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Abstract: The smart transformer has been widely applied for the integration of renewables and
loads. For the smart transformer application, the voltage control of low-voltage inverter is important
for feeding the load. In this paper, a multi-objective optimization control design approach which
comprehensively considers all aspects of indexes, such as linear quadratic (LQ) index, H∞ norm, and
closed-loop poles placement, is proposed based on the linear matrix inequality (LMI) solution. The
proposed approach is able to alleviate the weight of the designer from the tedious design process
of the multiple resonant controllers and the selection of the weighting matrix for the LQ control.
Besides that, some excellent performances such as fast recovering time, low total harmonic distortion
(THD) and high robustness are achieved by the proposed approach. The THD are 0.5% and 1.7%
for linear and non-linear loads, respectively. The voltage drop for linear load step is reduced to
10 V. The proposed approach is applied to a 5 kVA three-phase inverter to yield an optimal control
law. Results from the simulation and experiment presented herein will illustrate and validate the
proposed approach.

Keywords: inverter control; linear quadratic (LQ) index; H∞ control; poles placement; linear matrix
inequality (LMI)

1. Introduction

The smart transformers (STs) have good application prospects in smart grids and
microgrids for the integration of renewables and different AC and DC loads [1,2]. With the
increased high proportion of renewable generation, the frequency stability of the power
grid brings new challenges due to characteristics strong output uncertainty, poor frequency
regulation ability and weak damping for renewables [3,4]. To address the frequency
stability, the low-voltage inverter with voltage control (grid-forming inverter) is important
for the improvement of the frequency stability when integrating the AC load and low-
voltage renewables. Grid-forming inverters are one of the useful inverter applications in
microgrid/DERs and are actually voltage-controlled inverters [5,6]. They are functionally
similar to uninterrupted power supply (UPS) systems designed to feed the critical loads. In
this case, the performance of the inverter is usually assessed in terms of the total harmonic
distortion (THD) of the output voltage and the dynamic/steady state responses regardless
of load conditions, thereby requiring a load step change in both linear and non-linear loads.
To improve the aforementioned performance indexes, plenty of control algorithms have
been proposed to apply to inverter control.

The early representative control algorithms were mostly designed by means of the
transfer function model based on classical control theory. Those control methods were
either multi-loop control [7,8] or single-loop control [9] which are still widely applied today.
However, the classical control theory has technical limitations, which include an inability to
deal with the multi-input-multi-output system and difficulty in coping with the high order
system. Hence, some new methods have been developed. In [10,11], deadbeat control is
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proposed to achieve fast dynamic response. Nevertheless, most deadbeat approaches are
problematic based on their sensitivity to model uncertainties, parameter mismatches, and
noise on sensed variables, particularly for high sampling frequencies. In [12], repetitive
control is used to accomplish a high-quality sinusoidal output voltage tracking control.
Generally, this control technique has a slow response time and is RAM consuming. The
sliding mode control has been successful in voltage tracking control for inverters due to
major advantages such as strong robustness against parameter variations and external
disturbances, fast dynamic response, and simplicity in implementation [13,14], but still,
the control technique has a well-known chattering problem. The model predictive control
technique for uninterruptible-power-supply (UPS) applications was adopted in [15,16],
but the simulation and experimental results fell short in total harmonic distortion (THD).
In [17,18], adaptive voltage control is proposed to achieve good performance such as low
THD and fast response. However, the calculation of the control law is complex, and load
current information is indispensable.

Recently, some interesting control techniques were proposed such as feedback lin-
earization control [19], flatness-based control [20], extended Lyapunov-function-based
control [21] and a simple control based on the Kalman filter voltage estimator [22]. The
feedback linearization control performs interesting results such as low THD and high
dynamic response. The worst disadvantage of this technique is its weakness for parameter
uncertainties. The control approaches in [20,21] are very interesting and skillful. The ex-
tended Lyapunov-function-based control in [21], for example, designs a specific control law
to satisfy the requirement demanding a negative definite derivative for a given dynamical
system and eliminates the steady-state error without destroying the global stability of the
closed-loop system. Therefore, the control laws are generally complicated; moreover, the
load current is necessary for calculating the control law. A simple voltage senseless multi-
loop control method has achieved excellent performance according to [22]. Nevertheless,
the control method is in essence a variation of state feedback control.

