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Abstract: Accurately forecasting the output of grid connected wind and solar systems is critical to
increasing the overall penetration of renewables on the electrical network. This is especially the case
in Australia, where there has been a massive increase in solar and wind farms in the last 15 years, as
well as in roof top solar, both domestic and commercial. For example, in 2020, 27% of the electricity in
Australia was from renewable sources, and in South Australia almost 60% was from wind and solar.
In the literature, there has been extensive research reported on solar and wind resource, entailing
both point and interval forecasts, but there has been much less focus on the forecasting of output
from wind and solar systems. In this review, we canvass both what has been reported and also what
gaps remain. In the case of the latter topic, there are numerous aspects that are not well dealt with
in the literature. We have added discussion on the value of forecasts, rather than just focusing on
forecast skill. Further, we present a section on how to deal with conditionally changing variance, a
topic that has little focus in the literature. One other topic may be particularly important in Australia
at the moment, but may become more widespread. This is how to deal with the concept of a clear sky
output from a solar farm when the field is oversized compared to the inverter capacity, resulting in a
plateau for the output.

Keywords: solar farms; wind farms; probabilistic forecasting; ARMA models; ramping; ARCH effect

1. Introduction

The goal is to describe the present state of forecasting power output from solar and
wind farms. Narrowing the topic from forecasting the resource arises from the present
needs of the Australian National Electricity Market (NEM) and we suggest the near future
needs of markets throughout the world. In the past, and we will document some of this
activity, the focus has been on forecasting the resource, solar radiation or wind speed.
In [1], there is an explicit representation of what forecasting tools operate at which time
and spatial scales. The depiction does not include artificial intelligence tools apart from
artificial neural network (ANN) models. Our work in this review will focus mainly on
the forecast horizon that is relevant to the NEM. The way the NEM works is that there
are three types of generators. Scheduled generators submit a bid stack every five minutes
throughout the year detailing how much electricity they can supply in the subsequent five
minutes at each of ten price bands from -AUD1000 to AUD15,000 per MWh. They are
termed price makers. Renewable energy generators with capacity between 30 and 100 MW
are termed semi-scheduled generators. They do not submit bids, but can be curtailed.
Generators of any type under 30 MW are non scheduled and cannot be curtailed. The
latter two categories are termed price takers, and they cannot affect the market. After
the scheduled generators submit their bid stacks, the Australian Energy Market Operator
(AEMO) runs a linear program to determine how far up the stack they have to go to meet
their forecasted electricity demand. This is then the spot price and all generation in that
five-minute period is paid that price.
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In 2014, AEMO established the Australian Solar Energy Forecasting System (ASEFS),
a derivative of the Australian Wind Energy Forecasting System (AWEFS) that it established
years before in response to the growth in wind farm development in Australia, beginning in
the early 2000s. The AWEFS was somewhat derived from similar systems at play in Europe,
but with modifications to suit the NEM. It combines SCADA (Supervisory Control and
Data Acquisition) measurements from the farm with Numerical Weather Prediction (NWP)
forecasts as well as information about the operating condition of the farms, such as turbines
out of action and so on to produce forecasts at various time scales and horizons, including
the five-minute operational forecast period. The ASEFS system was developed to provide
similar activities for solar farms above 30 MW capacity. For a five-minute ahead timeframe,
ASEFS produces Unconstrained Intermittent Generation Forecasts (UIGF), which are used
to produce a dispatch target for the semi-scheduled solar farm. Failing to come within
a prescribed tolerance of that target can result in what is termed a Causer Pays penalty.
From AEMO, contribution factors are determined for the purpose of assigning the costs of
regulating Frequency Control and Ancillary Services (FCAS) to those market participants
who have caused the need for those services. Because the penalties were becoming onerous
for wind and solar farms, AEMO decided in 2018 that by the end of 2020, these generators
would have to self forecast their output before the start of a five-minute interval for that
interval. In reality, the goal is to forecast the power output for time t at approximately
seven minute before, in order to give time to relay the forecast to AEMO and for that body
to react.

In order to manage the transition, AEMO asked the Australian Renewable Energy
Agency (ARENA) to fund projects to help the wind and solar farms improve their forecast
capabilities. Two of the authors (Boland and Farah), were part of one of the funded projects,
the Solar Power Ensemble Forecaster (SPEF). This team blended forecasts from statistical,
NWP, sky camera and satellite tools. We mention this as one example of how the field of
forecasting is advancing. However, the main point to make is that in Australia, as in the
rest of the world, the need for reliable forecasting of solar irradiance and also output from
solar farms is increasing.

In this paper, we will go into some detail about the point forecasting of wind speed
and wind farm output, plus solar irradiance and solar farm output, as well as interval
forecasting. We will also describe what is being done about another growing problem
in this field, that of forecasting ramps. Ramps are sudden changes in output caused
principally by cloud motion. Obviously these ramps may be sudden negative or positive
changes. Finally, we will describe a number of areas that are not covered, or inadequately
covered in the literature. As one example, the solar farms in Australia generally have
oversized fields of panels. We suggest this is probably to have a better idea of the projected
output for a number of hours on a clear day. As a result, the concept of a clear sky model
for solar irradiance must be adjusted for the farm output. We suggest that these gaps
result principally from the fact that dealing with output from large scale solar installations
distributed throughout the grid is a relatively recent phenomenon.

