surfaces [74–76]. New technological schemes for hydrocarbon development from used
wells to use additionally non-commercial and closed deposits and extend mining enterprise
operation are presented in [77–80].

Therefore, one of the most important tasks before the implementation of jet pump
technologies in production was the development of a methodology for calculating their
working and geometric parameters, as well as technologies to strengthen their parts.
Literature review, analyses of patents and regulations on electrochemical chromium plating
of parts in quiet and flowing electrolytes showed that chromium plating in quiet electrolyte
does not provide a uniform thickness of coatings, and the formation of coatings in flowing
electrolyte occurs at higher current densities [62]. This ensures uniform application of
the coating layer with low roughness, as well as achieving high coating performance
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and increased current yield of chromium. Increasing the service life of pumps can be
achieved through the use of reinforcing technologies in the manufacture of their parts by
chrome plating.

The issues of obtaining theoretical dependences and their usage for practical calcu-
lations of jet pumps are described in [81]. Since the theory of jet devices, installed above
the dynamic level of oil wells, which are operated by sucker-rod pumps, has already been
developed [82], it is possible to proceed directly to determining the rational location of such
jet pumps in wells and calculating their geometry with strengthening of their details.

1.2. Purpose and Tasks of Research

Thus, the purpose of this article is to determine such location of the oil-gas jet pump
inside of the oil well, which will provide the maximum possible reduction of outlet pressure
for the sucker-rod pump and decrease the tubing load; as well as being used in development
of technology of strengthening of details of jet and plunger pumps by chrome coverings.
The formulated purpose can be achieved by solving the following tasks:

− calculating the distribution of operating parameters along the borehole of the oil well,
operated by a sucker-rod pump;

− performing the calculation of geometric and thermobaric parameters of oil-gas jet
pumps, installed at different depths in the oil well;

− analyzing which of the considered operation modes is the most profitable and deter-
mine which variables have the strongest affect on the efficiency of jet pumps’ usage in
the oil well;

− calculating the technologically possible reduction of the outlet pressure for the sucker-
rod pump and tubing load for optimal operation mode;

− developing a technology of electrochemical chromium plating in the flow electrolyte
of the working surfaces of the parts of jet and plunger pumps.

2. Materials and Methods
2.1. Features of Design, Manufacture and Strengthening by Chrome Plating of Details of Pumps

To strengthen the parts of jet and plunger pumps, an installation for electrochemical
chromium plating in a flowing electrolyte and a technological process of coating the parts
of these pumps were developed. The installation for electrochemical chrome plating of
pump parts in a flowing electrolyte contains interchangeable electrochemical cells used for
coating the outer surfaces of the plunger or rod, respectively, or the inner surfaces of the
plunger pump sleeve and the jet pump ejector. The electrochemical cell, after mounting
the part and the electrode in it, was sealed and connected by means of current leads to
the power supply, and by pipes—to the system of electrolyte supply to the annular cavity
between the electrodes of the cell. The unit is equipped with an automated control system
for electrochemical chromium plating in the flow electrolyte, which allows to maintain
independently at a given level the technological parameters of electrolysis: temperature,
electrolyte flow rate, electrolysis operating current and the ratio of electrolyte components.
Chrome coatings were applied to the working surfaces of pump parts made of steel
40KHN (GOST 4543-2016), which were surface hardened with high frequency currents and
subjected to grinding. The anode was an alloy of lead with sulfur and tin. Chrome plating
of pump parts (ejectors, bushings, plungers, rods) was performed in a standard electrolyte
based on chromic anhydride and sulfuric acid with nano-additives.

