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Abstract: The manufacturing industry consumes electricity and natural gas to provide the power and
heat required for manufacturing. Additionally, large amounts of electric energy and heat energy are
used, and the electricity cost, amount of environmental pollution, and equipment maintenance cost
are high. Thus, optimizing the management of equipment with new energy is important to satisfy
the load demand from the system. This paper formulates the scheduling problem of these multiple
energy systems as a multi-objective linear regression model (MLRM), and an energy management
system is designed focusing on the economy and on greenhouse gas emissions. Furthermore, a variety
of optimization objectives and constraints are proposed to make the energy management scheme
more practical. Then, grey theory is combined with the common MLRM to accurately represent the
uncertainty in the system and to make the model better reflect the actual situation. This paper takes
load fluctuation, total grid operation cost, and environmental pollution value as reference standards
to measure the effect of the gray optimization algorithm. Lastly, the model is applied to optimize the
energy supply plan and its performance is demonstrated using numerical examples. The verification
results meet the optimized operating conditions of the multi-energy microgrid system.

Keywords: multiple energy system; optimal operation; multi-objective linear regression model (MLRM);
grey theory

1. Introduction

With the acceleration of industrialization and urbanization, the energy crisis, air
pollution, and other problems have become increasingly serious [1]. In order to reduce
environmental pollution and to improve power quality, the traditional power grid is
gradually transforming into a smart grid [2]. A microgrid can be developed as an effective
means for distributed power sources to connect to a smart grid [3]. A microgrid is composed
of a distributed power supply, energy storage, and load and has unique advantages in
improving the utilization rate of renewable energy. It can reduce the power interaction
with a superior power grid, can alleviate the impact on a superior power grid [4], and plays
an important role in lowering carbon emissions and in improving economic benefits.

At present, many scholars have conducted preliminary research on optimizing the
operation of a microgrid. The authors of Reference [5] researched the optimization of
operations of a microgrid based on the chaotic particle swarm optimization algorithm. The
authors of Reference [6] combined the optimization of the operation of a microgrid with the
game analysis method and proposed an optimal configuration model of an intermediate
microgrid in the distribution network based on game theory. The authors of Reference [7]
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optimized the operation of a microgrid by modifying the hypermutation operator, which
is the key mechanism of the CLONALG algorithm. Based on the non-dominated sorting
genetic algorithm (NSGA-II), an optimal solution set under all objectives was found in [8]
and used in the operation planning of a microgrid. However, the above multi-objective
optimization method has weak dynamic response ability, and it is difficult to solve the
microgrid optimization problem with real-time parameters in practical application. Al-
though literature [9] adopts grey theory to optimize the model and improve the dynamic
response speed, its optimization only targets economy and does not consider environmental
problems such as exhaust emissions during micro-grid operation.

The grey multi-objective programming algorithm is a dynamic programming algo-
rithm. The parameters in the model contain grey numbers to make up for the deficiency in
general linear programming. It not only knows the optimal configuration under established
conditions and dynamic conditions but also makes the model better reflect the objective
reality [10]. Therefore, an intelligent operation control strategy of a multi-energy micro-
grid based on the grey multi-objective programming algorithm is proposed in this paper
to effectively improve the economic costs and to reduce environmental pollution. First,
mathematical models of the economic operation cost, exhaust emission, and equipment
maintenance cost of a multi-energy microgrid are established. Second, a mathematical
model of the power supply, heat supply, and cold supply balance is established. Then,
a grey multi-objective linear programming solution model is established based on the
mathematical model to economically and environmentally optimize the operation of a
multi-energy microgrid. Finally, the effectiveness of the proposed strategy is verified using
simulations.

The main contributions of this article are as follows:

(1) Combining wind power, photoelectric power, an energy storage system, and a gas
system, the energy management system is designed with a focus on the economy and
on greenhouse gas emissions.

(2) This paper proposes a grey multi-target linear planning algorithm and optimizes multi-
target multi-energy management using the grey multi-target linear planning algorithm.

As Figure 1 shows, this article studies a multiple energy microgrid system model. This
model was established according to the MES system architecture of an area in Liaoning
Province. The solid line shows the flow of electricity, the two-way arrow shows the two-way
flow of electricity, the dotted line shows the flow of heat energy, and the thin dotted line is
the signal transmission line. As shown in Figure 1, the power generation information of all
power generation equipment and the power consumption information of power consump-
tion equipment, the heat provided by gas, electricity price, and fuel cost are transmitted
to the SCADA control system. By using the control algorithm proposed in this paper, the
control instructions of each unit are obtained and transmitted to the power generation
and heating equipment. Figure 1 shows that, in addition to the power grid, photovoltaic
cells, wind turbines, energy storage batteries, and the micro gas turbine can also supply
electricity to the system. The heat is supplied by a gas turbine engine, an electric boiler, and
thermal storage as the main sources. The cost of the system includes the electricity and gas
costs. The equipment used to detect environmental pollution mainly considers the micro
gas turbine and electric boiler system as well as the equivalent environmental pollution
produced when generating power for the power grid. Additionally, all power generation
and energy storage devices in the system need to be in the best state [11,12]. The following
section discusses the objective function and the constraint conditions of a multiple energy
microgrid system model for optimizing the operation of its equipment.
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Figure 1. Multiple energy micro grid system model. 
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Figure 1. Multiple energy micro grid system model.

