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Abstract: This paper discusses the application of robust control techniques to a smart grid (SG) in
order to find more powerful and suitable control tools to guarantee SG robustness. Two key aspects
are in particular discussed. The first one relates to the need of a suitably model for the SG. The
second one relates to the selection of an appropriate robust control technique to guarantee rejection
of the adverse effects caused by mutual interactions among control loops and model uncertainty. The
final purpose is to bridge the gap between the power of robust control theorems and the reality of
SG operations.

Keywords: robust control techniques; renewable energy sources; uncertainty models

1. Introduction

A Smart Grid (SG) is an intelligent electrical network designed to handle the presence
of Renewable Energy Sources (RESs) using information and communication technology
employing smart meters and control systems. It is unquestionable that the primary mission
of an RES is to transfer the active power to the SG. In addition, the presence of RESs
reduces greenhouse gas emissions and decreases the power losses of the transmission and
distribution systems. From this perspective, the main challenge is how to provide sound
support for effectively integrating larger penetration of RESs by ensuring specific control
properties such as robustness, and at the same time, limiting the well-known negative
impact of RESs on the SGs [1,2]. A robust control system is insensitive to differences
between the real system and its model employed in the controller’s synthesis. These
differences represent the uncertainty that is described by appropriate models. In the
context of SG control, changes in the operating conditions with respect to the nominal one
used in the design are represented by uncertainty affecting the model of an SG. Operating
condition variations arise in the presence of, for example, changes in active and/or reactive
powers output by RESs caused by the variable nature of wind speed and solar irradiance,
connection and/or disconnection of loads, etc. All these conditions are referred to as
normal operating conditions. Hence, a robust controller guarantees smooth operations of
an SG under a wide range of different normal operating points. Conversely, the presence
of faults or short circuits cannot be referred to as normal operating conditions. This paper
does not consider the presence of faults or short circuits in SG.

From this point of view, the control of SG is becoming much more important in
accordance with increasing size, increasing diversity in generation/load, variable nature of
the primary source as in the case of solar and wind generation units, uncertainties in the
system model of SG, and different types of RESs.

In this new paradigm, classical control techniques may not be more adopted in
controlling a SG. In fact, it is difficult to guarantee robustness in the presence of model
uncertainty and interactions among control loops using classical control strategies [3].
This suggests considering advanced control approaches, such as the robust control theory.
Robust control techniques due to the possibility of uncertainties formulation in the control
synthesis guarantee stability under different unknown scenarios of the SG.
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Robust control methods such as H∞, structured singular value µ, model predictive
control (MPC), backstepping control, real stability radius rR, and condition based on
the largest singular value of the perturbed model, are well suited to applications where
uncertainty is present. Once the controller is designed, its parameters do not change and
robustness is guaranteed in the presence of a wide range of disturbances and uncertainties.

The choice of a suitable robust control technique represents a key aspect in the syn-
thesis of control systems for complicated processes. This choice depends on some items
such as type of control problem, control objectives, model of the uncertainty, and model of
the process.

However, the application of the robust control to SG is not straightforward and it
has been the subject of an increasing amount of research in the last years. The problem
to guarantee robustness under uncertainty and disturbances in the system model can be
tackled using different techniques. Paper [4] uses a robust optimization framework in
which the control problem is formulated as a mixed-integer linear programming with
uncertain data. Paper [5] employs the real stability radius to find the largest perturbation
that makes the closed loop uncertain system unstable. Paper [6] decomposes the overall
system according to the H-∆ model technique [7]. Paper [8] develops a robust control
design based on the theorem reported in [9]. Papers [10,11] present the design of a robust
controller according to the Model Predictive Control (MPC) based approach. Papers [12,13]
employ the H∞ control theory while paper [14] uses the Quantitative Feedback Theory
(QFT). Paper [15] develops a robust nonlinear partial feedback linearizing control law.

To design a robust controller it is important to deal with two main aspects. The first
one concerns the need of obtaining an overall model of the SG which embeds the models of
RES, Distribution Network (DN), uncertainty and disturbances. The second one concerns
the objective of adopting a suitable robust control technique that leads both to a simple
design and to a controller with low-order, which represents an useful requirement for its
practical implementation. The discussion reported in this paper aims at illustrating the key
aspects related to these two challenges and to present possible models and solutions.