So far, a number of advanced control approaches have been researched in voltage
control fields for inverters such as robust control [23–26] and the linear quadratic regula-
tion (LQR) approach [27–35]. Generally, either the robust control or the LQR control are
primitively applied to designing the state feedback control to stabilize a system such as
the inverted pendulum system. They are usually unable to achieve the zero-steady-error
tracking control for the reference (direct current signal or sinusoidal signal). Hence, some
extra control approaches, such as incorporating the auxiliary state as the controller [23–34]
or load current feedforward control [35], must be subjoined to fulfill the function for the
inverter control. Basically, according to different reference frames, the selected auxiliary
controllers (auxiliary state) are also different. In a rotating reference frame (RRF), the inte-
grator generally is chosen because the sinusoidal signal changes into a direct current (DC)
signal in RRF [24,25]. The control law which includes state feedback and tracking terms (the
auxiliary state) is designed by means of a linear matrix inequality (LMI)-based optimization
where a convergence rate is maximized in [24,25]. While in a stationary reference frame
(SRF), the multiple resonant controllers are usually adopted to track the sinusoidal refer-
ence signals [26]. However, the high-dimension parameters determination for the multiple
resonant controllers is generally not a simple mission [33]. In [26], the design procedure for
multiple resonant controllers of a single-phase UPS system is summarized by formulating
a convex optimization problem in terms of LMI constraints which is practically the LMI
solution of robust optimal H∞ control. Actually, the different optimization problems with
different optimized objectives, which are convergence rates [24,25] and H∞ norm [23,26] is
solved by means of the LMI method to yield the control law. The two optimized indexes
sometimes lead to an impracticable control law because of saturation of the control actua-
tor [36]. Besides that, the main shortage of this robust control [23–26] is that it ignores the
physical constraint of the control input so that the design results usually own an overly
high bandwidth which can lead to instability. In contrast, the LQR approach preferably
considers the problem via minimizing the quantized performance index which includes the
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control input term. Therefore, the LQR approach has been applied in the voltage control of
inverters by many researchers [27–35].

Similar to [26], multiple resonant controllers are adopted in [28,29,34]. The difference
lies in their employment of the LQR approach to design the control law by means of the
function lqr() from MATLAB (MathWorks Inc., Natica, MA, USA) Ufnalski et al. [30,33]
utilized the LQR approach to design a control law with an additional integrator plus
multiple resonant controller under RRF. However, the primary problem for the LQR
method is the selection of the weighting matrix Q for LQR, which is related to the dynamic
performance of the system. The selection process is generally a subjective and annoying
task, which adopts the trial-and-error method [29,35]. It also requires some high-level
expertise and is time-consuming [29,35], especially when the dimensionality of Q is very
high, as when multiple resonant controllers are used [26,28,34]. To address this issue,
Quan et al. [34] and Ufnalski et al. [33] have adopted the root locus and particle swarm
optimization to optimally determine the entries of the weighting matrix Q, respectively.
The root locus method in [34] is a pictorial method lacking quantitative analysis. Hence,
the result performance may not be optimal. By contrast, an extra user-defined performance
index is used to select the best entries of Q in [33], which have achieved a satisfactory result.
The performance could be the optimal from an application’s point of view. Nevertheless,
user-defined performance index introduced in [33] is calculated by the errors and the
differential value of the control input. This is so that the offline determination procedure
of the Q depends on the simulation model of the control system because the optimized
procedure is continuously implemented through a period of simulation (the simulation
time is 6 s in [33]). Otherwise, the procedure should be implemented online, which is
impractical for the particle swarm algorithm in real-time control. On the other hand, where
the additional state is avoided, the load current feedforward control is used to reduce the
steady error in [35]. Therefore, it is virtually a full state feedback control, which is designed
by the linear quadratic regulator (LQR) method under the rotating reference frame (RRF).
Similarly, the determination of weighting matrix Q is also inevitable.

Generally, the trial-and-error method is needed when designing the high-dimension
parameters for the multiple controllers. Moreover, the disturbance-rejection ability and
dynamic response are not optimized simultaneously. Therefore, this paper tries to achieve
two fundamental purposes: (1) to supply a convenient, systematic and effective design
approach for the multiple resonant controllers, and (2) to liberate the designer from the
subjective and time-consuming selection of the high-dimension weighting matrix Q for
the LQR. Based on these two objectives, this paper converts minimizing of the LQ index
into an LMI feasible problem whereby relying on the LMI optimization solver searches out
the optimal weight matrix with the additional restraints of H∞ norm and regional poles
placement. In this case both disturbance-rejection ability and dynamic response can be opti-
mized. Hence, the two extra restraints are used to regulate the anti-disturbance ability and
dynamic and steady performance within the LQR control frame. Finally, a mixed H2/H∞
optimal voltage control design method is designed. The results in a good compromise
between transient performance and disturbance rejection are achieved. The outstanding
performance of the proposed approach is verified by simulation and experiment.

2. Modeling for the Control System
2.1. Modeling for Plant

Figure 1 displays a typical topology of a three-phase inverter with an LC filter. Pulse-
width modulation techniques are applied to inverters in order to obtain a sinusoidal output
voltage by means of the control input voltage vc. In this paper, a state space model is
adopted to describe the behavior of the inverters [26,34]:

.
xp = Apxp + Bp1vc + Bp2wp

y = Cpxp

(1)
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Figure 1. Structure of the simple inverter system.