2. Problem Formulations
2.1. Objective Function

As shown in Figure 1, the micro grid system model includes minimizing the system
economic operation cost, maintenance cost, and considering the environmental benefits,
minimizing emissions of the system. Set the formulation as follows:

1. The energy consumption costs

minJc =
T

∑
t=1

[
Cp

t

(
cd

p(t), cu
p(t), cr

p(t), τ
)
+ Cn

t (cn(t), v(t), τ)
]

(1)

2. The waste gas emissions

minJs =
T
∑

t=1
[Sp

t (s
p
so(t), sp

no(t), sp
co, (t), p(t), τ) + Sn

t (s
n
so(t), sn

no(t), sn
co, (t), v(t), τ)

+Sm
t (s

m
so(t), sm

no(t), sm
co, (t), v(t), τ)]

(2)

3. The components maintenance costs

The output of the wind turbines and photovoltaic cells is without artificial restrictions,
so the major variable of the operation maintenance cost function are battery, electric boiler,
gas turbine, and regenerator. The formulation is

minJp =
T
∑

t=1

[
cbp + cpvp + cwp + cEBP + cmp + cnp + cs

]
=

T
∑

t=1

[
cbp + cEBP + cmp + cnp + cs

] (3)

2.2. Energy Balance Constraints

1. The electricity supply and demand constraint

[p(t) + ps(t) + pw(t) + pm(t) + pb(t)] · τ = eload(t) (4)
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eload(t) = eEB(t) + eLT(t) + eFAU(t) + eOE(t) + eAC(t) + eDP(t) (5)

2. Heating supply constraints

qh(t) = qEB(t) + qED(t) + qs(t) · COPH(t) + qm(t) · COPM (6)

3. Cooling supply constraints

qc(t) = eAC(t) · COPA(t) (7)

2.3. Cost of Electricity, Natural Gas and Equipment Maintenance

1. Cost of electricity

Cp
t (c

d
p(t), cu

p(t), p(t), τ) =

{
cd

p(t) · p(t) · τ
cd

p(t) · p(t) · τ
i f p(t) ≥ 0
i f p(t) ≤ 0

(8)

p(t) ≤ 0 is when the time is t the upload electricity of system, cr
p(t) · p(t) + cr

p(t) ·
pres(t) is the feed-in tariff of the clean energy.

2. Cost of natural gas

Cn
t (cn(t), v(t), τ) = cn(t) · v(t) · τ (9)

3. Cost of equipment maintenance

The formula for calculating battery maintenance cost is:

cbp = a
T

∑
t=1

[
|zc

b(t)− zc
b(t− 1)|+

∣∣∣zd
b(t)− zd

b(t− 1)
∣∣∣]+ b

T

∑
t=1

[
zc

b(t)− zd
b(t)

]
(10)

where
T
∑

t=1

[ ∣∣zc
b(t)− zc

b(t− 1)
∣∣+ ∣∣∣zd

b(t)− zd
b(t− 1)

∣∣∣] is the total number of cutting of the bat-

tery,
T
∑

t=1

[
zc

b(t) + zd
b(t)

]
is the standby time of the battery, and a, b denote the free parameters

maintenance function.

4. Cost of electric boiler maintenance

cBEP = d
T

∑
t=1

[|zBE(t)− zBE(t− 1)|] + e
T

∑
t=1

zR
BE(t) (11)

where
T
∑

t=1
[|zBE(t)− zBE(t− 1)|] is the number of electric heating boiler,

T
∑

t=1
zR

BE(t) is load dis-

turbance punishment function of the boiler system, and its computation formula is as follows:

zR
BE(t) =

{
1 i f pBE(t)/pBE(t− 1) ≥ 1.5 and pBE(t− 1) 6= 0
0 others

(12)

This equation sets out the harming system disturbance rate at 50% as benchmark, only
counting the disturbance rates that are higher than the benchmark.

5. Cost of gas fired boiler maintenance

cDEP = d
T

∑
t=1

[ |zDE(t)− zDE(t− 1)|]+ e
T

∑
t=1

zR
DE(t) (13)

where
T
∑

t=1
[ |zDE(t)− zDE(t− 1)|] is the number of gas fired boiler,

T
∑

t=1
zR

DE(t) is load distur-

bance punishment function of the boiler system, and its computation formula is as follows:

zR
DE(t) =

{
1 i f pDE(t)/pDE(t− 1) ≥ 1.5 and pDE(t− 1) 6= 0
0 others

(14)
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This equation sets out the harming system disturbance rate at 50% as benchmark, only
counting the disturbance rate that are higher than the benchmark.