2. Forecasting Methods

In [2], there are a number of articles referred to that deal with various point forecasting
methods. These are summarised in Table 1. In [3], a similar array of papers was described
for interval or probabilistic forecasting, as in Table 2. We include error measures for the
tools in the papers in Table 1. For probabilistic forecasting tools in Table 2, there is little
agreement in the field as yet as to what measures are appropriate for evaluating methods.
However, it is hoped that this will be rectified in the near future through a project in
Task 16 of the International Energy Agency. This project focuses on the benchmarking of
probabilistic forecasting methods and is led by Professor Philippe Lauret of Université de
La Reunion, and includes present author Boland.
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Table 1. Point forecasting.

Forecast Model Evaluation Metrics (Best Results) Reference

Elmann artificial neural network NMBE (−0.21%), NMAE (6.50%), SD
(0.11%), NRMSE (10.91%) De Giorgi et al. [4]

Regressions in logs, autoregressive
integrated moving average (ARIMA),

unobserved components models, transfer
functions, neural networks and hybrid

models

MAPE (0.1263) Reikard [5]

Multiple feed-forward neural networks
for irradiance forecast + PV model

MAE (7.03 W/m2), MAPE (3.41%), RMSE
(8.60 W/m2), R (0.99)

Durrani et al. [6]

Least square support vector machines
(LS-SVM), LS-SVM with wavelet

decomposition, ANN

NMBE (0.12%), NMAE (6.40%), NRMSE
(9.60%) De Giorgi et al. [7]

Correlation-based feature selection for
univariate and multivariate NN ensemble

and SVR
MAE (45.11 kW), MRE (3.92%) Rana et al. [8]

Feed-forward neural networks and
physical hybrid ANN NMAE (<1.0%), WMAE (1.96%) Nespoli et al. [9]

Fourier series with coupled
autoregressive (AR) and dynamical

system (CARDS) model

MeAPE (7.53%, 10.85%), MBE (0.45,
0.0002), KSI (17.92%, –), NRMSE (16.50%,

17.16%)
Huang et al. [10], Huang and Boland [11]

Autoregressive moving average (ARMA)
and ARIMA models fitted by the

log-likelihood function
MAE (37.95 W/m2), MAPE (0.1%) Colak et al. [12]

Fourier series plus autoregressive models,
clear sky index plus plus neural net

models and clear sky index plus ARMA
models

NMBE (0.08%), NRMSE (10.91%), NMAD
(5.12%) Boland et al. [13]

Global and mesoscale numerical weather
prediction models combined with

persistence model, time series models,
k-nearest neighbours (KNN) models,

ANN models and adaptive neuro-fuzzy
models

RMSE (4243.01 Wh), NRMSE (11.79%),
ME (−42.8 Wh), NME(−0.12%), MAE

(2308.3 Wh), NMAE (6.41%)
Fernandez-Jimenez et al. [14]

Reforcasting model combined with cloud
tracking, ARMA and KNN models

MBE (0.1 kW), MAE (20.7 kW), RMSE
(35.5 kW), SRMSE (26.2%) Chu et al. [15]

Verification of deterministic forecasts A review paper Yang et al. [16]

Table 2. Interval forecasting.

Forecast Model Reference

Non-parametric predictive density of solar irradiance for probabilistic forecasting Grantham et al. [17]
Probabilistic forecasting of solar radiation Grantham et al. [17]
Probabilistic forecasting of PV power Ni et al. [18]
Probabilistic forecasting of solar radiation Boland and Grantham [19]
Probabilistic forecasting of solar radiation Golestaneh et al. [20]
Ensemble solar forecasting with probabilistic post processing Yagli et al. [21]
ARMA and GARCH for prediction intervals David et al. [22]
Review of tools for probabilistic forecasting of PV power Ahmed et al. [23]
Review of tools for probabilistic forecasting of wind power generation Zhang et al. [24]
Probabilistic forecasting of wind power generation using predictive distribution optimisation Sun et al. [25]
Probabilistic forecasting of wind power generation using Gaussian mixture models Jin et al. [26]
Probabilistic forecasting of wind power generation using ensemble methods Kim and Hur [27]

As can be seen from Table 1, methods for point forecasting vary enormously. They
range from very straightforward structural models through NWP, satellite tools to artificial
intelligence methods. Also what varies is both the scale and forecasting horizon, and
that also has impact on what type of model is used. In [1], their Figure 4 gives a good
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description of the temporal and spatial zones for different approaches. The methods for
probabilistic forecasting of wind and solar energy are varied. They range from use of
ensemble methods, particularly for wind speed, to parametric methods using assumptions
that the error distributions are either Gaussian, Laplace or other, to non-parametric methods
such as quantile regression. We will now give greater detail on a few papers that give us
insight into the range of techniques.

3. Point Forecasting

Jiang et al. [28] use a combination of long short-term memory (LSTM) and autore-
gressive moving average (ARMA) approaches for forecasting five-minute power with a
zero lead time. The training set and test set were randomly selected from the PV microgrid
system of Hangzhou Dianzi University and used for PV output prediction according to
different seasons and weather types. The results for the combined LSTM-ARMA compared
well with either single model and also against a persistence forecast. The evaluations were
performed for a small set of clear, cloudy and rainy days separately. It is good to show the
results for different types of days. However, there are limitations on the study. The evalua-
tion should be carried out on a much larger data set. Further, it would be useful to compare
the results against smart persistence, rather than simple persistence. The evaluation did not
include bias either, which we view as a critical measure. If a model is biased, then it should
be investigated to correct this, before any other evaluation is performed. The authors
also mention prediction of volatility but there is no evidence of probabilistic forecasting.
Note that they also use zero lead time for the forecasts. In a scientific sense, this may be
fine, but in an operational sense it is unrealistic as the grid operators need time to react to
the forecast.