To reduce the harmful effects of chromium electrolyte on the environment during the
application of electrochemical chrome coating on the pump parts the developed design
of the electrochemical sealed cell was used. The system for supplying electrolyte to the
annular cavity formed between the electrodes of the electrochemical sealed cell is equipped
with a unit for neutralization and purification of gaseous electrolysis products according to
our invention [83]. The amount of harmful emissions released into the atmosphere does
not exceed the maximum allowable concentration.
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2.2. Determination of Rational Placement of the Jet Pump in the Well

Instead of directing the extracted gas from the well space directly to the flare for
its combustion, the article proposes mixing oil gas with well products in the downhole
ejector, which allows to use its potential energy of this gas. In the future, this gas is
separated at oil treatment plants, and then it can be sent for further use or for the needs of
production, or for the current needs of maintenance personnel. The innovation proposed
in the article eliminates the combustion of emitted gas during the operation of oil wells,
which reduces the amount of emissions of carbon dioxide and other combustion products
into the atmosphere. Such measures improve the environmental situation in the oil and
gas fields.

In order to determine the rational placement of the oil-gas jet pump in the oil well
753-D Dolyna Oil Field “Dolynanaftogaz” PJSC “Ukrnafta”, first of all, it is necessary to
calculate the distribution of thermobaric and other operating parameters along its borehole
and also to find the daily amount of oil gas, entering its annulus [18].

The scheme of the general layout and the mutual placement of the sucker-rod pump
and the oil-gas jet pump is shown in Figure 1 [84].

Energies 2021, 14, x FOR PEER REVIEW 5 of 18 
 

 

to our invention [83]. The amount of harmful emissions released into the atmosphere does 
not exceed the maximum allowable concentration. 

2.2. Determination of Rational Placement of the Jet Pump in the Well 
Instead of directing the extracted gas from the well space directly to the flare for its 

combustion, the article proposes mixing oil gas with well products in the downhole ejec-
tor, which allows to use its potential energy of this gas. In the future, this gas is separated 
at oil treatment plants, and then it can be sent for further use or for the needs of produc-
tion, or for the current needs of maintenance personnel. The innovation proposed in the 
article eliminates the combustion of emitted gas during the operation of oil wells, which 
reduces the amount of emissions of carbon dioxide and other combustion products into 
the atmosphere. Such measures improve the environmental situation in the oil and gas 
fields. 

In order to determine the rational placement of the oil-gas jet pump in the oil well 
753-D Dolyna Oil Field “Dolynanaftogaz” PJSC “Ukrnafta”, first of all, it is necessary to 
calculate the distribution of thermobaric and other operating parameters along its bore-
hole and also to find the daily amount of oil gas, entering its annulus [18]. 

The scheme of the general layout and the mutual placement of the sucker-rod pump 
and the oil-gas jet pump is shown in Figure 1 [84]. 

 
Figure 1. General layout of the tandem installation [84]: 1—rods; 2—separator; 3—tubing string; 4—
casing; 5—sucker-rod pump; 6—dynamic level; 7—check valve; 8—oil-gas jet pump. 

The wellbore fluid, which is pumped by the sucker-rod pump (5) into the tubing 
string (3), enters the oil-gas jet pump (8), which is placed in the annulus, where, due to its 
high velocity, the associated gas from the annular space enters the ejector through the 
return valve (7). Then this gas–liquid mixture returns back to the tubing and then moves 
to the mouth of the well. Inside the tubing at the jet pump’s level, a separator (2) must be 
installed to ensure that the ejector’s input and output are not connected. More detailed 
view of the suggested design for the oil-gas jet pump is shown in Figure 2. 

Figure 1. General layout of the tandem installation [84]: 1—rods; 2—separator; 3—tubing string;
4—casing; 5—sucker-rod pump; 6—dynamic level; 7—check valve; 8—oil-gas jet pump.

The wellbore fluid, which is pumped by the sucker-rod pump (5) into the tubing string
(3), enters the oil-gas jet pump (8), which is placed in the annulus, where, due to its high
velocity, the associated gas from the annular space enters the ejector through the return
valve (7). Then this gas–liquid mixture returns back to the tubing and then moves to the
mouth of the well. Inside the tubing at the jet pump’s level, a separator (2) must be installed
to ensure that the ejector’s input and output are not connected. More detailed view of the
suggested design for the oil-gas jet pump is shown in Figure 2.
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Figure 2. Construction scheme of the downhole oil-gas jet pump [85]: 1—separator; 2—rod; 3—jet
pump’s body; 4—tubing; 5—collar; 6—working nozzle; 7—receiving chamber; 8—mixing chamber;
9—diffuser; 10—casing; 11—check valve; 12—spring ring; 13—packing seal; 14—retainer.