6. Cost of micro gas turbine maintenance

cmp = f
T

∑
t=1

∣∣zmp(t)− zmp(t− 1)
∣∣ (15)

7. Cost of thermal storage maintenance

cs = g
T

∑
t=1

[
|zc

s(t)− zc
s(t− 1)|+

∣∣∣zd
s (t)− zd

s (t− 1)
∣∣∣] (16)

where
T
∑

t=1

[
|zc

s(t)− zc
s(t− 1)|+

∣∣∣zd
s (t)− zd

s (t− 1)
∣∣∣] is the number of electric heating boiler.

2.4. Constraints of Equipment Electricity and Heat Output

1. Constraint of heat output of the electric boiler

0 ≤ eEB(t) · COP(t) = qEB(t) ≤ zEB(t) ·QEB · τ (17)

2. Constraint of heat output of the thermal storage

The heat capacity constraint equation of the thermal storage system is

0 ≤ qsr(t) + qs ≤ Qs (18)

Time continuous function of heat storage of the thermal storage system is

qsr(t + 1) = [qsr(t) + qs]µh (19)

where µh is the heat loss coefficient of the thermal storage.
Set the initial state equation for the thermal storage system as follow:

qsr(t0) = Qs0 (20)

Heat supply constraint equation of the thermal storage system is

zc
s(t)qsi

− zd
s (t)qso ≤ qs(t) ≤ zc

s(t)qsi
− zd

s (t)qso (21)

3. Constraint of heat output of the gas fired boiler

0 ≤ gED(t) · COD(t) = qED(t) ≤ zDE(t) ·QED · τ (22)

4. Constraint of electricity output of the battery

SOC state constraint equation of the battery system is

eimp

eb
= S ≤ SOC(t) ≤ 1 (23)

where S is the battery SOC lower limit index. Setting its calculating formula as the ratio of
the micro grid system’s important load and the battery rated capacity, in order to ensure
that even if the power grid failed suddenly, the important load would not suffer the impact.

Time continuous function of SOC state of the battery system is

SOC(t + 1) = SOC(t)(1− σ(t)) +
ηb(t)

eb
Ib(t) · τ (24)

Set the initial state equation for the battery system as follows:

SOC(t0) = K0 (25)
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Electricity supply constraint equation of the battery system is

zc
b(t)p

bi
− zd

b(t)pbo ≤ pb(t) ≤ zc
b(t)pbi − zd

b(t)p
bo

(26)

5. Constraint of output of the micro gas turbine

The electricity output equation of the gas turbine system is

pm(t) = pR
m · xm (27)

Constraint of electricity output of the gas turbine system is

zm(t) · pm
≤ pm(t) ≤ zm(t) · PR

m (28)

The heat output equation of the gas turbine system is

qm(t) = ηm · COPm · pm(t) ηm = (1− ηe − ηh)/ηe (29)

Simplified, considering the gas turbine used for heat and electricity production as a
basic proportional relation, the ratio is a coefficient of thermal efficiency.

The fuel consumption equation of the gas turbine system is

v(t) = α1PR
m + α2 pm(t) (30)

3. Solution Methodology
3.1. Grey Multi-Objective Linear Programming Algorithm

In grey multi-objective linear programming algorithm, whiting the grey number first
is often necessary to solve the equation [13,14]. Note grey number ã(⊗) = [a, a], then the
whitened value of ã(⊗) is a(⊗). Note that grey information of ã(⊗) is ã(⊗) = [a, a], and
the whitened value a(⊗) can set as a(⊗) ∈ [a, a] [15].

The grey multi-objective linear programming mathematics model of system is

max S = C̃(⊗) · X

st


Ã(⊗) · X ≤ B̃(⊗)

Ãeq(⊗) · X = B̃eq(⊗)
Xmin ≤ X ≤ Xmax

(31)

where C(⊗) is grey target matrix, A(⊗) and Aeq(⊗) are grey distribution matrix, while
B(⊗) and Beq(⊗) are grey constraint matrix.

S = [S1, S2, . . . , Sk]
T (32)

X = [x1, x2, . . . , xk]
T (33)

C̃(⊗) =


c̃11(⊗) c̃12(⊗) . . . c̃1n(⊗)
c̃21(⊗) c̃22(⊗) . . . c̃2n(⊗)

. . . . . . . . . . . .
c̃k1(⊗) c̃k2(⊗) . . . c̃kn(⊗)

 (34)

Ã(⊗) =


ã11(⊗) ã12(⊗) . . . ã1n(⊗)
ã21(⊗) ã22(⊗) . . . ã2n(⊗)

. . . . . . . . . . . .
ãm1(⊗) ãm2(⊗) . . . ãmn(⊗)

 (35)

Ãeq(⊗) =


ãeq11(⊗) ãeq12(⊗) . . . ãeq1n(⊗)
ãeq21(⊗) ãeq22(⊗) . . . ãeq2n(⊗)

. . . . . . . . . . . .
ãeqm1(⊗) ãeqm2(⊗) . . . ãeqmn(⊗)