To unitedly describe the system for α and β axes, in (1), the state xp = [i u]T =[
iα + jiβ uα + juβ

]T where the boldface variables indicate the complex variables; the induc-
tor current complex variable is shown as i, and the capacitor voltage complex variable is u.
wp = il = ilα + jilβ represents the vector of disturbances from the unknown load current
and the voltage of the DC link.

By applying basic electric circuit theory for the LC, the matrices in (1) can be easily
derived:

Ap =

[
− R

L − 1
L

1
C 0

]
Bp1 =

[ 1
L
0

]
Bp2 =

[
0
− 1

C

]
Cp =

[
0 1

]
(2)

where the corresponding parameters are shown in the Figure 1. In this model, the assump-
tions are considered to construct the following optimal voltage controller:

1. The disturbances (load currents) is finite energy signals.
2. The DC link voltage is well controlled as an ideal DC source by other DC sources such

as the battery.

2.2. Complex Variable Resonant Controller

In this section, a brief and intuitive explanation of the complex variable resonant
controller (CVRC) is presented. The CVRC transfer function can be expressed as:

GCVRC(s) =
yc

uc
=

1
s− jω

(3)

from which we can see that the CVRC provides infinite gain only to a positive sequence
input complex variable of frequency ω and attenuates the negative sequence complex
variable. The CVRC requires fewer states in its implementation, which means less compu-
tational load, and provides discrimination between positive and negative sequence signals.
This identification of positive and negative sequence signals is an attractive feature, which
has been successfully applied to current control for three-phase inverters [37].

In order to design the control parameters for CVRC via modern optimal control theory,
we provide the state space expression of the CVRC as:{ .

xc = jωxc + uc
yc = xc

(4)

where xc = xcα + jxcβ, which denotes the auxiliary state variable of the CVRC. The repre-
sentation of (4) is illustrated in Figure 2 with scale and complex notations, respectively.
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2.3. Augmented Modeling for the System

According to the internal model principle, the sinusoidal signal tracking problem
may be addressed by means of n resonant controllers, leading to a multiple resonant
controller [26,28–34] in which the multiple scale resonant controllers (MSRCs) are adopted
to ensure zero steady-state error for sinusoidal tracking control and, equivalently, reject the
asymptotic disturbance of sinusoidal signals. Analogously, the multiple CVRCs (MCVRCs)
are employed to achieve the same function with the closed-loop structure depicted in
Figure 3 where n = ±1, ±2 . . . denotes the order of the CVRCs, and m represents the
number of the CVRCs. It is worth noting that the MCVRCs are not an exclusive option
for the application in this paper, but they are employed mainly because of their attractive
feature, which supplies simple control implementation for αβ axes. MSRCs could equally be
chosen to accomplish the control task in three-phase inverter applications for the proposed
design approach.
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As is depicted in Figure 3, the CVRCs and the model of the plant are connected by
means of setting the input of the CRVCs to equal the error of the output voltage:

uc = y∗ − Cpxp (5)
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Substituting (5) into (4), then combining (1), we can derive the augmented state space
model of the control system as:{ .

x = Ax + B1vc + B2wp + Ry∗

y = Cx
(6)

where x = [xp xc1 xc2 · · · xcm]
T represents the augmented state variables and y∗ denotes

output voltage complex variable reference. The corresponding state describing matrices
are:

A =



Ap
−Cp jω
−Cp −jω

...
. . .

−Cp jnω
−Cp −jnω


(7)

B1 =
[

Bp1 0 0 · · · 0 0
]T (8)

C =
[

Cp 0 0 · · · 0 0
]

(9)

B2 =
[

Bp2 0 0 · · · 0 0
]T (10)

R =
[

0 1 1 · · · 1 1
]T (11)

From (7) to (11), we find that it is very convenient to revise those matrices if the
number of CVRCs is changed. The dimensions of those matrices are related to the number
of the CVRCs: d = m + 2. The variable d denotes the dimension as well the number of
complex state variables. In addition, for m CVRCs, there are m + 2 undetermined complex
parameters which means that 2 m + 4 real parameters need to be tuned, as shown in
Figure 3, and are included by the augmented state feedback control law such that:

vc = −Kx = −
[
K(i)

p1 K(u)
p2 K(+1)

c1 K(−1)
c2 K(+2)

c3 K(−2)
c4 · · ·K(+n)

cm

]
x (12)

Depending on the number of CVRCs to be used, it should be emphasized that the
design of those parameters is not a facile task for a large number of CVRCs when the
objective is to accomplish the control performance of a small tracking error, attenuation
of harmonic distortion, and fast recovering time for sudden load variations. Furthermore,
classical control theory methods such as root locus design are difficult to handle or even
impractical for such a large number of parameters. Therefore, Section 3 will illustrate in
detail a systematic and analytical approach to determine multiple controllers’ parameters.