2. Smart Grid Models

In the synthesis procedure of a robust control technique, the dynamic model of a SG is
required. Obtaining this model is not simple, mainly due to extension of the DN and to the
type of RES. However understanding these models allows the application of robust design
methods that are familiar to the control system community. It is unquestionable that the
model to adopting is strictly related to the control objectives. Since integration of RESs into
utilities’ networks can cause undesirable effects on voltage control caused by the reverse
power flows along the feeders, the models of an SG aim at expressing the relationships
between the voltage variations and the active and reactive powers injections at the Points
of Common Coupling (PCC); see Figure 1, where the RESs are connected to the DN.

Different is the case of a Micro Grid (MG). The MG is a small-size network hosting a
small number of RESs that can be connected or disconnected (islanded-mode) to the main
grid. In the former case, the control is more simple than the islanding mode, because voltage
and frequency control of an MG is guaranteed by the main grid. The real and reactive
power of a RES unit are controlled by acting on the Voltage Source Converter (VSC) output
voltage in order to maintain an equilibrium between the power generated and the load
power demand while ensuring that voltage and frequency are within their respective range.

The types of RES can be divided into two categories: the first one groups plants
using renewable energy sources such as wind turbines and solar power plants; conversely,
the second one groups plants using fossil fuels such as conventional combined heat and
power (CHP) generators. RESs using renewable energy sources are typically interfaced to
the DN by VSCs and possibly integrated with a battery. Such a configuration is the most
widely adopted in practicem especially for small-size RESs [16].
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Figure 1. Smart Grid.

In the case of a PV system, Figure 2 shows a schematic representation of a single-stage
PV system connected to the grid. The PV system mainly consists of a PV array, a 3-phase
VSC and a L1C f L2 filter.
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Figure 2. Schematic diagram of a PV system connected to the grid.

Models of different order can be found in the literature to express the dynamic of a PV
system, see among them [12,15,17]. Usually such models are represented in the space-state.
A general nonlinear state-space model expressed in dq frame is the following [17]

L1
di1d
dt

= −R i1d −ω L1i1q + R i2d − vc f d + vpvmd

L1
di1q

dt
= −R i1q −ω L1i1d + R i2q − vc f q + vpvmq

L2
di2d
dt

= R i1d − R i2d −ω L2i1q + vc f d − vd

L2
di2q

dt
= R i1q − R i2q + ω L2i2d + vc f q − vq

C f
dvc f d

dt
= −ωC f vc f q + C f (i1d − i2d)

C f
dvc f q

dt
= ωC f vc f d + C f (i1q − i2q)

C f
dvpv

dt
= ipv − i1dmd − i1qmq

where R is the resistance, L1, L2, and C f inductances and capacitance of the filter, vpv is
the voltage of the dc-link capacitor, vc f the voltage of the filter capacitor, i1 and i2 output
currents of the inverter and filter, respectively, ω the angular frequency, ipv the output
current of the inverter, md and mq are the switching input signal to the inverter and v the
voltage across the PCC node. The subscript f stands for filter.

In the case of a wind turbine generator (WTG), Figure 3 shows a schematic block
scheme representation. It mainly consists of a gear box, an induction generator, a rotor
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side converter, a grid-side converter, and a filter. A general model is derived in [18] and is
reported in the following.
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Rotor
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Figure 3. Schematic diagram of the wind turbine generator (WTG) connected to the grid.

dωr

dt
=

1
2 Hr

(
Te + Ks δ + D(ωt −ωr)

)
dωt

dt
=

1
2 Ht

(
Tm − Ks δ− D(ωt −ωr)

)
dβ

dt
= ωb(ωt −ωr)

1
ωb

dψsdq

dt
= vsdq − Rsisdq − ψsdq

1
ωb

dψrdq

dt
= vrdq − Rrirdq − ω2ψrdq

ψs = Ls is + Lmir

ψr = Lm is + Lr ir

Lg

ωb

digdq

dt
= −Rgigdq − ω Lgigdq − vqdq + vsdq

Te =
Lm

Ls
(ψsq ird − ψsd irq)

In particular the first two equations model the mechanical components of the WTG.
The subsequent five equations model the WTG; the eighth equation models the grid-side
filter. Moreover, Te is the torque, ψ, v and i are flux, voltage, and current, respectively,
subscripts s, r stand for stator and rotor quantities, Hr and Ht denote the inertia constants
of the induction generator and turbine; D represents the damping coefficient; δ and Ks are
the shaft angle and stiffness of the shaft, respectively. Symbol L represents the inductance,
ω2 is the rotor pulse, ωb the angular pulse and ω is the speed of the dq frame. Moreover
symbol R represents the resistance. Subscript g stands for filter variables, vsdq, igdq and
vgdq are the dq components of the generator voltage, grid-side filter current and voltage,
respectively. vg is the voltage of the gride-side converter.