Mellit et al. [29] provide an extensive review of what has been published in the field
of forecasting photovoltaic output power. The methods range over physical, statistical,
machine learning and combinations of these. They cover both point and probabilistic
forecasting tools, and discuss forecast horizons and lead times. There are a few questions
that arise first. One is that it is unclear how many of the papers canvassed are actually
for power from installations, and how many are for forecasting solar irradiance—for there
seem to be a lot that focus on the latter. The real strength of their review is in its concluding
remarks. To summarise, they point out that

• Though machine learning techniques are used a lot (note that they include ANN as an
ML technique), deep learning techniques have not been utilised as much.

• Very short term, very long term and regional forecasting are subjects that are not
covered well.

• Most artificial intelligence (AI) methods work well on sunny days but poorly on
cloudy ones.

• Hybrid models work best.

Chen et al. [30] predict one-step-ahead five-minute power output of solar PV systems
with long short-term memory (LSTM) models learned from historical power outputs and
meteorological measurements (temperature, relative humidity, global horizontal radiation
and diffuse horizontal radiation). Notably, they train individual LSTM models with varied
data set at each forecasting time step. Hence, a radiation classification coordinate (RCC)
method is proposed to select the training samples as the most similar time points in the
past 30 days based on the lagged global horizontal radiation profile approaching the time
points. The proposed RCC-LSTM model achieved higher forecast accuracy than four
other data-driven models of the test results over 12 random days (3 days each for four
seasons). However, the testing sample size is too small when two years of data are available.
Moreover, the RCC-LSTM model seems to have a lagging issue in addressing sudden ramps,
as seen in their Figure 10. It is worth mentioning that, unlike solar farms in Australia, the
two solar systems studied do not oversize the field of panels compared to their inverter
capacity. A significant observation they make is that the choice of prediction model often
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depends on the application scenario. We suggest that this is a very important observation
and we will examine this connection of model and purpose further in Section 7.2.

In their work [31], Al Kandari and Ahmad explore four averaging approaches (from
simple to weighted) to combine machine learning and statistical models and achieved
higher accuracy in forecasting day-ahead daily solar PV power generation from historical
meteorological data and solar power output. The proposed machine learning and statistical
hybrid model (MLSHM) consists of the long short-term memory (LSTM) model, the gated
recurrent unit (GRU) model and the Theta statistical method. To increase the diversity of
the proposed ensemble model, the authors train the two machine learning models with
separate datasets. However, it is unclear whether the training datasets are representative of
the overall dynamics of the application data. Furthermore, the window size for LSTM and
GRU is set to 2 in the experiments, meaning the forecast is learned from the previous two
days data. Therefore, it suggests the LSTM or GRU may not be the best option if there is
no long-term relationship in the time series of the normalised daily solar power output. It
would also be good to explore and verify the importance of meteorological data in their
study. Moreover, additional coefficients are recommended for the Theta statistical model to
fit the Cocoa data where large variability exists.

Delgado and Fahim [32] analyse the ten-minute SCADA system data of wind turbines
to understand the wind behaviour and power generation patterns with three proposed
visualisations: Cartesian, polar, and cylindrical coordinates. They also present univariate
one-step-ahead forecasting models based on long short-term memory (LSTM), covering
both resource (wind speed and direction) and power output (generated active power and
derived theoretical power). The test results show the predictions match actuals with minor
errors except for time steps of abrupt changes. Notably, higher accuracy is achieved in
forecasting wind speed than active power generation. The one proviso to this is that the
error metrics are not normalised so it is hard to tell how good the performance is compared
to other approaches. If instead there was a comparison to a commonly used benchmark, it
would be easier to make a judgement of the worth.

Ibrahim et al. [33] attempt to predict next-step intra-hour wind speed uncertainties
from lagged time series data by fitting different machine learning techniques, from ANN,
CNN to LSTM and SVM. They proposed a hybrid convolutional LSTM (ConvLSTM) model
for high accuracy and low computation cost. However, all studied models have comparable
forecasting accuracies under individual optimum settings and perform better at 5 min time
resolution than 30 min or 1 h.

4. Interval Forecasting

Wang et al. [34] use a combination of wavelet transform, deep convolutional neural
network and quantile regression for deterministic and probabilistic photovoltaic power
forecasting. In this case, they perform the analysis on actual solar farm data from two
farms in northern Belgium. They work on a 15 min time scale, and forecast variously for
30, 45 and 75 min ahead, calibrating the models on a monthly basis to cater for seasonality.
It appears the deterministic models perform well but they do not use a standard benchmark
for comparison. They use what they call interval sharpness, but which is usually termed
interval score, to evaluate the performance of the probabilistic forecasting, along with
coverage. Once again the model appears to perform well.

Alessandrini et al. [35] uses what they call an Analog Ensemble (AnEn) for solar power
forecasting. What this means is that when presented with a particular set of characteristics
of a present forecast situation, a search is performed to identify what the next forecast
step’s output was for a situation in the past that most closely resembles the present one,
and that output is used for the forecast. They use solar farms near Milan in northern and
Catania in southern Italy for testing. The ensemble idea is that they choose a small number,
often three possible close forecasts and use them as an ensemble. They then compare this
probabilistic forecast with what they would obtain with quantile regression. In essence the
various methods perform similarly, with perhaps a slight leaning towards AnEn. The point
they make, and in our opinion it is a valid one, is that it is beneficial that all the methods
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they use do not need a irradiance to power conversion—all the modelling is performed
using past output from the solar farms.