3. Control Parameter Design

As previously stated: all complex control parameters can be determined by means of
designing the state feedback control law K of the augmented system (6). Generally, the state
feedback control law in this paper’s condition can be tuned in at least three different ways:
The linear quadratic regulation (LQR) solution which is solved by the algebraic Riccati
equation, or direct tuning of the controller gain matrix K, or using the closed-loop system
pole placement method [33]. Among these three approaches, the LQR design method is
considered the best choice for achieving good performance. LQR design also has some
other advantages, which include inherently stable and relatively simple in solving the
optimization problem analytically, e.g., lqr() or dlqr() in MATLAB or Scilab environments.
For the LQR method, the selection of weighting matrixes Q and R is both a crucial and
tedious step which generally is fulfilled by guessing and checking, and at the same time,
involving expert knowledge and the opinions of its researchers.

Hence, in this research, the linear quadratic (LQ) index was handled by means of the
linear matrix inequality (LMI) approach, which can be solved in MATLAB. However, the
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LMI toolbox in MATLAB can only deal with the real number LMI; therefore, we must
first convert the complex number LMI into a real one. Considering the following map
relationship between a complex variable and matrix:

a + jb ,
[

a −b
b a

]
(13)

which constructs the isomorphic relations between the complex space and real matrix space
R2×2, complex matrix can be equivalently expressed by a dimension-added real matrix,
after which, the corresponding complex variables become dimension-added real vectors:

(a + jb)
(
uα + juβ

)
⇔
[

a −b
b a

][
uα

uβ

]
(14)

We suppose hereafter that (6) represents the equivalent dimension-added real matrixes
and the dimension-added real vectors without influencing the correctness of the statement.
Therefore, the discussion of the next LMI-based parameters design is in terms of real number.

3.1. Linear Quadratic (LQ) Control

Defining the LQ cost:

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt (15)

where superscript “T” represents transposition and Q ≥ 0, R > 0, for the real notation of the
system (6), we have the following theorem.

Theorem 1. If there exists a symmetric positive definite matrix P satisfying the matrix inequality:

Q + KT RK + P(A− B1K) + (A − B1K)T P < 0 (16)

then, the vc = −Kx is a guaranteed cost control law for real notation of the system (6) which
ensures:

1. The closed-loop steady and
2. The LQ index J ≤ J∗ = xT

0 Px0.

Proof of Theorem 1. Primarily, writing the closed-loop system with the function of the
control law vc = −Kx:

.
x = (A− B1K)x + B2wp + Ry∗ (17)

then, by defining the Lyapunov function V(x) = xT Px, we can derive the derivative of the
Lyapunov function:

.
V(x) = xT

[
P(A− B1K) + (A− B1K)T P

]
x (18)

with the status of zero input. Applying (16), the inequality

.
V(x) = xT

[
P(A− B1K) + (A− B1K)T P

]
x ≤ −xT

[
Q + KT RK

]
x < 0 (19)

is tenable for the model. According to the Lyapunov stability theory, the model is asymptot-
ically stable. The property (1) is proved. For property (2), integrating from zero to infinity
for both sides of (19), we have:∫ ∞

0
xTQx + uT Rudx ≤ −

∫ ∞

0

.
V(x)dx = xT

0 Px0 (20)
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The equality in (20) is deduced from the robust stability with V(∞) = 0. Up to this
point the Theorem 1 has been proved. �

Paying attention to the minimum cost J∗ = xT
0 Px0, which depends on the initial state

x0, in practice, we suppose that the initial state x0 is a zero-expectation random variable
satisfying E

(
x0xT

0
)
= I where I denotes the identity matrix. Hence, we can deal the index

with J∗ = E
(

xT
0 Px0

)
= Trace(P) where Trace() means to seek matrix trace. Simultaneously,

in awareness of the non-linearity of the inequality (16), we provide Theorem 2, which gives
a feasible solution for the inequality by means of LMI.

Theorem 2. For the model (16) and given R, if there exists a symmetric positive definite matrix
W1, positive matrixes M and Qinv and matrix V1 making the convex optimization problem:

min
W1, V1, M, Qinv

Trace(M) (21)

 (AW1 − B1V1) + (AW1 − B1V1)
T W1 V1

T

W1 −Qinv
V1 −R−1

 < 0 (22)

[
M I
I W1

]
> 0 (23)

feasible with the solution Ŵ1, V̂1, M̂, Q̂inv, then the vc = −Kx = −V̂1Ŵ−1
1 xis the robust guaran-

teed index control law with the minimum index upper bound:

Ĵ =
∫ ∞

0

(
xTQ̂−1

invx + uT Ru
)

dt = Trace(M̂) (24)