Concerning the loads, they can usually be considered static and then represented
by an equivalent parallel RLC impedance. Concerning the lines, they are represented by
lumped series RL elements. Eventually the main system is modeled by an ac voltage source
in series with a resistance R and an inductance L .
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The described dynamic models can be linearized in a given operating condition and
expressed in compact form in the state-space as follows

∆ẋ(t) = A∆x(t) + B1∆u(t) + B2w(t) (1)

y(t) = C1∆x(t) + D1∆u(t) (2)

z(t) = C2∆x(t) + D2∆u(t) (3)

where ∆x is the state vector, u is the control input, z is the controlled output, y is the
measured output, and w is the disturbance input.

Equations (1)–(3) represents a suitable model for the application of robust control
techniques in the MG control synthesis. However in presence of a large number of RESs,
the dimension of model (1)–(3) becomes of high order. For this reason, model (1)–(3) is
mainly used in the control of MG since the RESs number of a MG is much smaller than
that of a SG.

In the case of a SG with high penetration of RESs, the approach used to model the
dependency of voltages on the active and reactive power changes employs the sensitiv-
ity analysis approach [4,19,20]. This technique uses the inverse of the Jacobian matrix
obtained from the solution of a power flow study. Another approach is known as perturb-
and-observe. It solves multiple power flows in which small changes in the RES active
and/or reactive power outputs are imposed and, subsequently, extracts the corresponding
sensitivity’s coefficients [21].

Starting from a given operating condition of the DN, a linear model gives the sen-
sitivity coefficients matrix, which expresses the variations of the nodal voltages caused
by variations of the active and reactive powers injected by all RESs. According to [22],
the linearized model can be written as

V2
i = V2

i,0 +
ND

∑
k=1

Ti(k)T(Pk Qk)
T i = 1, . . . , N (4)

where N is the number of the nodes, ND the number of RESs, V2
i is the squared voltage

of the ith network node; V2
i,0 is the (initial) value of V2

i obtained in absence of RESs; Pk,
Qk are the powers (respectively, active and reactive) output by an RES; Ti(k) is a vector
of sensitivity coefficients that linearly relates the squared voltage at the i-th node to the
powers Pk, Qk.

Concerning the model of an RES, a TITO (Two-Inputs Two Outputs) model can be
adopted. The inputs are the currents reference output by the local controller while the
outputs are the active and reactive powers injected by the RES into the grid. The reference
currents are expressed in the dq reference frame obtained by a PLL, which imposes that the
dq currents independently control, respectively, active and reactive powers [23]. However,
since the PLL shows a short time response, and due to the presence of the filter, the dynamic
of the two current components are coupled. The general form of the kth RES model is [24,25](

Pk(s) Qk(s)
)T

= gk(s)
(

Ire f
kd (s) Ire f

kq (s)
)T

(5)

where Ire f
kd and Ire f

kq are the reference currents in the dq frame and gk(s) is given by

gk(s) =

 1
1+s τkd

−kk1 s
(1+s τk1)(1+s τk2)

kk2 s
(1+s τk3)(1+s τk4)

1
1+s τkq

 (6)

The diagonal elements model the dynamics along the d and q axes, respectively, while the
off-diagonal elements model the cross-coupling dynamics.
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Substituting (5) into (4) for each RES, the general Multi-Input Multi-Output (MIMO)
model of an SG can be expressed compact form as

V(s) = V0 + Γ G(s)U(s) = V0 + P(s)U(s) (7)

where V is the K vector of the squared voltages at the PCCs, V0 is the value of V , Γ is the
ND × 2ND matrix composed of vectors Ti(k), G(s) = diag{gk(s)} and U is the 2ND vector
of inputs Ire f

kd and Ire f
kq . The dimension of the square plant matrix P(s) is 2ND.

3. Robust Control Techniques in Smart Grid

In the SG control, it is usually desirable to meet reference tracking and to limit ad-
verse effects caused by both interactions among control loops and uncertainty in the
system model. Such undesirable effects may lead to performance degradation and to
instability [26–28]. In addition, the non perfect knowledge of the line parameters of the SG
represents a source of uncertainty [24,29].