 (36)
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B̃(⊗) = [b̃1(⊗), b̃2(⊗), . . . , b̃m(⊗)] (37)

B̃eq(⊗) = [b̃eq1(⊗), b̃eq2(⊗), . . . , b̃eqm(⊗)] (38)

where C̃ij(⊗) = [c ij, cij], i = 1, 2, . . . , k, j = 1, 2, . . . , n, ãij(⊗) = [aij, aij], i = 1, 2, . . . , m,

j = 1, 2, . . . , n, b̃j(⊗) = [b i, bi], i = 1, 2, . . . , m.
By consuming coefficient of the grey value to whiten, the expression is

cij(⊗) = (1− θc)c ij + θcc ij i = 1, 2, . . . , k, j = 1, 2, . . . , n (39)

aij(⊗) = (1− θa)a ij + θaa ij i = 1, 2, . . . , m, j = 1, 2, . . . , n (40)

bj(⊗) = (1− θb)b ij + θbb ij i = 1, 2, . . . , m (41)

where θc ∈ [0, 1], θa ∈ [0, 1], θb ∈ [0, 1], they respectively are the coefficients of cij(⊗), aij(⊗),
bj(⊗), the corresponding grey multi-objective linear programming solution is S(θc, θb, θa),
and the feasible solution domain is R(θb, θa).

3.2. Model Solving Method

The whitened optimal solution matrix is an n-order zero matrix, and the whitened
probability integral matrix is an m-order zero matrix. Then, the technical parameters of the
power generation and energy storage modules are denoted A and Aeq, respectively, and the
thermal and electric load values are denoted B and Beq, respectively. The corresponding
coefficient matrix of the grey threshold can be used to present a variable range of the
parameters. Set the corresponding whitened coefficients of Aeq and Beq as a and b, Aeq ∼
a ∈ [0, 1] and Beq ∼ b ∈ [0, 1] [16]. The whiting formulae are provided in (40) and (41). The
whitened coefficient and corresponding coefficient are iteratively calculated. The algorithm
for the flow of model substitution is shown in Figure 2.
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Step 1: Initialization. Whiten the optimal solution matrix. Whiten the probability
integral matrix, which is a [1/n, 1/m] order zero matrix. Obtain the technical parameters of
the power generation and energy storage modules. Obtain the model constraint matrices A
and Aeq, and the thermal and electric load values, and obtain the model constraint matrices
B and Beq. If the parameters are in the variable range, the corresponding coefficient matrix
is represented by the corresponding grey field value.

Step 2: Whiten the grey coefficient in the model, and set the corresponding whitening
uptake coefficients Aeq ∼ a ∈ [0, 1] and Beq ∼ b ∈ [0, 1] in the formulae from (40) and (41).

Step 3: Cycle the whitening uptake coefficient step by step to solve the optimal solution
of multi-objective programming for the corresponding whitening uptake coefficient, and
output the whitening optimal solution matrix S1 at the end of the cycle.

Step 4: Using the grey multi-objective linear programming model of theorem 1
and theorem 2, for any point A and point B of the corresponding solution plane, if
0 ≤ µa1 < µa2 ≤ 1 and 0 ≤ λb2 < λb1 ≤ 1, then S(θb1, θa1) ⊂ S(θb2, θa2). Therefore,
the probability function is assigned to the whitening uptake coefficient, and the probability
integral is solved to output the probability integral matrix.

Step 5: Weight the solution of the matrix to obtain the optimal solution for the proba-
bility integral that optimizes the global optimal solution under double constraints.

4. Numerical Results
4.1. Example Analysis

First, consider the grey multi-objective linear programming model of the objective
function values, for the purposes of this example, of the standard time-sharing electricity
charge for industrial enterprises according to the rules and relevant regulations of electricity
prices in the power supply business, according to the transformer capacity (including high-
pressure motors without any transformer capacity) or the maximum demand. Large data
on the 10 kv industrial electricity prices from Liaoning province are shown in Table 1.

Table 1. 10 kv Electricity price basic data questionnaire in Liaoning province.

Time (h)
- 5:00–7:00 -

7:00–12:00 12:00–17:00 -
17:00–21:00 21:00–22:00 22:00–5:00

Price (RMB/kWh) 0.7482 0.4988 0.2494

As the gas price is not fixed, the online query gas prices are set according to the data
from 24 September 2021 based on the Shenyang gas price at 3.48 yuan/cubic meter.

The statistics for the constraint function in the model, including the environmental
impact coefficient and equipment capacity configuration, are shown in Table 2 [17–19].

Table 2. Power generation unit environmental impact parameter table.

