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Abstract: Due to the complex microscope pore structure of shale, large-scale hydraulic fracturing is
required to achieve effective development, resulting in a very complicated fracturing fluid flowback
characteristics. The flowback volume is time-dependent, whereas other relevant parameters, such as
the permeability, porosity, and fracture half-length, are static. Thus, it is very difficult to build an end-
to-end model to predict the time-dependent flowback curves using static parameters from a machine
learning perspective. In order to simplify the time-dependent flowback curve into simple parameters
and serve as the target parameter of big data analysis and flowback influencing factor analysis, this
paper abstracted the flowback curve into two characteristic parameters, the daily flowback volume
coefficient and the flowback decreasing coefficient, based on the analytical solution of the seepage
equation of multistage fractured horizontal Wells. Taking the dynamic flowback data of 214 shale
gas horizontal wells in Weiyuan shale gas block as a study case, the characteristic parameters of
the flowback curves were obtained by exponential curve fittings. The analysis results showed that
there is a positive correlation between the characteristic parameters which present the characteristics
of right-skewed distribution. The calculation formula of the characteristic flowback coefficient
representing the flowback potential was established. The correlations between characteristic flowback
coefficient and geological and engineering parameters of 214 horizontal wells were studied by
spearman correlation coefficient analysis method. The results showed that the characteristic flowback
coefficient has a negative correlation with the thickness × drilling length of the high-quality reservoir,
the fracturing stage interval, the number of fracturing stages, and the brittle minerals content.
Through the method established in this paper, the shale gas flowback curve containing complex flow
mechanism can be abstracted into simple characteristic parameters and characteristic coefficients,
and the relationship between static data and dynamic data is established, which can help to establish
a machine learning method for predicting the flowback curve of shale gas horizontal wells.

Keywords: shale gas; flowback; big-data analysis; horizontal well; fracturing fluids

1. Introduction

Multistage fracturing of horizontal wells is widely used in the exploration and devel-
opment of shale gas. It typically takes tens of thousands of square meters of fracturing
fluids and thousands of tons of sand to fracture a shale gas horizontal well, and the flow-
back of the fracturing fluids directly affects shale gas production. Hence, the flowback
curve of fracturing fluids is a key issue in shale gas exploration [1]. The pores and fractures
in shale gas reservoirs have different scales [2], and new multiscale pore-split systems are
created by multistage fracturing. Thus, the shale gas flow mechanism is very complex,
including pressure sensitivity, adsorption, diffusion, slip, imbibition, and seepage [3–6].
Currently, no consensus has been reached on this flow mechanism. Moreover, there is
gas–water two-phase flow in the formation after large-scale fracturing. At present, there is
no commercial software to realize the numerical simulation of flowback curve. It may take
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several years to develop such software because, when developing such calculation pro-
grams, the solutions of the flow equations, unstructured meshing, equation discretization,
and large-scale irregular sparse matrix are very complex. The gas flow equation for shale
gas involves many flow mechanisms. The solution of this equations requires many known
parameters which are difficult to obtain directly or measure experimentally. For example,
shale gas is a multicomponent mixture containing hydrocarbons and nonhydrocarbon gases
(CO2 and N2) [7], and its molecular free path at a high temperature and pressure cannot
be obtained for unknown component proportions. Even if there is a perfect numerical
simulation program, inaccurate parameters will affect the reliability of the results.

In recent years, with the development of big-data-related technology, researchers
began to introduce machine learning into the research of oil and gas development and
have mainly used it as a prediction tool. Kohli et al. [8] took well-log data as input
parameters and trained the multilayer forward neural network by using the least square
Levenberg–Marquardt optimization algorithm to predict the formation permeability; the
predicted permeability is consistent with field data. Jia et al. [9] studied the water channel
problem resulting from long-term water injection. A density peak clustering algorithm
based on streamline clustering was used to quantify the flow area for water flooding in
the oil reservoir and thereby effectively identify the invalid water injection circulation
channels between the injection and production wells, as well as areas with development
potential. Adibifard et al. [10] carried out a Chebyshev polynomial interpolation of pressure
derivative data and input the results to an artificial neural network to estimate reservoir
parameters. Ghaffarian et al. [11] processed the pseudo pressure of gas wells and used the
pseudo pressure derivative data as the input of single and coupled multilayer perceptron
network to identify the condensate gas reservoir model. Tian et al. [12] used recurrent
neural network learning to train the data collected by permanent downhole pressure gauge
(PDG) for the inversion of reservoir permeability and other parameters and production
prediction. Hung et al. [13] introduced the application of Gaussian process regression
(GPR), support vector machine (SVM), and random forest (RF) to predict CO2 trapping
efficiency in saline formations.