In order to determine the location of the jet pump inside the oil well, first of all the
range of possible depths of the jet pump placement was selected: from 610 m to 890 m.
Low-pressure jet pumps with a ratio of the mixing chamber and the nozzle cross-section
areas equal to 6.25. With the help of a created computer program, the outlet pressure for
the jet pump was found, as well as a number of its variable parameters (like geometric
dimensions), based on the improved Poettman-Carpenter method, which is used for
calculation of thermobaric parameters’ distribution in wells. In such case, the working flow
for the jet pump will be the gas–oil mixture of the well and the injected flow—oil gas from
the annulus.

The study [18] considered in details all the values included in the Poettman-Carpenter
and Baxendel equation and explains the procedure for implementing this calculation. The
scientific novelty of the proposed methods is to solve nonlinear differential equations
on which the Poettman-Carpenter and Baxendel methods are based, the Adams-Krylov
numerical method, which excludes a number of assumptions made in the original methods
(including assumptions about the linear relationship between temperature and pressure).
wells). Comparison of the results of the proposed and well-known methods is presented
in [86].

The phenomenon of cavitation and ejector efficiency have not been studied by the
authors. The work [87] is devoted to obtaining the characteristics of high-pressure and
low-pressure ejectors operating in an oil well; this article also presents the curves of
characteristics of these jet pumps to represent dependences of dimensionless relative
difference of pressure on coefficient of injection are resulted.

As input parameters in this program we have taken: pressure of the working flow
before entering the jet pump, its density, consumption gas content, the density of free gas.
All of these parameters were equal to the correspondent parameters of considered oil well.
In addition, the velocity of the working flow before the nozzle is also known as far as it
was previously determined through the average integral velocity of the production liquid
in the tubing. Finally, we have values of pressure in the receiving chamber of the jet pump,
the finding of which was described in article [61].

The basic parameter of any jet pump, which influences all the rest geometric and
working parameters of it, is the cross-section area of the working nozzle. In the course of
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mathematical transformations, a formula for determining cross-section area of the nozzle
was obtained [84]:

f1 = ww fw[(1 − βw)p1 + βw pw]

√
(1 + ξn)ρw

[2pw(1 − βw) + ρww2
w]p2

1 − 2(1 − βw)p3
1

(1)

where ww is velocity of the working liquid before entering the nozzle, m/s; fw is cross-
section area in the outlet of a nozzle, m2; βw is consumption gas content under working
conditions of a well; p1 is pressure of the working liquid at the outlet of a nozzle, Pa; pw is
pressure of the working liquid before entering the nozzle, Pa; ξn is resistance coefficient of
the nozzle; ρw is density of the working liquid before entering the nozzle, kg/m3.

Based on the found area of the nozzle, the cross-section area of the mixing chamber
was calculated (f 3 = 6.25 f 1) and the diameters of the nozzle dn and the mixing chamber
dmc. The cross-section area in the outlet of the diffuser and its diameter were obtained from
the condition that the angle of the diffuser’s cone is α = 8◦ and the length of the diffuser is
equal to the twelve diameters of the mixing chamber.

First, the Bernoulli equations for the working flow within the nozzle, the receiving
chamber and the mixed flow for the diffuser, as well as the equation of change of the
amount of motion (pulse conservation) for the working and injected flows in the cylindrical
mixing chamber are recorded. In the last equation, all flow rates are expressed in terms of
volume costs. From Bernoulli’s equations are expressed the pressures at the inlet and outlet
of the mixing chamber and substitute in the equation of change in the amount of motion.
We express the terms in the right part of the obtained equation, which contain the flow
velocities in different sections of the ejector due to the flow of working and injected flows
at the entrance to the mixing chamber. The law of conservation of mass is written down
and substituted into the previously obtained equation (the product of the cross section at
the entrance to the mixing chamber at the expense of the workflow). As a result, we obtain
the equation of the oil and gas ejector. This derivation is given in more detail in [84,87].