Proof of Theorem 2. From (16), by applying the Schur complement [38], we can deduce
the LMI  P(A− B1K) + (A− B1K)T P I KT

I −Q−1

K −R−1

 < 0 (25)

which is equivalent with (16). Pre- and post-multiplying the above LMI by diag([P−1, I, I]),
where diag() denotes the diagonal matrix, and defining W1 = P−1, V1 = KP−1 = KW1
yields the following constraints: (AW1 − B1V1) + (AW1 − B1V1)

T W1 V1
T

W1 −Q−1

V1 −R−1

 < 0 (26)

Then according to Theorem 1, the vc = −Kx = −V1W−1
1 x is a robust guaranteed index

control law with the performance index:

J∗ = Trace(P) = Trace
(

W−1
1

)
(27)

To avoid selecting the weighting matrix Q, we change the user-defined Q to an opti-
mization variable Q−1 = Qinv to extend the feasible region. This is an important procedure,
referred to as QP, which has benefits through the removal of the subjective Q selection task
and enlarges the feasible region. After this procedure, (22) is acquired. However the R
is reserved in (22) because we need to take adequate control input into account to avert
overlarge amounts of the control input.
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Within the feasible region (W1, V1, M, Qinv), we search the upper bound of the index
Trace

(
W−1

1

)
which is not a linear optimization problem; therefore, (23) is introduced to

resolve this problem. Based on the Schur complement, (23) is equivalent to M > W−1
1 > 0

which implies that the minimizing Trace(M) ensures the minimization of Trace
(

W−1
1

)
.

Therefore, Theorem 2 has been proved. �

The LMI-style constraint (22) for LQ index owns a very high degree of freedom when
the QP is done to endow the optimization solver with the decision power of Q. Furthermore,
the LQ index does not consider the dynamic response of the control system. Therefore,
in general, the control law yielded from the optimization problem (21) is super small;
hence its results are too small to achieve satisfactory dynamic performance. Consequently,
we increase the extra H∞ norm constraint, which supplies the robust ability of rejecting
external disturbance, and poles region constraint, which tunes the dynamic behaviors of
the control system.

3.2. H∞ Norm Constraint

Applying the well-known bounded real lemma [38,39], to the closed-loop system (17),
the following Theorem 3, which was certified in [26], is given in the sequence.

Theorem 3. For the closed-loop system (17), if there exists a positive real number γ, a symmetric
positive definite matrix W2 and matrix V2 getting the convex optimization problem:

min
γ, W2, V2

γ (28)

s.t.

 (AW2 − B1V2) + (AW2 − B1V2)
T B2 W2CT

BT
2 −γI

CW2 −γI

 < 0 (29)

feasible with the solution γ̂, Ŵ2, V̂2, then vc = −Kx = −V̂2Ŵ−1
2 x is the robust optimal H∞ state

feedback control law with the minimum H∞ norm:

‖Twpy(s)‖∞ = sup
‖wp‖6=0

‖y‖2
‖wp‖2

≤ γ̂ (30)

The closed-loop system is stable.
The detailed proof of Theorem 3 could be referred in [26,38,39]. Theorem 3 maximizes

the capacity of resisting the perturbance by means of minimizing the H∞ index otherwise
ignoring the practical physical limitation of the control input. Hence, the control law from
the optimization problem (28) often leads to an impractical control scheme which will be
proved by the experiment. In this paper, the LMI (29) is adopted solely as a constraint to
consistently tune the perturbance-rejection performance.

3.3. Poles Region Constraint

It is well known that the transient response of a linear system is related to the location of
the poles. Therefore, the regional poles placement (RPP) method was adopted to ensure the
transient performance for system dynamics, such as exponential convergence rate, natural
frequency, and damping factor [26,40]. The LMI region D(σ, r, θ), as shown in Figure 4,
confines the closed-loop poles to this region with a minimum exponential attenuation rate
σ, a minimum damping ratio ξ = cos(θ), and the natural frequency r. This in turn bounds
the maximum overshoot, the frequency of oscillatory modes, the settling time and the
attenuation time [40]. Because the approach permits the optimization solver searching the
Q itself, the RPP is used to regulate the dynamic behavior of the system in an auxiliary way.
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The RPP with the LMI region D(σ, r, θ) is formulated in terms of the concept of
D-stability which is described by the following LMI constraints [26,40]:

Lj ⊗W3 + Mj ⊗ (AW3 − B1V3) + MT
j ⊗ (AW3 − B1V3)

T < 0, j = 1, 2, 3 (31)

where⊗ denotes the Kronecker product of matrices, and W3 is a symmetric positive definite
matrix; the corresponding matrices Lj and Mj are referred in [26,40].