As the fracturing fluids flowback is influenced by many factors, big data technology
has attracted increasing attention. Bai et al. [14] used exponential and harmonic functions
to fit the water production in the flowback stage and produced the water stages of 32 wells
and developed a prediction tool for accumulated water production based on the fitting
results. Zhou et al. [15] used various binary and multivariate methods to analyse the data
from 187 wells in the Marcellus block in the USA. The flowback rate during the first three
weeks of data collection was found to increase with the thermal maturity and decrease with
increasing strata thickness. Lin et al. [16] used a back propagation neural network to model
the static data and flowback rate for 74 wells in Sichuan Province, China. The flowback
rate and gas production in the first month were estimated using six parameters with
relatively high weights in the model. Liu et al. [17] developed two neural networks with
different structures to predict the flowback rate at specific time points and compared the
predictions. In summary, current big data-based methods used to determine the flowback
pattern focused on static or dynamic data of many wells for a given block, and a combined
analysis of static and dynamic data has not been conducted. Some studies have been
performed by using a fixed data point or a periodic average of dynamic data, which is
a static data methodology in essence. All these lead to incomplete data utilization and
limited application scope of the method.

In order to simplify the time-dependent flowback curve into simple parameters, as the
target parameters of big data analysis and flowback influencing factor analysis, this paper
combined the flowback dynamic data and static data of shale gas fracturing horizontal wells
to study the flowback curve. The approaches and processes used in this study are shown
in Figure 1. The first part of this paper briefly introduces the geological background of the
research area and the relevant data collected. In the second part, the multi-stage fracturing
physical model of shale gas horizontal wells was established. The flow equation in Laplace
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space was obtained from the convolution formula, and the time-dependent flowback
rate was obtained. In the third part, the flowback data of 214 horizontal wells in the
Weiyuan block were fitted to obtain the characteristic parameters. The calculation formula
of characteristic coefficient including characteristic parameters was established. Then, the
correlation analysis was carried out by using a flowback characteristic coefficient, and the
influencing factors of the flowback characteristic coefficient were comprehensively studied.
Through the method established in this paper, the shale gas flowback curve containing
complex flow mechanism can be abstracted into simple characteristic parameters and
characteristic coefficients, and the relationship between static data and dynamic data is
established, which can help to establish a machine learning method for predicting the
flowback curve of shale gas horizontal wells.
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Figure 1. Schematic diagram of the approach used in the study 2. Research area background and
analysis data.

Weiyuan shale gas block is located in the southwest of Sichuan Basin of China. The
whole Weiyuan block has a monoclinic structure inclined to the southeast. The Longmaxi
Formation (LF) is the main exploration target layer. The LF can be divided into two layers:
L1 and L2. The first layer of L1 can be subdivided into two sublayers, namely, L11 and
L12. The L11 sublayer can be further subdivided into four layers, namely, L11

1, L11
2,

L11
3 and L11

4, from bottom to top. The middle and lower parts of L11
1 have the best

reservoir quality.
Table 1 shows the data from the study area. A total of 20 different types of data were