The variable parameters of the jet pump were determined in a certain sequence and as
a result of solving characteristic equations for jet pumps [58] and to find the outlet pressure
the equation of a low-pressure oil-gas jet pump was used:

2 f 2
1 ρ2

1
(1+ξn)ρw f3

(
pw − p1

ρw
ρ1

+ ρww2
w

2

)
×
{

1
f1ρ1

+ ρin2
ρ2

1 fin2
u2

2

[
1 − k−1

2k (1 + ξin)
]
−

−(ξd + ξmc + 1) 1
2 f3ρ3

(
1 + ρin2

ρ1
u2

)2
}
− pm

ρ3
ρm

− ρ3w2
m

2 + p1×

×
[
1 −

(
1 − ρin2

ρin

)
fin2
f3

]
+ k−1

2k
fin2
f3

ρin2w2
in = 0,

(2)

where f 1 is cross-section area in the outlet of a nozzle, m2; ρ1 is density of the working
liquid at the outlet of a nozzle, kg/m3; f 3 is cross-section area at the outlet of a mixing
chamber, m2; ρin2 is density of the injected gas before entering the mixing chamber, kg/m3;
fin2 is cross-section area of the injected gas before entering the mixing chamber, m2; u2 is
injection ratio before entering the mixing chamber; k is adiabatic exponent; ξin, ξmc, ξd are
resistance coefficients for the inlet of injected gas to the mixing chamber, in the mixing
chamber and diffuser; ρ3 is density of the mixed flow at the outlet of the mixing chamber,
kg/m3; ρm is density of the mixed flow at the outlet of the diffuser, kg/m3; pm is pressure of
the mixed flow at the outlet of the diffuser, Pa; wm is velocity of the mixed flow at the outlet
of the diffuser, m/s; ρin is density of the injected gas while entering the mixing chamber,
kg/m3; win is velocity of the injected gas while entering the mixing chamber, m/s.

Equation (2) was obtained based on Bernoulli equation and mass conservation law. It
can be used for jet pumps, where the working and mixed flows are compressible two-phase
liquids [84].
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In order to establish the pressure distribution between the jet pump and the mouth
based on the known parameters of the mixed flow after the jet pump, a computer program
was created, where the Baksendel method was applied [61].

After building up the pressure distribution curves along the wellbore, taking into
account the presence of the jet pump, it is necessary to analyze the obtained value of the
wellhead pressure. If the wellhead pressure is higher than technologically required, that
means that it is allowed to reduce the pressure in every point of the wellbore starting
from the outlet of the sucker-rod pump as long as the form of the curve remains the same.
However, if the wellhead pressure turned to be lower than technologically required it is
essential to consider other installation depth of even another jet pump (means with other
geometrical parameters).

In addition to low-pressure jet pumps, which are able to prove high flow rates of liquid
and gas but with a great pressure drop in the jet pump, there are high-pressure jet pumps
with cross-section areas ratio f 3/f 1 = 3 and less. These jet pumps have smaller pressure
losses but can inhaust less gas.

The methodology of choosing the rational place of such jet pumps in oil well is exactly
the same as for the low-pressure jet pumps. The only difference is in the characteristic
equation for finding outlet pressure of jet pump:
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where fw2 is cross-section area of the working liquid before entering the mixing chamber,
m2; ρw2 is density of the working liquid before entering the mixing chamber, kg/m3; p2 is
pressure of the working liquid before entering the mixing chamber, Pa.

3. Results

Table 1 shows some of the results obtained using mentioned programs for low-pressure
oil-gas jet pumps.

As can be seen from the Table 1, if the inlet parameters of the jet pump (pw, ρw, βw, ww)
in the cross-section of the well where it is installed were the same as in the well without jet
pump, then the pressure at the wellhead would be less than necessary (should be 0.5 MPa).
The only exception is the jet pump installed at a depth of 890 m. This jet pump will provide
a slightly higher wellhead pressure (pwh = 0.52 MPa).

As soon as the pressure at the wellhead should be pwh = 0.5 MPa, that requires
installation depth of jet pump not less than 890 m.