As long as the LMI constraints (31) are satisfied for the symmetric positive definite
matrix W3 and V3 = KW3, then System A is the robust D-stability which implies that all of
poles of the closed-loop system A are placed in region D(σ, r, θ).

3.4. The Comprehensive Optimization

Observing the LMI constraints (22), (23), (29) and (31), it is obvious that the LMI
constraints are not convex for the optimized variables W1, W2, W3, V1, V2 and V3 so that
the feasibility of the LMI constraints is generally difficult to resolve. To overcome this
difficulty, after defining the common optimized variable as:

W = W1 = W2 = W3, V = KW (32)

we can then derive the following multi-objective convex optimization problem with LMI
constraints:

min
γ, W, V, M, Qinv

aγ + bTrace(M) (33)

s.t. (22), (23), (29) and (31), which can be resolved by the solver mincx() in the LMI
toolbox of MATLAB. If the convex optimization problem (33) is feasible with the solution
γ̂, Ŵ, V̂, M̂, Q̂inv, the vc = −Kx = −V̂Ŵ−1x is the robust optimal state feedback control
law with the minimum performance index aγ̂ + bTrace(M̂).

The upper convex optimization problem asks for a common optimized matrix W
which introduces some conservative properties, but it greatly facilitates the solving of the
optimization problem.

The coefficients a and b in (33) are weights used to compromise between the H∞ norm
and LQ index. However, in this paper, a and b are only selected from logic number 0 or 1
to avoid the troublesome and subjective weight selection. The different coefficients combi-
nations are illustrated in Table 1. Actually, when the predictable linear load uncertainty
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is considered as the polytypic model, the combination 3© would become the approach
proposed in [26].

Table 1. Illustration of the different combinations of the coefficients.

Scheme a b Significance

1© 0 0 no optimization

2© 0 1 optimal LQ index with regional closed-loop pole placement

3© 1 0 optimal H∞ norm with regional closed-loop pole placement

4© 1 1 optimal H∞ norm plus LQ index with regional closed-loop pole placement

As a result, the design procedure of the proposed optimal control law can be summa-
rized as follows.

Step (1) Build augmented system model (6).
Step (2) Establish the LMI constraint (22) and (23) with the identity matrix R.
Step (3) Establish the LMI constraint (29).
Step (4) Establish the LMI constraint (31) with the selectable region D(σ, r, θ)
Step (5) Based on the selected a and b, solve the optimization problem (33).

4. Application and Verification

In this section, the proposed control synthesis approach is verified by simulation
and experiment. The circuit used in simulation and experiment, a 5 kVA PWM three-
phase inverter, is shown in Figure 5. The inverter’s nominal parameters are detailed in
Table 2. The output voltage and the inductor current are obtained from measurements
made possible by a Hall effect sensor, which is used to compose the state feedback control
law for performance improvement of the overall system. Furthermore, the load current is
unnecessary for the optimal control law.
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Table 2. Parameters of the three-phase invert.

Variable Significance Value

L Inductance 2 mH

C Capacitance 30 µF

R Inductor resistance 0.5 Ω

fs Switch frequency 12,800 Hz

Output voltage peak 311 V

DC link voltage 650 V

4.1. Case Study

For the three-phase inverter with the nominal parameters as shown in Table 2, to
obtain a low THD for the output voltage, a multiple CRVC structure considering six
resonant modes will employ the fundamental positive and negative sequence (n = ±1),
twice negative sequence (n = −2), fifth negative sequence (n = −5), seventh positive
sequence (n = 7) and 11th negative sequence (n = −11). The design of the multiple CRVCs
starts with the selection of a set of the parameters for the LMI region D(σ, r, θ). Here we
set the parameters as σ = 200, r = 2π × 50 × 13, θ = π/2 such that the transient response of
the overall system is approximately one period of the fundamental component. This value
is obtained considering the approximation for the settling time ts = 3/σ. The parameter
θ = π/2 means that it does not impose any restriction on the damping ratio [40]. The set of r
is considered as an upper bound of the maximum frequency constraint of the non-dominant
poles. Then based on the maximum controllable harmonic (controlled by CVRC), which is
the 11th harmonic in this paper, the r is set to 2π× 50× 13 so that the high order harmonics
are attenuated effectively. After the parameters are set, solving the convex optimization
problem (33) could conveniently yield the different robust optimal state feedback control
laws with different combinations of a and b. The consequential control law where a = 1 and
b = 1 is shown in Table 3.

Table 3. Values of the control laws.