Van der Meer et al. [36] discuss probabilistic forecasting for photovoltaic power,
electricity demand of a sector and also of an individual dwelling. They use Gaussian
Processes to perform the probabilistic forecasting estimates. It would seem that the results,
in their view, are fine since if trying for an 80% prediction interval, they obtain between
82 and 91%. However, if one is trying for 80%, then the results should actually be close
to 80% in all instances. Perhaps this is because they have not considered the fact that
the distributions they are dealing with are far from Gaussian. Further, they may be not
considering the serial correlation of the variance in this type of forecasting.

Even though this research is almost a decade old, Pinson [37] provides one of the most
precise descriptions of the differences in forecasting output from a wind (or indeed solar)
farm versus forecasting the resource. There is the salient point made that the characteristics
of wind power are the motivation for the choice of specific types of predictive distributions.
The wind power is bounded below by zero and above by the capacity of the farm—Pn. It is
the same for a solar farm. There is one proviso in Australian wind and solar farms—the
lower bound is slightly below zero, to cater for the power drawn from the grid to run the
control systems when there is no resource input. In that paper, they then normalise the
output by dividing by Pn. They go on to say that the output is related to the wind speed by
a sigmoid curve and the resulting distribution of output is not Gaussian, so any predictive
interval estimation must take that into account. In their words, predictive densities take the
form of discrete continuous mixtures consisting of a generalised logit-Normal (GL-Normal)
distribution with potential concentration of probability mass at the bounds of the unit
interval [0, 1]. In their approach, they prescribe a shape parameter for these densities and
they then are characterised only by a location and scale parameter. So, they can perform a
generalised logit transform and then they can model the resultant with a censored Gaussian
distribution. In some ways, it may seem a complicated procedure, but it reflects the reality
of the situation in dealing with a situation that is far from the desired simple time series
structure, as in Equation (1).

Any additive one step ahead statistical forecasting method can be encapsulated by
the structure

Yt = f (St; Rt−1, . . . , Rt−p) + at (1)

where Rt = Yt − St, and St denotes the representation of the seasonality. Knowledge
of the statistical qualities of at is necessary in order to construct the error bounds of the
forecast. In this formulation, the hope is that the noise is independent and identically
distributed, and in the best situation, follows a Gaussian distribution. As discussed above,
the output from wind farms, and also solar farms, contravenes the Gaussian assumption.
Additionally, it will be shown explicitly that the output from either wind or solar farms is
dependent, in that the variance possesses an autocorrelative effect. In [37], they employ
a form of dynamics in their model approach, but as they point out, they do not cater
for conditional heteroscedasticity—dynamically changing variance. We will describe in
Section 7.3 how one can deal with this effect—the autoregressive conditional heteroscedastic
(ARCH) phenomenon, as more fully described in [3]. In summary, this paper is reflective of
thought on this topic that has only become accepted years after its publication.

Tahmasebifar et al. [38] propose a three stage hybrid model for forecasting one hour
and one day ahead for Australian wind farms. To give a short description, they combine
extreme learning machine (ELM), wavelet transforms, bootstrapping, ensemble forecasting
and particle swarm optimisation. The results look very good, but there are a number of
problems. One is that they are not dealing with the requirements for forecasting for the
Australian NEM, in that forecasts have to be made on a five minute time scale, with a
forecast lead time of approximately seven minutes, for the instantaneous power. So, it
is not possible to compare results to those in a recent trial by the AEMO. Further, the
method is very complicated and it is difficult to decipher what segments are generating
particular benefits.
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5. Ramp Forecasting

From a particular viewpoint, including potentially from a financial perspective, ad-
vance knowledge of a significant change in the output of a wind or solar farm, is more
important than an estimate of the absolute output. Taylor [39] develops a method for
forecasting ramp events and applies it to four wind farms in Crete. The author talks of
probabilistic forecasting of a ramp event, but uses that term in a different manner from
what it usually means in this field. What he refers to as probabilistic forecasting means
forecasting the probability of a ramp being greater (or less than) a specific threshold. He
predicts the probability of a ramp event in wind power for one and two steps ahead by
fitting autoregressive logit based models to lagged hourly wind power changes. The author
first forecasts ramping probability in the next step for a single ramping threshold and a sin-
gle wind farm then introduces three conditional autoregressive multinomial logit (CARML)
models in jointly estimating probabilities for multiple thresholds, two wind farms and two
steps ahead, respectively. All models are optimised by maximising the likelihood of variant
Bernoulli distributions. The Brier skill score demonstrates the superiority of the proposed
models against selected benchmarks. However, the predicted probabilities for true ramp
events are not presented to show the model’s effectiveness in practice. Interestingly, jointly
forecasting the probabilities of one and two steps ahead enhances one step ahead estimation
in this study, which is worth exploring more. Another interesting observation is that the
model could be adapted to a different definition of a ramp, such as a large change in output
between non-successive time intervals.

Abuela and Chowdhury [40] use a hierarchy of models to deal with the need to
mitigate the effects of difficult to predict ramps in solar farm output. One is a post-
processing method where they

• Start with 24 h ahead forecasts that combine NWP forecasts with hour ahead forecasts.
• Add persistence forecasts and use the random forecast procedure to produce bet-

ter forecasts.
• Add in the ramp rate, which is the forecast for the present hour minus the actual for

the previous hour.
• Use a random forecast technique on this augmented set of forecasts.