collected from 282 wells in Weiyuan shale gas block, including the fracturing lateral length,
the number of fracturing stages, first-year average daily production rate, vertical depth,
TOC, porosity, high-quality reservoir thickness, gas saturation, pressure coefficient, brittle
mineral content, average fracturing stage interval, fracturing fluid intensity, proppant
intensity, average hydraulic fracturing fluid displacement, drilling length in high-quality
reservoir, EUR (Estimated Ultimate Recovery), 30 day flowback rate, 90 day flowback
rate, 180 day flowback rate, 360 day flowback rate, and peak gas production flowback
rate. The data volume ranges from 214 to 282. The minimum data volume is 214, and
the corresponding data of these 214 wells is used in subsequent analysis. The 30 day
flowback rate, 90 day flowback rate, 180 day flowback rate, 360 day flowback rate, peak
gas production flowback rate, and first-year average daily production rate are taken from
the daily production reports of the horizontal wells. The fracturing lateral length, number
of fracturing stages, average fracturing stage interval, fracturing fluid intensity, proppant
intensity, and average hydraulic fracturing fluid displacement are taken from the drilling
and completion reports of horizontal wells. The vertical depth, TOC, porosity, high-quality
reservoir thickness, gas saturation, pressure coefficient, brittle mineral content and drilling
length in high-quality reservoirs are taken from well logging interpretation.
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Table 1. Statistical tables of data for the study area. Copyright permission: The copyright of Table 1
belongs to the publisher and authors.

Data set Data Volume Minimum Value Maximum Value Average Value Standard
Deviation

30 day flowback rate 260 5% 77% 24% 0.12

90 day flowback rate 240 8% 103% 35% 0.16

180 day flowback rate 231 10% 116% 42% 0.18

360 day flowback rate 214 13% 129% 48% 0.20

Peak gas production flowback rate 243 3% 83% 23% 0.15

Fracturing lateral length (m) 281 502.00 2577.00 1515.87 308.47

Number of fracturing stages 281 3.00 36.00 22.63 5.56

First-year average daily production
rate (104m3/d)

281 0.98 34.02 9.47 5.28

Vertical depth (m) 279 2200.00 3800.00 3008.24 352.49

TOC content (%) 282 3.30 7.80 5.39 0.76

Porosity (%) 282 5.00 8.90 7.11 0.96

High-quality reservoir thickness (m) 282 2.30 7.50 5.17 1.36

Gas saturation (%) 279 60.00 83.00 75.70 3.14

Pressure coefficient 282 1.35 2.05 1.74 0.19

Brittle mineral content (%) 282 62.50 96.00 78.67 7.79

Average fracturing stage interval (m) 281 43.10 479.33 69.94 27.81

Fracturing fluid Intensity (m3/m) 281 7.12 47.94 27.25 4.51

Proppant intensity (t/m) 281 0.29 3.00 1.63 0.38

Average hydraulic fracturing fluid
displacement (m3/min)

281 6.19 15.00 11.80 1.33

Drilling length in high-quality
reservoir (m) 206 40.60 2380.50 1011.98 452.00

2. Basic Theory

The time-dependent daily flowback volume curve for the Weiyuan shale gas block in
southern Sichuan Province, China, shows that the daily flowback volume is large during
the early stages of continuous production and decreases to a stable value during the late
stage of production. The daily flowback volume during early-stage production is two to
three orders of magnitude higher than that during the later stage, and the relationship
between daily flowback and time is generally exponential. The flowback of a fracturing
fluid after large-scale fracturing is essentially the seepage of fluid from the stimulated
reservoir volume (SRV) area to the wellbore. The corresponding law can also be obtained
from the seepage equation of fracturing fluid.

2.1. Bottomhole Flow Equation

The formula derivation in this paper considers single-phase liquid seepage, assumes
constant flowing bottom hole pressure (FBHP) and continuous production, and is based
on the multi-stage fracturing seepage equation of horizontal well [18]. The following
dimensionless parameters are defined:

Dimensionless pressure:

PD =
2πkh[pi − p(r, t)]

qBµ
(1)

Dimensionless time:
tD =

kt
φµCtL2 (2)
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Dimensionless distance:
xD =

x
L

(3)

yD =
y
L

(4)

where K denotes the permeability, m2; φ denotes the porosity; µ denotes the viscosity, Pa.s;
Ct denotes the comprehensive compressibility coefficient, 1/Pa; xfi denotes the half-length

of the ith fracture, m; and L =
n
∑

i=1
x f i denotes the sum over the half-lengths of n fractures, m.