What is then the cause of this phenomenon? After all, the relation between the flow den-
sities at the inlet and at the outlet of the jet pump it is quite significant (pw/pm = 2.06–2.246).
In addition, outlet pressure of the jet pump is significantly less than the inlet pressure,
which leads to a substantial flash gas liberation. Yet, despite this, during the movement
of production liquid to the mouth, the pressure is dropping faster in case of jet pump
installation compared to the option without it.

Figure 3 shows the pressure distribution between jet pumps, placed in different depth,
and the wellhead for the case when the inlet pressure of jet pumps would be equal to
the pressure in the corresponding cross-sections of the well before jet pumps installation
(curves 2, 3, 4 and 5).
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Table 1. Input and calculated parameters of the oil well and the jet pump when it is installed at
different depths.

Parameters Depth of Jet Pump Installation, m
610 650 700 800 850 890

Input parameters

Pressure at the inlet of jet pump pw, (MPa) 3.21 3.51 3.91 4.75 5.20 5.56
Density of working liquid ρw, (kg/m3) 724.7 763.1 806.4 876.7 904.0 922.5
Consumption gas content βw 0.208 0.169 0.125 0.052 0.024 0.004
Velocity of the working liquid before
entering the nozzle ww, (m/s) 3.3 3.1 2.9 2.7 2.6 2.6

Density of free gas ρg, (kg/m3) 26.4 29.1 32,5 40.1 44.2 47.5

Calculated parameters

Diameter of the nozzle dn, (mm) 4.3 4.0 3.7 3.1 2.9 2.8
Diameter of the mixing chamber dmc, (mm) 10.7 9.9 9.1 7.8 7.3 6.9
Outlet diameter of the diffuser dd, (mm) 28.6 26.6 24.4 21.0 19.6 18.6
Density of the mixed flow at the outlet of the
jet pump ρm, (kg/m3)

324.4 339.7 360.2 404.6 428.1 447.4

Pressure of the mixed flow at the outlet of
the jet pump pm, (MPa) 2.12 2.20 2.31 2.58 2.73 2.87

Wellhead pressure pwh, (MPa) 0.47 0.42 0.39 0.42 0.47 0.52
Density of the mixed flow at the wellhead
ρm

(wh), (kg/m3)
33.8 30.6 28.3 30.0 33.9 37.9
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distribution after using jet pump with f 3/f 1 = 4.

Curves 2 and 3 correspond to jet pumps with the cross-sections ratio f 3/f 1 = 6.25 and
curves 4 and 5 correspond to jet pumps with the cross-sections ratio f 3/f 1 = 4. In addition,
the pressure distribution in oil well between the sucker-rod pump and the wellhead (curve
1) without using jet pump is additionally depicted. The pressure in all four cases decreases
almost linearly and much more slowly than in the well without jet pump. The only
exception is for the part of the wellbore (approximately 200 m) straight below the mouth,
where the pressure drop with and without jet pump is almost the same.

A smaller pressure change gradient is caused by the presence of a significant amount
of free gas from the annulus in the tubing. The actual constancy of the pressure change
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gradient can be explained by the fact that, on the one hand, an increase in the amount of
gas in the production liquid should cause a decrease in the pressure change gradient, and,
on the other hand, as the amount of gas in the mixture increases, its velocity also increases
and this causes the growth in friction losses. These two variable losses almost compensate
each other.

The reason for the small wellhead pressure, which low-pressure jet pumps with cross-
section areas ratio f 3/f 1 = 6.25 can provide, when the depth of their placement in the well
changes in the range from 610 m to 890 m, is a significant pressure drop between inlet and
outlet of the jet pump. In Figure 3, these pressure drops are represented by the segments ab
and a’b’. Jet pumps with cross-section areas ratio f 3/f 1 = 4, as it can be seen from Figure 3,
allow to obtain significantly greater wellhead pressure than the previous two.