In summary, they attempted to predict ramp events of rooftop solar power change at
one-hour intervals as of four categories: up or down, high or low for a given threshold. The
authors argue that combining forecasts from different methods, if not properly modelled,
could reduce the accuracy for ramp event forecasting of solar power outputs resulting from
the smoothing effect. To tackle this issue, they deployed an ensemble learning (Random
Forest) model trained using a selective list of numerical weather prediction (NWP) variables,
solar power forecasts and associated ramp rates deemed as the most effective features
with two loss functions (one to minimise the solar power forecast errors and the other to
minimise the residuals of the predicted ramp rates). Jointly optimising two losses is utilised
to mitigate the lower forecasting accuracy of less frequent high ramping events, a typical
problem for fitting unbalanced data. In addition, probabilistic forecasts of solar power
ramps are provided based on the proposed ensemble model, and the uncertainty analysis
demonstrates a lower certainty of forecasting ramp events at a higher threshold, promoting
future research directions.

Probst and Minchala [41] present an interesting way to deal with ramping with wind
farms. It seems to be an innovative way to deal with ramping and eminently suitable to use
in increasing the value of forecasting. The idea is that with better wind power forecasts, one
can plan curtailment to suit the generator, rather than have it forced upon them. The crux
of the value proposition is that for a low decrease in the value of energy delivered, one can
curtail the output when anticipating a large ramping event that would incur penalties for
sending the frequency out of bounds. They proposed a low-cost forecast-based curtailment
(FBC) approach mitigating significant downward ramps of short term wind power output
to meet grid operation limits. The FBC strategy applies curtailment for the next step
to reduce incompliant ramp-down events in the second step based on two steps ahead
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forecasts. As a result, by implementing the Kalman filtering algorithm with upstream wind
measurements, about 40% of incompliance negative ramps are mitigated with negligible
energy loss due to curtailments. In addition, the authors argue that mitigation efficiency
can be increased from forecasting methods having a smaller correlation between wind
power changes and forecast errors. In the Australian context the penalties are termed
Causer Pays. One can easily view an extension to this to a situation where a wind or solar
farm operator can decide when it is good to bypass curtailment, and put the output into
a battery that is connected to the farm, and then use the stored energy for arbitrage. The
limitation on this research is that it is developed on wind speeds, rather than wind farm
output, with the extra step being a power conversion model. However, the philosophical
nugget is key to the value. The next refinement is to add the extra benefit of probabilistic
forecasting to this paradigm.

Han et al. [42] describe methods to improve the forecasting of ramp events for wind
farms. The first step is to identify features of ramp events so that when these features
occur, one has a better chance of forecasting the ramp. They use a combination of two deep
learning algorithms, convolutional neural network and long short-term memory to learn
the ramp features of wind power and from that be able to better forecast ramp events.

The Australian Energy Market Operator (2020) Renewable Integration Study (RIS) [43]
gives a lot of detail about the comparison of point forecast and ramp forecast accuracy when
discussing managing variability and uncertainty. First, they give some insight into ramp
events in general. The magnitude and frequency of ramp events in the NEM are increasing,
and this is due mainly to increases in variable renewable generation. The increase in
ramp events indicates that some measures are needed to maintain stable operation of the
grid. One major way to do this is happening with greater frequency control via super
capacitors as well as the installation of storage mechanisms in the grid. However, the need
for improvements in forecasting, particularly the forecasting of ramp events, is evident. As
an example of the problem, the RIS shows that as the forecast lead time approaches real
time, the accuracy of point forecasts increases but the accuracy of ramp forecasts does not.
Obviously this leads to a significant future direction for research.

6. Synthetic Solar Time Series

Though the generation of synthetic time series of solar irradiation is not specifically
forecasting, the tools that have to be developed are in the same realm. There is a long history
of the development of tools for generating synthetic solar time series. Brinkworth [44] had a
goal to develop synthetic sequences of solar irradiation in order to understand the potential
output from solar devices. He stated that Among the important features of these variations
is their sequential character, which has not hitherto been taken into account. It is shown that
the sequential characteristics of the daily insolation can be represented in simple numerical terms,
derived from the autocorrelation functions of a straightforward stochastic model. Since he was
working with estimation of the macroscopic performance of solar systems, he concentrated
on daily totals of solar irradiation. The goal was to generate sequences that matched the
long term statistical characteristics, both in autocorrelation and also the moments of the
distribution. In this way, one can generate sequences that could well have happened but
not necessarily are in the historical record. This can lead to the design of systems that are
more robust in their performance.

In the mid to late 1980s, there were a few more papers on this topic. Balouktsis and
Tsalides [45] worked with hourly solar irradiation data and first dealt with the seasonality
by using a Fourier series model containing terms for the annual and daily cycles. It is
interesting that even though they published the paper in 1986 in Solar Energy journal,
they did not refer to Phillips (1984) [46] in the same journal, who used a more rigorous
investigation to determine that 75 Fourier coefficients needed to be used. Note that one of
the present authors—Boland, in [47], delineated which frequencies are significant and gave
physical interpretations. Balouktsis and Tsalides then went on to note that when dealing
with the data that have the seasonality removed, it is important for synthetic generation to
understand the characteristics of the frequency distribution of the data. If one is simply
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wanting to determine the autocorrelative features of the data in order to estimate an ARMA
model and then use that plus the seasonal components for point forecasting, it is possible
to ignore the distributional characteristics. However, if one’s intention is probabilistic
forecasting or synthetic generation, more work is to be done. Let us focus here on what
happens for synthetic generation. Let us assume, for example that the model for the solar
irradiation is of the form

It = St + α1Rt−1 + α2Rt−2 + α3Rt−3 + at (2)

Here, It is the solar irradiation, St is the seasonal component and Rt = It − St. The
standard method to generate synthetic data would be collect all the at from the set that was
used to estimate the model for Rt and use that noise distribution in the calculations. One
selects at random four values from that distribution and then finds the value for R4 as

R4 = α1a3 + α2a2 + α3a1 + a4. (3)

After that, progressively, one calculates for as many terms as required.