It should be emphasized that operating point variations of an SG are commonly
represented as uncertainty in the system model. Since robust control techniques are able
to reject the effects of model uncertainty, the design of the controller is not based on the
assumption of complete knowledge of the actual operating condition of the grid. It means
that load demand and generated power are not known.

To guarantee fulfillment of the control objectives previously described, it is then advis-
able, on one hand to reduce the loops interactions, and on the other hand to adopt robust
control techniques to reject the effects of bounded disturbances and model uncertainty.
In fact, unlike conventional controllers, robust controllers are capable of capturing the
design objectives, thus ensuring robust stability in all operating conditions of the grid.

In SG control, the parametric perturbations are lumped into a perturbation matrix
∆. This uncertainty representation is known as unstructured uncertainty. Concerning
uncertainty, there are different models to express the most representative unstructured
uncertainty [30]; such models are: additive

P(s) = Pn(s) + ∆a(s) (8)

input multiplicative
P(s) = Pn(s)

(
I + ∆u(s)

)
(9)

output multiplicative
P(s) =

(
I + ∆y(s)

)
Pn(s) (10)

where P(s) is the nominal plant, ∆(s) represents the uncertainty with ||∆(s)||∞ < 1.
It must be pointed out that the problem to limit the negative effects caused by inter-

actions among control loops has to be tackled also in the absence of system uncertainty
(nominal plant). However, it is well known that robust stability also guarantees nomi-
nal stability.

The problem of the mutual couplings among control loops has been studied in [27].
In particular in this paper, using the Block Gerschgorin theorem, it is shown that the infinity
norm of off-diagonal transfer functions of matrix P(s) equals to the norm of their coupling
variables. Recalling that off-diagonal elements model the coupling between the i-th RES
and other RESs, the paper has given a metric to weight the interactions. To reduce the effects
of the interactions, some approaches have been proposed in the literature. In [14,31,32] the
Relative Gain Array (RGA) matrix is employed to determine the best input and output
pairs. Subsequently, pre-compensator and post-compensator are designed to make the
whole system approximately diagonal so that the overall control can be realized by an
independent (decentralized) design of any controller. However the application of the RGA
method might present difficulty in SG with high penetration of RESs. In fact, the dimension
of the RGA matrix increases as the number of RESs grows. Techniques based on the use of
RGA matrix guarantee negligible mutual interactions among control loops if the elements
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of the RGA are approximately equal to one. Hence, in the case of an SG with a large
penetration of RESs, it becomes quite difficult to obtain negligible interactions. Aside from
the use of RGA, the decoupling compensator has the same order of complexity of the
controlled plant. Moreover, exact decoupling means that the compensator is used to cancel
the model plant. These canceled modes may still exist in the presence of disturbances
and lead to an uncontrollable system (decentralized fixed modes). To overcome such
difficulties, compensators are designed only to counteract the effects of these interactions
so as to obtain diagonal dominance. In this way, the interactions are significantly reduced
and decentralized control techniques can be suitably employed [33]. A different approach is
proposed in [34]. It treats the interactions between subsystems, modeled in the state-space,
as an uncertainty of the corresponded subsystem. Then using robust methods, the design of
a suitable controller for each subsystem is designed by minimizing the weighted sensitivity
functions and, as a consequence, the effect of subsystems would drop-off. A third approach,
developed for input-output models, is proposed in [35] and applied in [36]. Let define P̃(s)
the block diagonal matrix obtained from P(s), see (7). The interaction measure, proposed
in [35], expresses the constraints imposed on the structure of the closed-loop matrix W̃(s)
for P̃(s), which guarantees that the full closed-loop system W(s) is stable. The off-diagonal
blocks of P(s) model the interactions among the RESs and do not concur in the controller
design. According to this remark, matrix E(s) defined as

E(s) =
(
P(s)− P̃(s)

)
P̃(s)−1 (11)

can be viewed as a relative error with respect to the diagonal plant P̃(s). It represents
the error induced when P(s) is approximated by the matrix P̃(s) used in the design.
Assume that P(s) and P̃(s) have the same number of unstable poles and that W̃(s) is stable.
According to Theorem 2 in paper [35], the closed-loop system W(s) is stable only if