Variable Method in 26 LQR The Proposed Approach with a = 1, b = 1

K(i)
p1

15.8836306685511 − j0.236950325611173 4.97008210384462 6.1118757040980984 − j0.34847163443228379

K(u)
p1

0.90564004136966 − j0.0795364207060859 0.328182730006515 − j0.0264301565213812 0.01969918364658270 − j0.1087245143573579

K(+1)
c1

−224.980219438506 + j200.222952492662 −98.8992557609345 + j14.7965269551116 −187.17608886575 + j226.78327067540437

K(−1)
c2

−318.59139186677 + j244.142045864815 −98.8196531191056 + j15.3191434949775 −312.155066799714 + j236.03740844488078

K(−2)
c3

−337.457407096336 − j 193.141886574298 −70.0566409645719 − j9.59515798520183 −291.80188834927043 − j228.45515137729637

K(−5)
c4

−285.046690109709 − j7.02975962859623 −69.4806377962434 + j13.1316781649438 −227.27849531760467 − j83.591874218641919

K(+7)
c5

−257.199648231256 − j82.264392533777 −64.8801674954042 − j28.1169675777419 −186.70790924243212 + j44.445109123432452

K(+11)
c6

−181.365786957522 + j228.403814890761 −23.3264892093487 + j66.7523400426255 −82.369151850982988 + j68.96189605286802

4.2. Simulation Verifications

The proposed optimal control law displayed in Table 3 was performed through simula-
tion with MATLAB/Simulink. To further justify the robustness under parameter variations,
the used values of the output filter in the simulation were changed. In those simulation
cases as shown in Figure 6, the mutational linear and non-linear loads are used to verify
the dynamic and steady performance. The non-linear load for the simulation is shown in
Figure 7a where the Rc is used to restrain the overlarge charge current of Cdc in a pure ideal
simulation environment. Figure 6 shows the simulation results of the proposed optimal
control law for different LC filter parameters. The corresponding voltage THD value in
each case is labeled in the figure which proves that the proposed control allows obtaining a
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lower voltage THD value under different load conditions. Figure 6 also reveals the good
dynamic performance and high robustness resulting from the proposed control algorithm
in parameter variation.
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(a) 1 mH, 30 µF; (b) 2 mH, 15 µF; (c) 2 mH, 30 µF (nominal); (d) 2 mH, 60 µF.
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4.3. Experiment Verifications

Some comparative experiment results were conducted to verify the effectiveness and
superiority of the proposed control algorithm. Basically, two kinds of load were used:
(1) the linear resistor load and (2) the non-linear three-phase diode rectifier load, as shown
in Figure 7b. They were used to suddenly connect and disconnect to the inverter to verify
both transient response and steady performance. Figure 5 illustrates the schematic of the
system and the synoptic diagram of the implemented scheme, which used a 16-bit floating-
point TMS320LF28335 DSP. To further justify the robustness under parameter variations,
the proposed optimal control law has been tested under different LC filter parameters,
which are 1 mH, 30 µF; 2 mH, 15 µF; 2 mH, 30 µF (nominal); and 2 mH, 60 µF. Besides
that, the method proposed in [26] is compared in the experimental tests. Moreover, the
conventional LQR with the weighting matrix (34), whose control law was calculated by
the function lqr() provided by MATLAB, was also compared to highlight the advantages
of the proposed optimal control law. The weighting matrix (34), where diag() denotes the
diagonal matrix, was selected by trial-and-error method with the assistance of the root
locus [34]. All the tested control laws, which were derived directly from the calculation of
the aided software without any change, are listed in Table 3.

R = diag(0.5 0.5 10000 10000 5000 5000 5000 5000) (34)
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Firstly, the steady voltage waveforms with different loads, as shown in the Figure 8,
are used to analyze the steady THD. The total THD are 0.5% and 1.7% for the linear and
non-linear load, respectively. Moreover, based on the analysis of the THD of individual
harmonics, we discovered that the 5th, 7th and 11th harmonics are greatly suppressed
due to the contribution of the corresponding CVRCs. This implies that the total THD will
become lower if more CVRCs are configured. Moreover, the number increasing of the
CRVC does not increase the design difficulty of the proposed LMI approach.
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Figure 8. Steady waveforms and the total harmonic distortion (THD) of the proposed optimal control
law under nominal LC filter parameters (2 mH, 30 µF): (a) linear load, (b) non-linear load.

In the second group of experiments, the proposed optimal control law was compared
to the method in [26] and to the conventional LQR approach with respect to dynamic
performance, robustness to parameter variations and THD. Figure 9 shows where dynamic
waveforms of the proposed optimal control law are under mutational linear and non-
linear load with LC filter parameter variations; furthermore, the proposed optimal control
algorithm exhibited high robustness and good dynamic performance regardless of LC filter
parameter variations. The best dynamic performance was shown in the nominal parameter
(2 mH, 30 µF) as shown in Figure 9c with little fluctuation and fast recovering time for both
the mutational linear and non-linear loads. Although the transient process demonstrates
some deterioration in other LC filter parameters, it also proved acceptable and consistently
stable. Table 4 summarizes conclusive performance aspects such as stability, voltage THD
and dynamic process in each case and in other tested values of parameters.