Rj = α1Rj−1 + α2Rj−2 + α3Rj−3 + aj. (4)

The problem is that if this is performed, the distribution of the Rt will be symmetric
and close to normal, even if the original distribution was skewed. To overcome this problem,
they perform a normalising transformation of the data after the seasonality is removed and
then construct the model with this normalised data. They refer to [48] who did this type of
transformation as well. The other important component that they recognised was that the
irradiation distributions change over time. They only catered for changes in distribution
on a monthly basis, unlike [3], but it was innovative for the time.

The articles by Aguiar and Collares-Pereira (with Conde in one) [49–51] were in-
structive in the derivation of tools for synthetic generation. In [49], the goal was to use
mean monthly solar irradiation as an input to generate synthetic sequences of daily solar
irradiation. This is as an aid for long term performance evaluation of solar systems. The
model relies on two assumptions. One is that there is significant correlation only between
consecutive days, rather than including any more lags, after removal of the seasonal com-
ponent. They canvass three methods of dealing with the seasonality. One is to construct
the clearness index for the daily values. The clearness index is the global horizontal irra-
diation (GHI) divided by the extraterrestrial irradiation—the irradiation at the top of the
atmosphere for that same day and location. The second is by subtraction from the Fourier
series representation for that day. The third is by subtraction of the moving average centred
on that day from the day’s irradiation. They chose the first method. The other principle
they relied on is that the probability of occurrence of irradiation values is the same for
months with the same mean clearness index. They then construct a library of Markov
transition matrices (MTM) for clearness index, one matrix for each month. They can then
employ these matrices, picking for a location the MTM from their library that has a mean
monthly clearness index most closely matches the mean monthly clearness index for that
location. We illustrate the procedure for using an MTM for generating synthetic sequences,
by describing it with a simplified example.

Suppose we have a three state Markov chain for daily total solar irradiation. We will
illustrate this for a single month to avoid having to deal with seasonality. Let us focus on
Adelaide, South Australia in January and define the three states as

• State 1—1–21 MJ/m2. Class Mark 10.
• State 2—21–30 MJ/m2. Class Mark 25.
• State 3—30–35 MJ/m2. Class Mark 33.

The Markov transition matrix is thus

 0.97 0.03 0
0 0.94 0.06
0 0.05 0.95


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Note that the equilibrium vector, the long term probabilities of being in each state is
given by (0.05 0.42 0.53).

What the transition matrix indicates is that in January in Adelaide there is a high
probability of successive days being in the same solar state. To understand how this matrix
can be used to generate a synthetic sequence, we can follow this path.

• Select a random number r in (0, 1) using a random number generator.
• If r1 < 0.05, then the initial state is 1 and the initial solar irradiation value is 10 MJ/m2.
• If r1 < 0.47, then the initial state is 2 and the initial solar irradiation value is 25 MJ/m2.
• Otherwise, the initial state is 3 and the initial solar irradiation value is 33 MJ/m2.
• So, let us assume r1 = 0.465, so we start in state 2, in this experiment.
• Then select r2 randomly from (0, 1).
• Assume that r2 = 0.95, so we transition to state 3.
• Then select r3 = 0.035, so we transition to state 2.
• Repeat as long as is needed.

In this way, we have a sequence of daily solar irradiation of 25, 33, 25,.... In an actual
generation, one would include many more states and thus generate a more realistic se-
quence. Slightly earlier, Amato et al. (1986) [52] used a combination of tools to generate
daily sequences. For 20 years of data from four Italian stations, they used Fourier series to
describe the seasonality, and then Markov processes to model the day-to-day dependencies.

Following on from their earlier work, Aguiar and Collares-Pereira investigated the
statistical properties of hourly solar irradiation [50], as a forerunner to developing the time
dependent autoregressive (TAG) model [51]. In [49], they showed how to generate daily
sequences from monthly clearness index values. In TAG, they show how to generate hourly
values, relying also on the work from [50], from daily values. In a similar vein, Graham
and Holland [53] also produced a mechanism to generate hourly synthetic values from
daily values.

In the intervening years, most activity, due to satisfying operational needs, has focused
on first point forecasting and latterly interval forecasting. However, an American Institute
of Physics book [54], brings the usefulness of generation of synthetic sequences of solar irra-
diation back into focus. One of the present authors, Boland, was invited to contribute [55],
based on previous works with colleagues on related topics [56–58]. The first one dealt
with generating 5 min sequences from hourly data, a time scale more in keeping with the
needs of the NEM. The second one focused on using Fourier series, ARMA models and
bootstrapping to generate hourly synthetic sequences. The third presented a cascade of
models, generating synthetic monthly sequences and then daily sequences to match the
monthly and finally on to hourly and minute data.

7. Additional Considerations for Wind and Solar Farms

It is evident from the previous sections that the focus, understandably, has been either
on forecasting solar irradiation and wind speed, or on small scale photovoltaic. We say
this is understandable since, apart from some prevalence of wind farms, there has been
little call for dealing with the output of installations as a starting point. Even with the
wind farms, the use of power curves for conversion from speed to output has been viewed
as straightforward.

7.1. Characteristics of Power Output

There is at least one reason for our preference for dealing directly with wind farm
output, rather than relying on wind speed and then using a power conversion model. That
is the idea of where exactly on a wind farm do you measure the wind speed to obtain a
representative idea of the wind resource for the whole farm.