ρ
[
E(ω) W̃(ω)

]
< 1 ∀ω (12)

where ρ denotes the spectral radius. Condition (12) states that it is possible to design the
controller of each RES as if the system was fully decoupled, (the off diagonal transfer
functions of matrix P(s) are null). Unfortunately, condition (12) is conservative and might
be difficult to satisfy in the presence of integral action on the controllers (W̃(0) = I).
However, a less conservative condition can be formulated. Factorizing the control matrix as
C(s) = kc/s Ĉ(s) and satisfying the following condition imposed on the steady-state gain

Ĉ(0) = P̃(0)−1

it is possible to demonstrate that the fulfillment of the following less conservative condi-
tion [37]

Re{λi[E(0)]} > −1

that involves the eigenvalues of matrix E(0), guarantees that the full closed-loop system
W(s) is stable for all kc ∈ (0 k?] , with k? > 0, and has zero tracking error also in the
presence of asymptotically constant disturbances. Decentralized control with integral
action is then possible when the real parts of the eigenvalues of E(0) are all greater than
−1. The result to obtain zero tracking error using a decentralized control approach realizes
a twofold objective. On one hand, the design is simplified since each controller is locally
designed; on the other hand it incorporates a recent EU directive [38], indicating that the
Distribution System Operator (DSO) shall procure the ancillary services, which includes
voltage regulation (zero voltage regulation error), in compliance with transparent, non-
discriminatory, and market based procedures.

As concerns the problem to provide closed-loop robustness in the presence of mod-
eling uncertainty, different control approaches can be used. A first method is to solve an
H∞ control problem to design a robust controller [12,13,39]. However, this technique is
unsuited to SG with high penetration of RESs. With reference to model (1)–(3), assuming
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that (A, B1, C1) can be stabilized and is detectable, the H∞ robust control design synthe-
sizes the controller by minimizing the infinite-norm of an appropriate matrix Twz of the
nominal closed-loop system, which relates the disturbance input w to the controlled output
z, see Figure 4.

(1)-(3)

w z

u y

C(s)

Model

Figure 4. H∞ standard representation.

The solution of the optimization problem is numerical, because there is no analytic
method. In addition, the solution is not unique, so it is usually sufficient to obtain a
controller which satisfies the following condition

||Twz||∞ < γ

with γ < 1. Using matrix representation, C(s) is an H∞ controller, if and only if there exists
a symmetric matrix X > 0 such that [40] AT

clX + XAcl XAcl CT
cl

AT
clX −γI AT

cl

Ccl Dcl γI

 < 0

where

Acl = A + B1CC1 Bcl = B2 (13)

Ccl = A + B2CC2 Dcl = 0

In the H∞ robust control, the considered uncertainty is of the unstructured type. How-
ever, this type of uncertainty gives conservative results in the design procedure. To solve
this problem, it is necessary to adopt the structured representation of the uncertainty.
For this type of uncertainty, a different technique employed in the synthesis of a robust
controller for MGs is based on the use of structured singular value µ [41–45]. The standard
scheme of M-∆ configuration is shown in Figure 5 where pin and pout are the exogenous
perturbation signals representing the input and output of the uncertain diagonal block ∆.
For a given M-∆ configuration, robust stability is guaranteed if and only if [30]

µ∆[M(ω)] < 1 ∀ω ∈ IR

where
µ∆[M] =

1
min∆{σ̄(∆) : |I−M ∆| = 0, σ̄(∆) ≤ 1}

being σ̄ the largest singular value. Also in this case, there are no standard analytical
methods to calculate the optimal controller in the µ-sense.
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(1)-(3)
w z

u y

C(s)

∆

M(s)

pinpout

Model

Figure 5. M-∆ standard representation for µ design.

In the case of perturbation with additive model, see (8), and considering the following
factorization for the uncertain matrix

∆a = N2∆N1 ||∆||∞ ≤ 1

it is possible to state that the perturbed closed-loop system remains stable if [30]

||N1 M N2||∞ < 1 ∀ω ∈ IR (14)

where
M(s) = C(s)

(
I + P(s)C(s)

)−1

This approach has been adopted in [6] in the case of a DN with only PV systems.
In the case of the input multiplicative model of the unstructured uncertainty, see (9),

matrix M in (14) assumes the expression

M(s) = C(s)
(
I + P(s)C(s)

)−1P(s)

while in the case of output multiplicative model, see (9), the expression of M is given by