To illustrate the superiority of the proposed design approach, the method in [26] was
tested. The experiment wave shapes are displayed in Figure 10, which only shows the
result with LC filter parameters of 2 mH, 30 µF and 2 mH, 60 µF. Because for the parameters
of 1 mH, 30 µF and 2 mH, 15 µF, the yielded control law from [26] was not able to start up.
Furthermore, in view of the waveforms in Figure 10, the control law from the method in [26]
encountered instability when the load was applied suddenly in the nominal parameters.
However, for the LC parameters of 2 mH, 60 µF, it worked well. This may be due to its
natural properties, which are to minimize the H∞ norm to acquire the maximization of
the ability of disturbance rejection without any consideration of the physical limitation of
the control input. However, the disturbance rejection ability is positively related to the
capacitance of the LC filter. The larger the capacitance, the higher the ability of disturbance
rejection is acquired. In the case of this test, the disturbance rejection ability designed by
the method of [26] cannot be realized by the nominal LC parameters in this paper so that it
appears to be an instability phenomenon. It is worth noting that the capacitance of the LC
filter adopted in [26] is 300 µF which is 10 times that of its counterpart in this research. This
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is why the design approach worked well in [26] and implies that the proposed approach
has broader adaptability.
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Table 4. Performance comparison of the three control methods for output voltage.

1 mH, 30 µF 2 mH, 15 µF 2 mH, 30 µF (Nominal) 2 mH, 60 µF

Linear Load Nonlinear
Load Linear Load Nonlinear

Load Linear Load Nonlinear
Load Linear Load Nonlinear

Load

The
proposed
approach

Inferior
dynamic

performance,
THD: 2.1%

RMS: 220.1 V

Inferior
dynamic

performance,
THD: 1.9%

RMS: 220.2 V

Inferior
dynamic

performance,
THD: 0.6%

RMS: 220.1 V

Good
dynamic

performance,
THD: 1.8%

RMS: 220.1 V

Excellent
dynamic

performance,
THD: 0.5%
RMS: 220 V

Excellent
dynamic

performance,
THD: 1.7%

RMS: 220.1 V

Good
dynamic

performance,
THD: 0.3%
RMS: 220 V

Good
dynamic

performance,
THD:1.4%

RMS: 220 V

The method
in [26]

Can’t start
up *

Can’t start
up

Can’t start
up

Can’t start
up Instability * Instability

Inferior
dynamic

performance,
THD: 0.7%

RMS: 219.8 V

Inferior
dynamic

performance,
THD: 2.0%

RMS: 219.8 V

LQR Can’t start
up

Can’t start
up Instability * Instability

Inferior
dynamic

performance,
THD: 0.7%
RMS: 220 V

Inferior
dynamic

performance,
THD: 3.4%

RMS: 220.2 V

Inferior
dynamic

performance,
THD: 0.6%

RMS: 219.9 V

Inferior
dynamic

performance,
THD: 2.1%
RMS: 220 V

* Can’t start up: Voltage can’t be established even in idle state. Instability: Voltage can be established in idle state,
but it is unstable when load is applied suddenly.
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To demonstrate the improvement contribution to the conventional LQR of the pro-
posed optimal LQ control design approach, the conventional LQR was also tested with the
same loads and parameter variations. Similarly, while in the condition of 1 mH, 30 µF and
2 mH, 15 µF, the LQR is unstable. Figure 11 shows experimental results for the other LC
parameters. Apparently, from Figure 11, the dynamic performance of the conventional LQR
is worse than the proposed optimal control law in both tests. Moreover, a few distortions
appear in the voltage in the case of a nonlinear load under nominal parameters. Finally, the
comprehensive performance comparison is summarized in Table 4, which can demonstrate
the superiority of the proposed approach.
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5. Conclusions

This paper has proposed an efficient and systematic inverter optimal control design
approach by means of an objective-selectable convex optimization problem, which can
be perfectly solved by the LMI method. The approach is able to conveniently design the
high-dimension parameters for the multiple resonant controller. Besides that, the approach
avoids the subjective and time-consuming selection of the high-dimension weighting matrix
Q for LQR.

The yielded optimal control law is allowed to optimally compromise several aspects of
indexes leading to some excellent control characteristics such as internal stability, outstand-
ing steady and transient response, and disturbance resistance, especially for the abrupt
non-linear loads. The simulation and experimental results demonstrated that the proposed
optimal control law has excellent performance such as fast recovering time, small fluctua-
tion in load change, low THD and high robustness. Hence, the validity and superiority of
the proposed approach were verified.
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The main disadvantage of the proposed approach is that some conservativeness
is introduced in the design process due to the adopted common optimized variable W.
Hence, future work will be mainly to overcome this drawback in order to reduce the
conservativeness. The iteration optimization may be a suitable method.
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