For solar farms in Australia, there is a feature that must be taken into account. In
most situations, there is an oversizing of the field of panels, as compared to the capacity
of the inverters. This is performed, we suppose, to make the output nearly constant for a
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number of hours on a clear day—see Figure 1 for a clear day at the Broken Hill solar farm,
in western New South Wales.
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Figure 1. Clear day output in Broken Hill. Time is in 5 min intervals, with 288 intervals per day.

Note that the figure shows the profile for a clear day in summer. In winter on a clear
day, the output will still reach the peak, but the time at the peak will be shorter on average,
due to the sun being lower in the sky. So, as with clear sky model estimation for irradiance,
we have to cater for seasonal variation if we are to define an empirical clear sky output
(CSO) model for solar farms. Thus, the method we choose is to calculate the maximum
value of the output for each time step of the day for the last thirty days. Then, we smooth
these values using exponential smoothing. It could also be performed using a moving
average. An illustration of this method is shown in Figure 2.
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Figure 2. Clear day output in Broken Hill.

This structure is a parallel method to that of using a clear sky model (CSM) for
irradiation (as in [16]), and converting GHI to a clear sky index (CSI) by dividing by the
CSM. This CSI is used for forecasting, and then there is an inverse conversion to get back
to GHI. If one wanted to do use GHI and thus CSI to forecast for a solar farm, it would
then be necessary to have a power conversion model to get to the solar farm output. This
would have to take into account the capping effect of the oversizing of the field that has
been explained here. It would also have to take into account the changing features of the
capping over the year. We suggest that for a solar farm, if one wants to use a clear sky index
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type of approach for forecasting, it would be better to use the output directly. One could
divide the output at time t by the CSO at the same time to obtain a clear sky output index
(CSOI). This would then be used for forecasting before back transforming to the output.

7.2. Value of Forecasts

We demonstrate in this section that due to goals specific to financial or societal out-
comes, the models with superior forecasting skill do not necessarily display the greatest
value. Antonanzas et al. [59] provide insight into this topic in evaluating the worth of
day ahead forecasts for photovoltaics in the Spanish electricity market. They found in
their study that the model with the highest quality produced also the best value; however,
many of the other high performing models in terms of quality, that is low root mean square
error (RMSE) or mean absolute error (MAE), did not perform as well in terms of value
as models with lower quality. One other paper that makes a contribution to this topic is
that of Yang et al. [16], but it only covers deterministic or point forecasts and is primarily
focused on the verification of forecasts, rather than the value. There is a section in the paper
dealing with value and we will expand on the topic here. One of the articles mentioned
was that of Murphy [60], where he discusses what is a good forecast. He articulates three
versions of goodness of forecasts. One is the correspondence between forecasters’ judge-
ments and their forecasts. The next is the correspondence between the forecasts and the
observations—the usual method of defining quality. Common measures of quality are
detailed in Appendix A. The third is the benefits to the end user decision makers of the
forecasts—the value. Matching the forecasts to the observations does not necessarily equate
to increasing the value.

For example, in the SPEF forecasting trial [61], there was an interesting set of results of
this mismatch. In Table 3, where the best performing models are listed for the five solar
farms, we can see that in each case they are either blended models, or the model using a
sky camera and forecasting cloud movements from the images. However, when looking
at which models saved the most in terms of lowering the Causer Pays fees (for taking the
grid out of the required frequency limits), Table 4, in each case, much more simple models,
which did not perform very well in terms of RMSE and MAE compared to the blended
models, actually had the highest monetary value to the farms. In fact, model SF10, which
performed best in terms of value at two of the farms, was the simplest model, combining
Fourier series for the seasonality and an ARMA model for the stochastic component. It
was simple enough to be re-estimated every five minutes, which may have helped in the
monetary evaluation. Its overall skill in forecasting was not as good as the blended models,
but its value was high.

In a situation where the system is photovoltaics plus storage and the operator is
interacting with the NEM spot market in Australia, David et al. [62] found that there was an
almost one to one correspondence between an improvement in MAE and an improvement
in financial benefit. This was for day ahead forecasting of a solar farm with a simulated
storage system added on. It may be that the addition of storage aided the correspondence,
or perhaps it was because of working in the wholesale market, or a combination.

Table 3. Overall forecasting performance compared to ASEFS.

Site Best Model
(RMSE) Skill Best Model

(MAE) Skill

Darling Downs Ensemble ML 9.2% Ensemble
Median 13.0%

Daydream Ensemble Mean 16.2% Ensemble
Median 18.2%

Gannawarra SkyCam 19.3% Smart
Persistence 16.8%

Emerald Ensemble Mean 2.8% ASEFS -
Manildra SkyCam 21.2% SkyCam 16.6%
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Table 4. Financial performance compared to ASEFS, Australian Dollars.

Site ASEFS Fee Dispatch
Model Fee Savings Percentage

Savings

Darling
Downs 432,500 SF12 281,018 151,482 18%

Daydream 70,793 SF10 57,983 12,810 35%
Gannawarra 39,778 SF5 28,485 11,293 28%

Emerald 50,726 SF10 2129 48,595 98%

Average Savings 56,045 44%

7.3. Heterogeneity of Variance

We suggest another area that has not had enough attention is the change of variance
over time and its autocorrelative nature. As explained in [3,17,19], one has to cater for the
change in variance in wind and solar, both resource and farm output, when performing
probabilistic forecasting. An illustration of this effect is given in Figure 3, where we
demonstrate how the variance over time using the exponentially weighted moving variance
(EWMV) [63]. This is defined in the following way. First define the exponentially weighted
moving average (EWMA).