If these jet pumps are installed in the oil well 753-D, then placing the jet pump at a
depth of 700 m (f 3/f 1 = 6.25) will entail a slight increase in inlet pressure compared to
the pressure in this cross-section of the well without a jet pump. At the same time, the jet
pump, located at a depth of 890 m (f 3/f 1 = 6.25), on the contrary, will give a slight decrease
in inlet pressure compared to the pressure in this cross-section of the well without a jet
pump. Jet pumps with cross-section areas ratio f 3/f 1 = 4 will provide a noticeable decrease
in pressure in front of the jet pump, and, consequently, a substantial decrease in outlet
pressure of the sucker-rod pump.

Thus, it follows from the above that an increase of the installation depth for such jet
pumps will have a little affect on the pressure change in front of it. With increasing of jet
pump placement depth in the well, the inlet pressure of it will slightly reduce. It turned
out that even greater influence on inlet pressure decreasing has the cross-section areas ratio
f 3/f 1.

It would be possible to determine to which level low-pressure jet pumps with the ratio
f 3/f 1 = 4 can reduce the outlet pressure of the sucker rod pump. However, since we have
proven that the inlet pressure of the jet pump substantially depends on the value f 3/f 1,
it is necessary to consider installation of high-pressure jet pumps, for which the value of
cross-section areas ratio is f 3/f 1 < 4. Such jet pumps provide the highest possible pressure
at their outlet.

Table 2 shows the input and some calculated values for such jet pumps, taking into
account that input parameters in this case are equal to the corresponding parameters of the
well at depths of 700, 800, 850 and 870 m.

Table 2. Input and calculated parameters of the high-pressure oil-gas jet pumps during their installa-
tion in oil well at different depths [84].

Parameters
Depth of Jet Pump Installation, m

700 800 850 870

Input parameters

Pressure at the inlet of jet pump pw, (MPa) 3.91 4.75 5.20 5.38
Density of working liquid ρw, (kg/m3) 806.4 876.7 904.0 913.6
Consumption gas content βw 0.125 0.052 0.024 0.014
Density of free gas ρg, (kg/m3) 32.5 40.1 44.2 45.8
Velocity of the working liquid before
entering the nozzle ww, (m/s) 2.9 2.7 2.6 2.6

Calculated parameters

Density of the mixed flow at the outlet of
the jet pump ρm, (kg/m3) 418.7 485.9 523.6 541.9

pressure of the mixed flow at the outlet of
the jet pump pm, (MPa) 2.99 3.64 4.09 4.34

Injection ratio before entering the mixing
chamber u2

1.36 1.57 1.69 1.74

Velocity of the working liquid before
outflowing from the nozzle ww, (m/s) 64.9 76.6 82.1 84.2
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After that, for these four jet pumps, the pressure distribution between them and
the wellhead was determined using previously mentioned computer program for the
Baksendel method. In Figures 4 and 5 the dotted line (curves 2) shows the pressure
distribution between the jet pump, installed at depths of 700 and 870 m in the well, and its
mouth, obtained from the results of this program.
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As seen in Figures 4 and 5, if the inlet pressure of the jet pump is equal to the pressure
that exists in the well in this cross-section (in the figures it is point b’), then the pressure at
the wellhead will be greater than required pwh = 0.5 MPa. Therefore, the next task was to
find such inlet pressure of the jet pump, at which the wellhead pressure would be 0.5 MPa.
The geometry and all other parameters of the jet pump were determined when its inlet
pressure was changing, as well as the pressure distribution along the wellbore from the jet
pump to the wellhead.
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By successively reducing the inlet pressure of the jet pumps, such values of it were
found at which the wellhead pressure are equal to 0.5 MPa. Knowing the inlet pressure of
the jet pumps and the temperatures at their installation points, calculations were made to
determine the pressure distribution along the wellbore from jet pumps to the sucker-rod
pump. According to the results of using created computer programs, pressure distribution
curves for the oil well 753-D were built for cases of jet pumps installation at depths of 700
and 870 m respectively (curves 3) (Figures 4 and 5).