M(s) = P(s)C(s)
(
I + P(s)C(s)

)−1

Always in case of perturbation with additive model (8), an alternative formulation to
the problem of designing a robust controller can be found in [9]. In particular the following
theorem holds: assume that

(
I + P(s)C(s)

)−1 and ∆a are stable. If ∆a satisfies

σ̄
(
∆a(ω)

)
<

1
σ̄
(
W(ω)

) ∀ω ∈ IR (15)

then the closed-loop system W(s) is stable.
The main problem of H∞ and µ-based robust techniques is that the order of the

obtained controller is at least equal to that of the plant and usually higher because of the
inclusion of weight matrices. This represents a serious drawback in the case of several
RESs modeled according to (1)–(3). These control laws may be too complex with regards
to practical implementation. For this purpose, one can reduce the order of the controller
by adopting different techniques such as Hankel-norm approximation, truncation, and
balanced realizations [37].

The MPC based design has been recently studied as an alternative to H∞ and µ-based
robust control techniques in SG control [10,11,46–48]. A comparison between MPC and
H∞ is proposed in [49]. The adoption of the MPC is useful, for example, when sensitivity
matrices are employed to express, in an approximated way, voltages and power flows
variations with respect to changes in the control variables. However, these sensitivity
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matrices are affected by inaccuracies because they are obtained without considering the
variation of load powers from voltages; in fact, such a relationship is not well known in
practice. A robust controller designed according to the MPC technique accounts for these
uncertainties. The MPC is a control technique adopted mainly to predict in an optimal
sense the system’s behavior on a future time interval. The basic concept of the MPC is
the following: at step k, using the latest available measurements, the controller calculates,
in an optimal way, the change of control variables, ∆u(k), from k until k + Tc − 1, with the
aim to meet a target at the end of the prediction interval, i.e., at k + Tp, where Tc and Tp
are the control and prediction intervals, respectively. The main objective is to minimize
∆u(k) while satisfying a set of appropriate limits. This leads to solve a standard Quadratic
Programming problem.

An interesting approach to guarantee robustness in SG is based on the use of the
backstepping technique [50]. The backstepping approach has attracted great attention from
the control community in many areas of research due to its recursive design for nonlinear
system or systems that contain uncertainties. The design philosophy is to decompose a
complex system into multiple small-scale subsystems. Subsequently, for each subsystem,
using a control Lyapunov function that employs the states of the system as virtual inputs
for the subsystems, it is possible to obtain the original control law for global stability and
regulation. Recently, the backstepping technique has been applied also in the contest of SG
control and stability to cope with non-linearity and uncertainties in the SG model [51–53].
However, when the order of the system increases, the number of states grows as well. Then,
difficulties to implement the controller may arise.

A robust technique that is particularly appreciated for its robustness properties is the
Sliding Mode Control (SMC). In the last years, some papers have proposed the use of the
SMC to meet control objectives such as frequency and voltage regulation in MG [54–58].
The main idea of the SMC is to force the system’s states into a particular domain of the
state-space, named the sliding surface. The SMC has the scope of maintaining the states
in the proximity of the sliding surface once the surface is reached. However, since the
control law is discontinuous, chattering effects arise. To alleviate this effect it is necessary
to increase the order of the sliding mode enforced by the controller. This may lead to
controllers of high-order.

A test is also available to validate the robustness in the presence of uncertainty in the
matrix A. In particular, in the closed-loop matrix Acl in (13) it is assumed that A→ A(I+∆).
The test is based on the use of the real stability radius, as reported in [5]. The real stability
radius rR of a matrix triple (H, B, D), with H Hurwitz-stable, is defined by, see [59,60]

rR(H, B, D) = inf
∆

{
σ1(∆) : H + B∆D is not Hurwitz-stable

}
Paper [60] has shown that

rR(H, B, D)−1 = max
ω≥0

µR

(
D(ωI−H)−1B

)
where

µr

(
D(ωI−H)−1B

)
= inf

γ∈(0 1]
σ2

[(
Re{D(ωI−H)−1B} −γ Im{D(ωI−H)−1B}

γ−1Im{D(ωI−H)−1B} Re{D(ωI−H)−1B}

)]

The value of µR can be carried out at low computational cost as the univariate
function to be minimized is unimodal. Hence the use of the real stability radius allows to
find the largest singular value of the perturbation matrix ∆, which makes the closed-loop
system unstable