For multistage fractured horizontal wells, the total flowback volume is the sum of the
flowback volumes of all the individual fractures. The flowback volume can be related to
the FBHP in Laplace space as follows:

n

∑
j=1

qDj =
1
s

(5)

PWDi( f (u)) =
n

∑
j=1

sqDjPDij( f (u)) (6)

where:
PDij( f (u)) = π

∫ ∞

0
PD(tD)e− f (u)tD dtD (7)

PD(tD) =
∫ tD

0
GxD(τD)GyD(τD)dτD (8)

The expressions for GxD and GyD vary with the external boundary conditions. For
enclosed strata with rectangular boundaries, GxD and GyD are defined as follows [19]:

GxD(τD) =
1

xeD

[
1 + 2

∞

∑
n=1

exp

(
−n2π2(τD)

2x2
eD

)
cos

nπxwD
xeD

cos
nπxD

xeD

]
(9)

GyD(τD) =
2

yeD

[
1 +

2yeD
π

∞

∑
n=1

1
n

exp

(
−n2π2(τD)

2y2
eD

)
sin

nπ

yeD
cos

nπywD
yeD

cos
nπyD
yeD

]
(10)

Equations (5) and (6) can be used to obtain the following linear equation:

f (u)PD1,1 f (u)PD1,2 f (s)PD1,3 · · · f (u)PD1,n
f (u)PD2,1 f (u)PD2,2 f (s)PD2,3 · · · f (u)PD2,n

. . . . . .
f (u)PDk,1 f (u)PDk,2 f (u)PDk,3 · · · f (u)PDk,n

. . . . . .
f (u)PDn,1 f (u)PDn,2 f (u)PDn,3 · · · f (u)PD,n

u u u . . . . . . u





q1D
q2D

. . . . . .
qkD

. . . . . .
qnD
PWD


=



0
0

. . .
0

. . .
0
0
1


(11)

The solution of Equation (11) without considering the wellbore storage and the skin
factor yields the FBHP as the dimensionless pressure PWD. The dimensionless pressure
PCWD is obtained considering the skin factor and wellbore storage for multistage fracturing
of horizontal wells in low permeability reservoirs as:

PCWD =
f (u)PWD( f (u)) + S

u
{

1 + CD f (u)SPWD( f (u)) + S
} (12)

where C is the wellbore storage constant, Pa/m3; CD = C
2πφCthL2 denotes the dimensionless

wellbore storage constant; S is the total skin factor of the fracture system; u is the Laplace
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transform variable; and f (u) is a function that characterizes the properties of the strata. For
a homogeneous stratum, f (u) = u.

For production wells with a variable flowback volume, the dimensionless pressure
can be expressed in the following convolution form:

PD(xD, yD, zD, tD) =
∫ tD

0
QD(tD − τ)

∂Pu(xD, yD, zD, τ)

∂τ
dτ (13)

where Pu(xD, yD, zD, t) denotes the dimensionless pressure of multistage fractured hori-
zontal wells per unit flowback volume; QD(tD) =

q(t)
qI

denotes the dimensionless flowback
volume; and qI represents the unit flowback volume.

Using the properties of Laplace transform for convolutions yields the relationship
between the pressure and flowback volume in Laplace space:

PD(xD, yD, zD, u) = QD(u)uPu(xD, yD, zD, u) (14)

Equation (14) can be used to obtain the flowback volume in Laplace space:

QD(u) =
PD(xD, yD, zD, u)
uPu(xD, yD, zD, u)

(15)

Equation (15) can also be expressed in terms of the FBHP as follows:

QD(u) =
Pw f D(u)

uPw f u(u)
(16)

where Pw f u(u) is the PWD obtained by solving Equation (11) for a unit flowback using GxD
and GyD, which are both exponential functions of time. Therefore, the flowback can be
simplified to Ql(t) = αexp(−βt). Thus, the time-dependent flowback curve is defined by
two characteristic parameters, α and β. Figure 2 shows the flowback volume versus time
for horizontal segments of a 1000-m horizontal well with 20 stages, an effective fracture
half-length of 40 m, and an effective fracture permeability of 0.25 mD. Fitting the curve
yields the following equation for the flowback volume:

q(t) = 109.23exp(−0.007t) (17)

where t denotes the flowback time, (d); and q(t) is the daily flowback volume, (m3/d).
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Figure 2. Theoretical flowback curve for multistage fracturing of horizontal wells.