Figures 4 and 5 show that the usage of high-pressure jet pumps in the well can
significantly reduce the outlet pressure of the sucker-rod pump. This reduction is from
1.32 MPa, for the case of jet pump installing at a depth of 700 m and up to 1.96 MPa, when
jet pump is installed at a depth of 870 m. Reducing the outlet pressure of the sucker-rod
pump means decreasing the stem load. For the case that is considered, such a reduction
in load can reach up to 26% (with a decrease in outlet pressure of sucker-rod pump by
1.96 MPa). In addition, by reducing the load on the beam pumping unit’s mechanism,
smaller counterbalance can be used [84].

Thus, we may say that it is the most rational to install the high-pressure jet pump
with f 3/f 1 = 3 at depth of 870 m in the oil well 753-D Dolyna Oil Field “Dolynanaftogaz”
PJSC “Ukrnafta”.

In the general case, it can be claimed that usage of tandem installation, which consists
of the sucker-rod pump and oil-gas jet pump is advisable when the gas–oil ratio of the
well is around 100 m3/t and higher. However, even then the efficiency of such tandem
installation will be determined by many other factors.

It is proposed to use an electrochemical chrome coating formed in a flowing electrolyte
to increase the wear and corrosion resistance of the polished rod of the rod pump unit.

The cost of applying the chrome coating on parts in a flowing electrolyte does not
exceed the cost of applying a chrome coating on parts in a quiet electrolyte—the traditional
way. It should be noted that the application of a thick layer of electrochemical chrome
coating in the flowing electrolyte reduces the amount of allowance for diamond grind-
ing of parts compared to the quiet electrolyte [88], which ultimately reduces the cost of
manufacturing the suitable chrome parts that have high microhardness to our technology
(Figure 6).
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Figure 6. Change in microhardness according to the thickness of the chromium electrochemical
coating formed in the electrolyte: 1—flow; 2—calm.

The use of chromium plating in a flowing electrolyte provides thicker coatings com-
pared to chromium plating in a quiet electrolyte. In this case, the coatings applied in the
flowing electrolyte evenly cover the steel base, have a lower surface roughness and higher
microhardness (11.8 GPa) compared to chromium plating in the quiet electrolyte (8.1 GPa).
This is achieved by creating a stable flow of electrolyte in the annular interelectrode space
of the electrochemical cell and intensive removal of gases formed during electrolysis on the
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surface of the part and the electrode. In addition, the saturation of the chrome coating and
the steel base with hydrogen is reduced.

Tests of samples with chrome coatings were performed on an upgraded installation
that simulates the reciprocating motion (reversible friction) of the polished rod of the
rocking machine and allows you to continuously record the value of the coefficient of
friction. The results are presented in Figure 7.
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The results of tests of samples with chrome coatings in reciprocating motion showed
that the coating reduces the wear rate of the chrome rod, which is operated in pair with
the stuffing box seal of the rod installation. The combination of high microhardness of
chrome coatings, as well as the specifics of the structure provide high wear resistance
of chrome coatings applied from a flowing electrolyte. Chromium plating in a flowing
electrolyte also reduces the coefficient of friction in the metal-polymer friction pair as
20 percent compared to chromium plating in a quite electrolyte. It is established that the
minimum wear for reversible friction pair of electrochemical chrome coating—stuffing box
seal is provided by the surface roughness of the coating Ra from 0.16 to 0.32 µm. All this
ultimately increases the service life of pump parts, reduces the load on the mechanical
part of the rod installation of the rocking machine, the cost of electricity to overcome the
forces of thorns in the installation for rod production of oil from wells. In addition, the
combination of ejector and plunger pumps for joint work increases the energy efficiency
of oil production and ensures the rational use of potential energy of oil gas, as well as
improving the environmental situation in oil fields, as it eliminates the combustion of
oil gas.

The usage of the developed method to specify the rational placement of jet pumps in
oil wells allows us to find the optimal operation mode of simultaneous operation of the
sucker-rod pumps and the oil-gas jet pumps. This method will provide offtaking of the
whole amount of free oil gas to enter the annulus of the well, and in turn it will provide the
lowest possible stem load.