Power Type Pollution Coefficient (g/kWh) Equipment Capacity (kW)

Power grid 889 -
Wind turbines 0 15

PV cells 0 28
Micro gas turbine 724.6 80

Set the initial state of batteries as SOC(t0) = K0 = 1/30, and set the initial state of
thermal storage as qsr(t0) = −10. The micro gas turbine power supply constraint is [0, 80],
the grey threshold of the heating coefficient is [0.4, 0.6], the boiler system power supply
constraint is [01, 20], and the grey threshold of the thermal storage’s heat loss coefficient
is [0.7, 0.7]. The data for wind turbines, photovoltaic cells, heat load, and electric load
have normal distributions within the scope of the threshold. Thus, the function for the
corresponding whitened coefficient has a normal distribution. They can be initialized as
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λ(bh) = N(0.5 0.1), λ(be) = N(0.5 0.2), and λ(bs) = N(0.5 0.15). The grey domain
of the power equipment’s dissipative coefficient is the average distribution probability
function. Select m = n = 0.02, and run the simulation to calculate the model.

Use the grey multiple linear regression algorithms based on weather information
to forecast the amount of energy generated by the wind turbines and PV battery. The
forecasting result’s error is under 10%. Therefore, the constraint matrix of its grey domain
can be set as ± 10% of the forecasting result, which is shown in Table 3.

The result is as follows:

Table 3. Grey domain settings of Pw, Ps, eload, qh.

Time (h) P
– w

–
Pw P

– s

–
Ps e

– load

–
eload q

–h

–
qh

21 9.792 11.968 0.00 0.00 1.3 1.6 14.9 18.2
22 12.672 15 0.00 0.00 2.5 3.1 14.9 18.2
23 10.368 12.672 0.00 0.00 2.5 3.1 14.9 18.2
24 11.52 14.08 0.00 0.00 2.1 2.5 14.5 17.7
1 9.936 12.144 0.00 0.00 1.3 1.6 14.9 18.2
2 10.656 13.024 0.00 0.00 1.3 1.6 14.9 18.2
3 9.648 11.792 0.00 0.00 1.3 1.6 14.9 18.2
4 11.952 14.608 0.00 0.00 1.3 1.6 14.9 18.2
5 10.8 13.2 0.00 0.00 1.3 1.6 14.9 18.2
6 8.352 10.208 0.45 0.55 2.5 3.1 14.9 18.2
7 8.928 10.912 1.62 1.98 1.3 1.6 14.9 18.2
8 7.344 8.976 3.15 3.85 1.3 1.6 39.3 48
9 5.904 7.216 8.82 10.78 79.8 97.5 39.7 48.5

10 7.2 8.8 12.15 14.85 188.0 229.8 36.9 45.1
11 3.6288 4.4352 13.95 17.05 203.2 248.3 51.7 63.2
12 2.88 3.52 18.36 22.44 166.9 204.0 75.2 92
13 2.592 3.168 18.99 23.21 157.7 192.8 63.2 77.2
14 3.744 4.576 19.62 23.98 201.9 246.8 57.1 69.8
15 2.448 2.992 16.11 19.69 206.6 252.6 70.8 86.6
16 3.6 4.4 9.99 12.21 216.0 264.0 47.2 57.7
17 4.752 5.808 6.03 7.37 140.4 171.5 52.9 64.6
18 6.912 8.448 0.45 0.55 83.0 101.4 38 46.5
19 8.784 10.736 0.00 0.00 167.6 204.8 28.6 34.9
20 10.656 13.024 0.00 0.00 161.9 197.8 16.1 19.6

Due to the industrial enterprises’ load being of a single wave form, during 21–24 PM,
the load is in the low range, so the energy storage unit during this time period cannot
self-prepare for the next 24 h and loses part of its energy storage function. Therefore, in
order to achieve maximum energy-saving effects, the optimization time period is adjusted
forward by 4 h. In order to conveniently read the results shown below, other than the
energy storage equipment, the result is still shown with the x-axis starting at zero.

4.2. Simulation Result

First, in the condition m = n = 0.02, the optimal solution matrix of the whitened values
and the corresponding probability distribution value of the whitened coefficient can be
calculated, as shown three-dimensionally in Figure 3.
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The range of corresponding whitening constraint values a and b for the x- and y-axes is

[0, 1], µα = 0.02, and λ(bh) = N(0.5 0.1), integrating
0∫
i

50∫
j

µ(i)λ(j)didj. Then, the integral

results and the optimal whitened solution are weighted by sum, and the results obtained
are shown in Figure 4.
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Figure 6 shows an electricity supply plan for microgrid power. When the electric load 
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Figure 4. Grey multi-objective programming the global optimal solution surface.

To achieve the optimal solution after comprehensive consideration, the objective
functions need to be as economical as possible while meeting most energy constraints. The
optimal solution of the resulting surface is shown in Figure 5. The optimal solution of
the probability integral is 85.44%, and the corresponding points are S (0.02, 0.34) = 0.02.
However, that point and the optimal solution value do not have physical meanings. The
plan with all equipment running is shown as follows, and the electrical load requirements
and their grey domain values are shown in Figure 5.
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Figure 5. Electrical load requirements and their grey domain values.