Equation (9) accurately describes the characteristics of the flowback curve of horizontal
wells, which indicates that α and β can be effectively used to parametrize the dynamic
flowback curves. In addition, the flowback pattern is consistent with field measurements



Energies 2022, 15, 325 7 of 16

(Figure 3). The field data in Figure 3 are from one of the 282 Wells in Table 1. The abscissa
is production days, the ordinate is daily fracturing fluid flowback volume, and the blue dot
represents the daily flowback volume of a specific day.
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2.2. Fitting

The exponential expression for the flowback volume can be used to obtain the daily
flowback rate Rl for a single well as follows:

Rl(t) =
q

Qtotal
=

α

Qtotal
exp(−βt) = γexp(−βt) (18)

where q denotes the daily flowback volume, m3/d; Qtotal denotes the total quantity of in-
jected fracturing fluid, m3; α is a daily flowback volume coefficient, m3/d; β is a decreasing
flowback coefficient, 1/d, which is a fitting parameter; γ = α/Qtotal is the daily flowback
rate coefficient, 1/d, which is also a fitting parameter; and t denotes the production time (d).

The curves for the daily flowback rate and daily flowback volume have the same
shape but different magnitudes. For a total daily flowback volume that is recorded only
once a day, the range of t in Equation (18) is {t ≥ 1,t∈Z}. The cumulative flowback rate ŜN
for the previous N days can be then calculated as:

ŜN =
N

∑
t=1

γexp(−βt)
γ

eβ − 1

(
1− 1

eNβ

)
(19)

The cumulative flowback rates on the 30th, 90th, 180th and 360th day of production
for a shale gas well are used as the characteristic flowback rates, and the estimated values
of α and β are obtained by solving Equation (20):

S30 = ˆS30
S90 = ˆS90

S180 = ˆS180
S360 = ˆS360

(20)

The values on the left and right sides of Equation (20) correspond to measured data
and the calculation results from Equation (19), respectively. As there are fewer unknowns
than equations in Equation (20), exact solutions for γ and β cannot be obtained. Therefore,
γ and β are estimated by minimizing the sum of squares of the differences between the two
sides of Equation (20): (

γ̂, β̂
)
= argmin

(γ,β)
∑
N

(
ŜN − SN

)2 (21)

where the values of N are 30, 90, 180, and 360.
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2.3. Big Data Analysis

A large quantity of data is generated during the exploration and development of
shale gas, i.e., from drilling to fracturing and from well closing in to flowback. Various
factors affect the flowback, which cannot be solved using currently available mathematical
equations. Big data can be used to solve this problem. In this study, the Spearman
correlation coefficient and distribution estimation were used to perform a big data analysis.

2.3.1. Correlation Analysis

The Spearman correlation coefficient has two advantages. First, sortable variables are
assumed, and a normal sample distribution of the samples is not required, which is appro-
priate for the dataset used in this study. Second, the Spearman correlation corresponds to a
monotonous, rather than linear, correlation between two random variables X and Y and
is therefore likely to reveal a nonlinear relationship between the variables. The Spearman
correlation coefficient is defined as follows [18]:

ρXY = 1− 6 ∑N
i=1[rank(xi)− rank(yi)]

2

N(N2 − 1)
(22)

where N denotes the number of samples, and rank denotes the rank number of an observed
value of X or Y.

The range of ρXY is [−1, 1]. A positive or negative ρXY indicates a positive or negative
correlation between X and Y, respectively. The higher the absolute value of ρXY is, the
stronger the correlation is. The significance of the Spearman correlation coefficient can be
tested by the following hypotheses [20]:

H0 : ρXY = 0 (23)

H1 : ρXY 6= 0 (24)

If H0 is satisfied, then:

ρXY
.∼ Normal

(
0,

1
n− 1

)
(25)

Generally, if p≤ 0.05, H0 is rejected, and ρXY is considered significant, whereas p > 0.05
indicates there is insufficient evidence to reject H0, and ρXY may be false.