µn = λµn−1 + (1− λ)xn (5)

Then, the EWMV, Sn is defined by

Sn = αSn−1 + (1− α)(xn − µn)(xn − µn−1). (6)

In these determinations, λ, α are in (0, 1). It is obvious from the figure that an as-
sumption of homogeneity of variance would be untenable. Further, if one examines the
histogram of the noise terms after an autoregressive model is fitted to the output—see
Figure 4—one can see that they do not follow a normal distribution and are an example of
a fat tailed or leptokurtic distribution. So, in other words, the expectation that the noise
will be white—independent and identically distributed—and also normally distributed,
can not be justified. So, innovative means have to be employed to construct prediction
intervals around a point forecast. In [3], the noise terms are transformed to the standard
normal distribution, and then a model for the changing variance was constructed. From
that error bounds were determined using the forecasted standard deviation and the scores
from the standard normal distribution—see Equation (7) for a 95% prediction interval. BU,L
are the upper and lower bounds, and s is the forecasted standard deviation. These bounds
are then back transformed and added to the point forecast.

BU,L = ±1.96s (7)

For solar farms, the construction of prediction intervals is even more involved, with
the change in variance not only being conditional, as with wind farms, but also systematic,
as the error distributions change with time of day and possibly time of year. How to deal
with the systematic change of variance is demonstrated for solar irradiation in [17] and
solar farms in [3]. Dealing with both the systematic and conditional change in variance is
demonstrated for solar irradiation in [19]. Future work will apply this methodology for
solar farms.

There is at least one other approach for interval forecasting for solar irradiation—the
use of quantile regression. A very good description of the process for solar irradiation if
given in [64]. We give a simple explanation of how this process works. One estimates the
quantiles of the cumulative distribution of the variable of interest using a linear relationship
between the variable y and explanatory variables x by

y = βx + ε (8)
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where ε is a noise term.
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Figure 3. Exponentially weighted moving variance. Time is in 5 min intervals.
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Figure 4. Histogram of wind farm output noise with normal curve overlaid.

Quantiles are estimated with assymetric weights applied to the mean absolute error
(MAE). The quantile loss function is

ρτ =

{
τu, if u ≥ 0
(τ − 1)u, if u < 0

(9)

where τ is the desired probability level.
The optimised quantity ŷ = β̂τx is the result of finding the optimal β using

β̂τ = min
β

n

∑
i=1

ρτ(yi − βxi) (10)
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This optimisation can be performed for any τ, and this can be used for any desired
prediction interval estimation. We have performed this activity for some specific examples
in a preliminary analysis and compared the results to those resulting from the approach
of using the systematic change of variance in [3]. It appeared that the quantile regression
approach is superior on specific types of days and the systematic version on others. Future
work will attempt to use machine learning techniques to blend the two approaches to
enhance the skill.

8. Conclusions

In this article we have put forward various methods to forecast wind speed and solar
irradiation, added to a small number of papers that focus on forecasting output from
installations as well. Additionally, we examined some papers that deal with an emerging
topic in the area, that of forecasting of ramping events in solar farms. There is also a section
on synthetic generation of solar irradiation series. The methods examined there can also be
applied to similar problems with wind farms. However, as we have demonstrated, there
are features of wind and solar farms that have not been substantially catered for in the
literature. Thus, we have added sections with preliminary discussions on

• Clear sky output from solar farms, as compared to clear sky models for solar irradiation.
• Heterogeneity of solar and wind farm output.
• The value of forecasting, as compared to the skill of forecasting.

In future work we will concentrate on the three items listed here plus methods of
blending of forecasts from different approaches, a feature that was shown to have higher
skill than the individual tools in the SPEF project.
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Abbreviations
The following abbreviations are used in this manuscript:

AWEFS Australian Wind Energy Forecasting System
ASEFS Australian Solar Energy Forecasting System
FCAS Frequency Control and Ancillary Services
NEM Australian National Electricity Market
CSM Clear Sky Model
CSI Clear Sky Index
CSO Clear Sky Output
CSOI Clear Sky Output Index
AEMO Australian Renewable Energy Agency
SPEF Solar Power Ensemble Forecaster
ARMA Autoregressive Moving Average
ANN Artificial Neural Network
LSTM Long Short Term Memory
RCC Radiation classification coordinate
NWP Numerical Weather Prediction
ARENA Australian Renewable Energy Agency
RIS AEMO Renewable Integration Study
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SCADA Supervisory Control and Data Acquisition
UIGF Unconstrained Intermittent Generation Forecasts
EWMA Exponentially Weighted Moving Average
EWMV Exponentially Weighted Moving Variance
RMSE Root mean square error
MAE Mean absolute error
MBE Mean bias error
SS Skill score

Appendix A. Error Measures

Define yt as the observed values of the series, and ŷt as the forecast for time t, while n
is the number of time steps of the forecast.

Appendix A.1. Root Mean Square Error

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)2 (A1)

Appendix A.2. Mean Absolute Error

MAE =
1
n

n

∑
t=1
|yt − ŷt| (A2)

Appendix A.3. Mean Bias Error

MBE =
1
n

n

∑
t=1

(yt − ŷt) (A3)

Appendix A.4. Skill Score

SS = 1− RMSE
RMSERe f erenceModel

(A4)

The Reference Model is either persistence ŷt = yt−1 or smart persistence. In our case
let the CSO model at time t be denoted by Ct. Then, smart persistence is defined as

SPt =
GHIt−1

Ct−1
Ct (A5)
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