Figure 6 shows an electricity supply plan for microgrid power. When the electric load
is low, the period of the energy generated by wind power is high and the storage battery is
charged to full capacity in preparation for a peak load. Due to the microgrid coordinating
energy, a significant peak sharpening effect is seen, where 48% of the peak electricity is
provided by the microgrid and 50% of the flat electricity is provided by other distributed
units of the system.
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The output power of the wind turbines and their grey domain values are shown in
Figure 7.
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The output power of the photovoltaic cells and their grey domain values are shown in
Figure 8.
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Figure 9 presents the micro gas turbine electricity supply plan, and the micro gas
turbine’s main power period is the peak load period for electricity and heat, all while
running under maximum capacity. During this period, the cost of using power generated
by the gas turbine is lower than that from the power grid. Thus, the gas turbine helps
supply heat energy.
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Figure 10 shows the performance of the battery system, with the negative part indicat-
ing that the battery is in a charged state and the positive part indicating that the battery is
in a discharged state. As seen, at 09:00, 10:00, 13:00, and other times when battery energy
is required, the battery is in a discharged state, and the discharged power reaches a peak
suppression effect when the battery reaches its peak, while the battery is in a charged or
idle state during the remaining time.

Of note, the SOC of the battery is measured at the initial moment of each time period,
so the SOC of each time period is determined according to the charge and discharge of the
battery from the previous time. In contrast, the positive part of the black curve indicates
that the battery is in a charged state while the negative part indicates that the battery is in a
discharged state.

The SOC of the battery is shown in Figure 11.
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Figure 13 shows the heat supply plan for the heating boiler system. The duration of
heat supplied is 24 h a day and it is a little higher during the peak period, while no big
fluctuations occur.
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Figure 14 shows the micro gas turbine for the system that provides heat, and the
heating load for the grey value is shown in the figure by applying the global optimal to the
heating load and by using the visible micro gas turbine as the main heat source.
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In Figure 15, the heat supply plan of the thermal storage system can be seen in the hot
trough period in the heat storage condition. When run, it instantaneously releases heat,
and during the day, it charges and discharges energy many times.
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The remaining heat in thermal storage is shown in Figure 16.
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Considering the corresponding equipment for energy supply and demand relations,
and each period when the main equipment supplies the load power, a detailed analysis
of the electricity supply and demand relationship is shown in Figure 17 and a detailed
analysis of the heat supply and demand relationship is shown in Figure 18.
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In Figure 17, the system load includes electricity used for lighting, ventilation, office
buildings, and air conditioning; electricity production; and electricity from the electric
heating boiler. The supply of electricity is from the grid, a miniature gas turbine, wind
turbines, photovoltaic cells, as well as the battery. During 20:00–7:00, which is a trough in
the electricity load period, the power is mainly provided by wind turbines, while during
8:00–19:00, which is the peak load period, power is mainly provided by the power grid and
a gas turbine. Compared with the single-energy-source supply plan, the battery plays a
very important role in coordinating energy.

As seen in Figure 18, thermal storage plays an important role in coordinating heat.
During 20:00–6:00, the electric heating boiler is the only heat supply source. During
7:00–19:00, which is the peak heat load period, the heat load is mainly provided by the
gas turbine, the electric boiler, and thermal storage. Therefore, the gas turbine supplies
the majority of heat during the peak hot load period. The use of thermal storage avoids
frequent alterations in the gas turbine and electric boiler, which can increase the heating
efficiency and the service life of the equipment.

The running results of two optimization algorithms and the algorithm without dis-
tributed energy resource and optimization are shown in Figure 19. From these results,
the calculated results are shown as being able to optimize the system. Since methods
have advanced and the economic costs of this method are discussed, a comparison and an
analysis of various kinds of optimization methods are shown in Table 4.

In common multiple linear regression algorithms, there are multiple objective functions
and certain contradictions between objectives. In the case, there is no optimal solution of
the usual meaning. The solution of the multi-objective planning problem can be divided
into three situations: (1) If at least one solution enables all the objectives of the multi-
objective planning problem to be achieved, the solution is called the optimal solution for
the multi-objective planning; (2) If at least one solution can only meet part of the importance
objectives in the multi-objective planning problem, the solution is called a suboptimal or
feasible solution for multi-objective planning; (3) If solution that can meet any goal of the
multi-target planning problem cannot be found, then the multi-target planning problem
has no solution. At this time, it is shown that the existing constraints of the multi-target
planning problem are contradictory, and reasonable and feasible goals need to be reset
for solution.
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Table 4. A comparison of the performances of different methods.

Optimization Method load Fluctuation
Meeting Rate Total Cost ($) Environment Pollution

Value (g/kWh)

Without distributed energy resource and optimization 100% 223.6 1.97 × 106

Common multiple linear regression algorithms 25% 187.3 1.6 × 106

Grey multiple linear regression optimization algorithms 87% 173.3 1.7 × 106

There are many solutions for common multiple linear regression algorithms, such
as the ideal point method, sum of square weighting method, linear weighting method,
priority method, minimum maximum method, etc. This paper takes the priority method as
the solution method of the common multiple linear regression algorithms. The basic idea
of the method is to divide into different priorities according to the importance between
different targets. First seeking the optimal value of the high priority objective function, on
the premise of ensuring that the high priority target, and then seeking the optimal value
of the low priority target function, the optimal solution is the multi-objective planning
problem (satisfactory solution).