Finally, advantages and shortcomings of the described techniques are briefly summa-
rized in Table 1.
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Table 1. Evaluation of the described techniques

Technique Advantages/Features Shortcomings

H∞ control

Sub-optimal solution
Robust against disturbances

Suited to unstructured uncertainty
Availability of numerical tools

Solution numerically complicated
Not unique solution for MIMO plant

High-order of the controller
Requires weights matrices

Usually applied to MG

MPC

Prediction model can be MIMO
Robust against disturbances

Availability of numerical tools
Handles input-output constraints

Needs real-time computations
Requires data handling capability, horizons

Usually applied to MG
Not suited to decentralized approaches

Structured singular
value (µ)

Suited to structured uncertainty
Availability of numerical tools

Less conservative

High-order of the controller
No closed-form methods for computation

Usually applied to MG

Condition (14)

Different design techniques
Allows the use of decentralized

control techniques
Suited also to large SG

Conservative
Requires factorization

In the case of complex perturbation
||∆||∞<1 may not be possible in practice

Only for additive model of the unstructured uncertainty

Condition (15)

Different design methods
Allows the use of decentralized

control techniques
Suited also to large SG

Conservative
In the case of complex perturbation
||∆||∞<1 may not be possible in practice

Only for additive model of the unstructured uncertainty

Backstepping Recursive design
Decentralized approach

Number of states
Not suited to SG of large dimension

Sliding mode control
Low computational burden
Robust against disturbances

Finite-time converge

Chattering problems
No numerical tools

Limit cycles if the gain is not accurately designed
Not suited to SG of large dimension

4. Illustrative Simulation

To give evidence of the potential of the described robust control techniques, an illus-
trative simulation is reported hereafter. A 24 nodes test system with 4 PVs and 2 WTGs
is shown in Figure 6. The RES penetration is large: there are 6 nodes equipped with
RESs out of 24 total nodes . Moreover, the limited extension of the DN causes a strong
interaction among the control loops. Details about the simulated test system are reported
in [8]. The two simulations have been developed in the PSCAD-EMTDC environment [61].

The robust technique adopted to design the voltage controller of any RES is described
in [8]. This method is based on model (7); operating conditions variations (such as variabil-
ity of solar irradiance and wind speed) representing model uncertainty are described by
model (8); robust stability is guaranteed according to condition (15).

Figure 7 reports the time evolution of the regulated voltage at the PCC of any RES
in the presence of a variation of the solar irradiance. In particular, the WTGs are subject
to a 10 m/s constant wind speed, and the effect of passing cloud is simulated. The solar
irradiance decreases from 1000 W/m2 to 200 W/m2. All the voltages are perturbed due
to the significant impact of the active power flows. Figure 7 clearly shows the ability of
robust controllers to counteract the effects of this perturbation, thus preserving SG stability.
The voltage regulation is satisfactory.
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Figure 6. Test system.

Feeder 1

[s]
15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0

1.010

1.020

1.030

1.040

V6

V11

V13

Feeder 2

[s]
15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0

1.000

1.010

1.020

1.030

1.040

V18

V21
V24

Figure 7. Time evolution of the voltages in presence of variation of the solar irradiance.

Conversely, Figure 8 reports the time evolution of the same regulated voltage in the
presence of variation in the wind speed. In particular, the PVs are subject to a 1000 W/m2

constant solar irradiance. The WTGs are subject to a variable wind speed; in particular the
wind speed decreases from 10 m/s to 5 m/s and afterwards increases up to 8 m/s. Addi-
tionally, in this case, the controllers guarantee SG robust stability and voltage regulation.
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Figure 8. Time evolution of the voltages in the presence of variation in the wind speed.

5. Conclusions

This short study has emphasized how, in front of the application of well-known robust
control techniques, the problem to guarantee stability in the presence of model uncertainty,
bounded disturbances and mutual interactions among control loops can successfully be
solved. The paper has a scholarly nature and is aimed at the control community to give
an overview through robust control techniques as well as provide a discussion about
challenges and models. The paper has reviewed the most important control approaches
described in various articles, as reported in the references. Some important challenges,
such as the need of a suitable model of the SG as well as the selection of an appropriate
control technique to reject the adverse effects due to both interactions among control loops
and model uncertainty are discussed. Finally, an illustrative simulation has been reported
to validate the potential of the robust control theory.
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