Results of this research are formulated in the form of a methodology for calculating
the working parameters of a downhole ejection system, which is implemented in OGPD
“Dolynanaftogaz” PJSC “Ukrnafta” and the methodology for determining the rational
placement of oil-gas jet pumps in oil wells, approved by the PJSC “Ukrnafta”, and the main
design parameters of suggested jet pump for tandem installation in well 753-D as well as
the exact place of its location in the well have been submitted for implementation.

This article does not really mention the effect of non-uniformity of the rod pump
supply on the operation of the downhole ejector. We have conducted such studies, and
they indicate that even at the minimum speed and flow rate of the working flow in the
ejector (corresponding to the movement of the rods up) can suck the injected flow from
the annulus of the well. In addition, for some wells it is advisable to use periodic ejector
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operation. This means that the gas will be removed from the annulus only when a certain
critical pressure value is reached there.

The performed hydrodynamic calculations prove the efficiency of the proposed scheme
of operation of the downhole jet pump and the rod pump in the well. Of course, the authors
understand that this method of operation cannot be used for all oil wells and in each case it
is necessary to justify the possibility of joint operation of the rod pump and ejector.

The novelty of the proposed study lays in a systematic approach to rod pump and
our patented ejector pump operation in the oil well [85] and chrome plating of pump parts.
The result of scientific research is a sound method of determining the rational location of
the ejector in the oil well and the calculation of its geometry, which will provide a complete
selection of petroleum gas released into the annulus of the oil well.

This will make possible obtaining the positive results, namely:

- effectively using the potential energy of free oil gas from annulus;
- making sucker-rod pump operation more stable;
- decreasing dynamic level fluctuations in the well (to avoid dangerous fluctuations in

the case of a small immersion of the sucker-rod pump);
- increasing the production liquid to the surface by the mixed flow density reduction

(after the jet pump);
- reducing the stem load, which in turn will extend their overhaul life;
- decreasing electricity consumption during well operation and decrease investments

in oil production.

Especially this technology can show its efficiency in conditions of high gas–oil ratios
and in regions with predominantly low ambient temperatures.

The results of industrial tests of jet and plunger pumps with reinforced chrome-plated
parts showed an increase in their service life of about 27%.

In further research, the authors plan to provide calculations considering the curvature
of wellbores.

4. Conclusions

The study showed the following: the operation capability and efficiency of oil-gas jet
pumps was proved, and the following conclusions were made:

It was established that the usage of low-pressure jet pumps with a cross-section areas
ratio f 3/f 1 = 6.25 cannot provide a significant decrease in the outlet pressure of the sucker-
rod pump even with an increase in the installation depth due to the large difference
inlet/outlet pressure of the jet pumps.

Furthermore, the minimum tubing load is specified by the combination of two factors:
the minimum possible cross-section areas ratio f 3/f 1 and the maximal installation depth.
This way, the ratio f 3/f 1 for the jet pumps is a factor to decrease significantly tubing loads.
Depth of installation makes a much smaller effect if increased.

According to studies, the best operation mode for the 753-D oil well lays in the tandem
installation (sucker-rod pump and the jet pump; f 3/f 1 = 3 and placed at depth 870 m). This
mode provides decreasing of outlet pressure of the sucker-rod pump up to 1.96 MPa.

This way, the authors recommend the following for the 753-D oil well OGPD “Doly-
nanaftogaz” PJSC “Ukrnafta”:

- to install the high-pressure oil-gas jet pump (f 3/f 1 = 3) at a depth of 870 m to take off
the whole amount of free annulus gas. This means to aim at reducing the stem load
by 26%. The aforementioned jet pump has the following geometrical options: nozzle
diameter dn = 3.88 mm, mixing chamber diameter dmc = 6.72 mm, and the diffuser
outlet diameter dd = 18.01 mm.

Electrochemical chromium plating according to the developed technological process
using an installation equipped with an automated control system of technological parame-
ters of electrochemical chromium plating process in flowing electrolyte with nanoadditives,
provided uniform coating with low surface roughness, high microhardness and wear resis-
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tance. The proposed innovations ensure the high quality of the working surfaces of parts
and increase the performance of ejector and plunger pumps during oil production.

In addition, the usage of jet pumps will also improve the ecological situation in the oil
production fields through the recycling of associated oil gas.
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