From Table 4, forecasting the cost for one day as an example, when the system has
no distributed energy resource and optimization, the total energy consumption cost is
223.6 USD, the environment pollution value is 1.97 × 106, and the total cost of a day has a
lot of room for improvement.

Using common multi-objective linear programming algorithms, because new energy
resources are replacing the traditional power grid, the total cost is reduced by a lot and
environmental pollution is also greatly reduced. However, for system uncertainty, this
method is useful when the load of the system is low. Therefore, the method is adopted.

Using the proposed grey multi-objective linear regression optimization algorithms to
obtain the global optimal solution, the new total cost is 27.1 USD, in which electricity makes
up 120.9 USD, the gas fee is 58.6 USD, and the environment pollution value is 1.7 × 106,
compared with the cost when optimization is not used, 223.6 USD; the amount of savings
from daily optimization, 50.3 USD; and the reduction in environmental pollution, 2.7 × 105.

The optimization results in Table 4 mainly reflect the constraints between energy
supply and demand. The optimization results are not only affected by the energy supply
and demand, but also by the time-sharing electricity price. The rise in electricity price will
increase the total cost of power grid operation, but after optimizing the system with a gray
multi-target linear planning method, the cost-saving cost will increase. This is due to the
optimized system, and its utilization rate of electricity is greatly improved, thus saving
more power. The electric energy saved is calculated into the cost saving according to the
electricity price at this time, which will ultimately increase the cost saving.

In order to highlight the characteristics of the method used in this paper, we compared
the results with those from recent literature. Taking Reference [20] as an example, the
following parts are included in the comparison:

This paper proposes a distributed distribution feeder load management method based
on an autonomous decision-making entity that not only relieves the system pressure, but
also ensures customer satisfaction by optimizing the demand constraint limit to alleviate
the demand rebound effect. Compared with the results of a method based on the water
injection algorithm and the simple and fair distribution method, the method designed is
verified as having a more efficient performance in alleviating demand rebound and in
reducing transformer congestion.

However, in order to meet the requirements of the model solution or to facilitate
calculation, the equipment parameters and load prediction data involved in the above
article are regarded as ideal data, but this does not reflect reality. As can be seen from the
optimization results of this paper, the changes in parameters and load requirements greatly
affect the final optimization results. Therefore, the grey multi-target linear planning algo-
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rithm proposed in this paper can obtain relatively global optimal results when considering
uncertainties or uncertain parameters in an actual situation.

In the process of optimizing the operation of a multi-energy microgrid in this paper,
the corresponding energy management was conducted from the perspective of the economy
and exhaust emissions. At the same time, based on relevant data from actual industrial
enterprises, a multi-energy microgrid model integrating wind power, photoelectric power,
an energy storage system, and a gas system is established, and the optimized constraint
function and control target of a multi-energy microgrid are determined, which is more in
line with the actual situation in a multi-energy microgrid.

5. Conclusions

In this paper, the management of a multiple energy system in the manufacturing
industry is considered and balancing the optimization of optimal economic goals, optimal
environmental targets, and use of optimal equipment is attempted. First, the scheduling
problem is formulated as multiple linear regression algorithms. Second, grey theory is
applied to the formulation to solve uncertainty factors. Third, improved grey multiple
linear regression optimization algorithms are applied to optimize all of the power supply
devices and energy storage equipment. Note that the scheduling problem is continuously
solved and that only the equipment’s capacity is implemented. This could be affected by
adjusting the device’s capacity, especially the storage device.

The following points are summaries of the innovations in this study:

(1) Combining wind power, photoelectric power, an energy storage system, and a gas
system, the energy management system is designed focused on the economy and
on greenhouse gas emissions. Considering the actual operation of a multi-energy
microgrid system, in order to make the energy management scheme more practical,
a variety of optimization objectives and constraints are proposed in this paper. The
optimization objectives and constraints are determined not only by taking into account
the economic cost of micro-network operations, but also by mathematically modeling
the exhaust emissions when the system is run and by setting the corresponding energy
control targets in terms of economic benefits and environmental protection.

(2) For the possible uncertainty resulting when constructing the multi-objective model
and the constraints in practical engineering cases, the grey multi-objective linear
planning algorithm is proposed. Using the grey multi-target linear planning algorithm,
the multi-target multi-energy optimization management of a microgrid is realized. By
comparisons with multiple optimization methods, the economic costs of the proposed
method are verified and the amount of cost savings and the cost recovered using our
method are analyzed. The verification results meet the optimized operating conditions
of a multi-energy microgrid system after analysis.

The method proposed in this paper can realize the optimal operation of multi-energy
microgrid systems, but some shortcomings are also present. The focus of the optimal
operation of the multi-energy microgrid system proposed in this paper is on small and
medium-sized industrial enterprises. Due to their own electric load and thermal load
characteristics, a typical winter day is used as the data source for the load samples. This
paper did not consider the use of a cooling load in high temperatures during summer,
but considering recent trends in global warming, with the temperature increasing in
summer, even industrial enterprises need to be equipped with corresponding refrigeration
equipment to ensure that production activities progress as usual. Therefore, in a follow-up
research, we should consider the impact of a summer cooling load on the optimal operation
of a multi-energy microgrid system and should increase the accuracy and reliability of the
microgrid optimization operation.

At the same time, the methods proposed in this paper are based on theoretical research
and the focus is also limited to the power load, with obvious peak and trough periods for
industrial enterprises. Certain practical engineering cases are also lacking to verify the
practicability of our methods. In the future, further development of the software is needed
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to apply it to an actual energy efficiency management system, to constantly improve the
flexibility and accuracy of the algorithm, and finally to invest in complex microgrids with
various types of loads to contribute to green energy savings.
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Nomenclature

Cp
t Total cost of electricity during t (USD).

Cn
t Total cost of natural gas during t (USD).

p(t) Power from the grid during t (kw)
pres(t) Clean power generation during t (kWh)
v(t) Natural gas consumption during t (m3)
cd

p(t) Buying price of electricity during t (USD/kWh)
cu

p(t) Selling price of electricity during t (USD/kWh).
cr

p p(t) Spontaneous self-used subsidy electricity price of electricity during t (USD/kWh).
cn(t) Natural gas price of electricity during t (USD/kWh)
τ Time interval
Sp

t Exhaust gas amount produced by using electricity during t
sp

so(t) Exhaust SOX amount produced by using electricity during t
sp

no(t) Exhaust NOX amount produced by using electricity during t
sp

co Exhaust CO2 amount produced by using electricity during t
sn

so(t) Exhaust SOX amount produced by using gas turbines during t
sn

no(t) Exhaust NOX amount produced by using gas turbines during t
sn

co Exhaust CO2 amount produced by using gas turbines during t
sm

so(t) Exhaust SOX amount produced by using gas fired boiler during t
sm

no(t) Exhaust NOX amount produced by using gas fired boiler during t
sm

co Exhaust CO2 amount produced by using gas fired boiler during t
cbp Maintenance cost of the battery (USD)
cpvp Maintenance cost of the photovoltaic cells (USD)
cwp Maintenance cost of the wind turbines (USD)
cEBP Maintenance cost of the electric boiler (USD)
cmp Maintenance cost of the micro gas turbines (USD)
cnp Maintenance cost of the micro gas fired boiler (USD)
cs Maintenance cost of the heat accumulator (USD)
eload(t) Total electricity load demand during t (kWh)
ps(t) Electricity provided by the photovoltaic cells during t (kWh)
pw(t) Electricity provided by the wind turbines during t (kWh)
pm(t) Electricity provided by the micro gas turbines during t (kWh)
pb(t) Electricity provided by the battery during t (kWh), charge (>0) or discharge (<0)
qh(t) Total heat demand during t (kWh).
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qEB(t) Heat provided by the electric boiler during t (kWh)
qED(t) Heat provided by the gas fired boiler during t (kWh)
qs(t) Heat provided by the heat accumulator during t (kWh)
qm(t) Heat provided by the micro gas turbines during t (kWh)
COPH(t) Heat converse rate of the heat accumulator during t
COPM(t) Heat converse rate of the micro gas turbines during t
COP(t) Heat converse rate of the electric boiler during t
COD(t) Heat converse rate of the electric boiler during t
zc

b(t) Discrete variable, “1” for the battery charging during t, “0,” otherwise.
zd

b(t) Discrete variable, “1” for the battery discharging during t, “0,” otherwise.
zmp(t) Discrete variable, “1” for the micro gas turbines running during t, “0,” otherwise.
zc

s Discrete variable, “1” for the heat accumulator charging during t, “0,” otherwise.
zd

s Discrete variable, “1” for the heat accumulator discharging during t, “0,” otherwise.
zEB(t) Discrete variable, “1” for the electric boiler running during t, “0,” otherwise.
zDE(t) Discrete variable, “1” for the gas fired boiler running during t, “0,” otherwise.
zm(t) Discrete variable, “1” for the micro gas turbines running during t, “0,” otherwise.
gED(t) Gas consumption of gas fired boiler
QEB Rated power of the electric boiler (kW)
QED Rated power of the gas fired boiler (kW)
Qs Rated power of the heat accumulator (kW)
qsr(t) Remaining heat energy in the heat accumulator device during t(kWh).
qs(t) Heat energy supplied by the heat accumulator device during t(kWh).
q

si
Minimal heat load rate of the heat accumulator (kW)

qsi Maximal heat load rate of the heat accumulator (kW)
q

so
Minimal discharge rate of the battery (kW)

qso Maximal discharge rate of the battery (kW)
xm Electrical load ratio of the micro gas turbines during t, xm = pm/pR

m
pR

m Capacity of the micro gas turbines (kWh)
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