2.3.2. Estimation of Distribution of Fitted Parameters

In order to test whether the study sample is statistically significant, it is necessary
to analyse the probability distribution of parameter fitting results. Consider a candidate
distribution for the set of fitted parameters with a probability density function f (x/p) and a
log-likelihood function l(p/x). The optimal parameter p̂ of this candidate distribution can
be obtained using the following equation:

p̂ = argmax
p

l(p|x) (26)

Let f̂ (x| p̂) denote the optimal estimate of the probability density function f (x|p).
The quality of the estimate can be tested using the following equation:

SSE =
NH

∑
i=1

(
f̂ (xi| p̂)− h(xi)

)2
(27)

where SSE denotes the sum of the squares of the errors; h(x) denotes the probability density
obtained from a histogram; and NH denotes the number of bins of the histogram.
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The optimal estimate minimizes SSE and is denoted as P̂ . The correctness of the
estimation can be evaluated by the Kolmogorov–Smirnov test. For a dataset D with a
sample size n and a reference distribution P , the Kolmogorov–Smirnov test is [20]: H0 : D
and P have the same distribution and H1 : D and P have different distributions.

The tested statistics are as follows:

Dn = sup
x
|Fn(x)− F(x)| (28)

where Fn (x) is an empirical distribution function for the data, and F(x) is the cumulative dis-
tribution function of the reference distribution P . Let the fitted parameters corresponding
to the dataset D and P̂ denote the optimal reference distribution for the reference distribu-
tion P . When p ≤ 0.05 in Equation (28), H0 is rejected, that is, the estimated results may
not conform to the distribution of the fitted parameters. For p > 0.05, H0 cannot be rejected,
that is, the estimated results may conform to the distribution of the fitted parameters.

3. Results and Discussion

The Weiyuan shale gas block was considered as a case study. Flowback, production,
fracturing, drilling, and geological data were collected for 214 horizontal wells as shown in
Table 1. The flowback data of each well was fitted to yield the following daily flowback rate:

Rl(t) = 0.0121exp(−0.0293t) (29)

where 0.0121 and 0.0293 are the mean values of γ̂ and β̂. The mean R2 for all the fitting
results is 0.9212, and the mean value of the mean absolute error is 0.0157, indicating a good
fit. The distributions of the fitted parameters, γ̂ and β̂, are asymmetrical. Therefore, it is
inappropriate to use normal distributions for γ̂ and β̂. The theoretical domain of γ̂ and β̂ is
(0,+∞). To obtain the distributions of γ̂ and β̂, seven candidate distributions with support
sets of (0,+∞) or (0,+∞) were selected, and the optimal parameters of each distribution
were calculated by considering scaling but not translation, as shown in Table 2.

Table 2. Estimated probability densities for γ̂ and β̂.

Distribution SEE,
^
γ SEE,

^
β

Contrast Normal 200,347.01 86,414.97

Candidate

Chi-square 109,125.65 52,896.92

Exponential 147,857.30 73,137.37

F 96,919.53 52,771.35

Gamma 109,125.86 52,896.91

Rayleigh 126,688.09 54,432.71

Rice 126,703.31 55,320.32

Inverse Gaussian 127,636.96 64,920.44

Table 2 shows that the F distribution is the optimal distribution for γ̂ and β̂, and the
estimated results and optimal parameters are shown in Figure 4.

The Kolmogorov–Smirnov test was conducted on the empirical distributions of γ̂ and
β̂, and the optimal distributions had p values of 0.8209 and 0.4793, respectively, which
were both above 0.05. Therefore, the distributions in Figure 3 can be used as empirical
distributions of γ̂ and β̂. As can be seen from Figure 3, the fitting results of 214 wells are
statistically significant and can be further used for big data analysis. For the Weiyuan shale
gas block, this empirical distribution can be used to predict the most likely distribution
range of γ and β of wells that are about to be put into production and further predict the
flowback curve.
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Figure 4. Best estimated distribution of γ̂ and β̂.

A physical interpretation of the results is that γe(−β) corresponds to the flowback
rate on the first day, which is also the peak daily flowback rate, and β corresponds to the
speed at which the theoretical daily flowback decreases. Thus, the larger γ is, the higher
the starting point of the flowback curve is; the larger β is, the lower the starting point of
the flowback curve is, and the more rapidly the flowback decreases. Figure 5 shows the
relationship between γ̂ and β̂.

Figure 5 shows a strong and significant correlation between γ̂ and β̂. Both parameters
are related to the shape of the theoretical flowback curve and are therefore very likely to
depend on each other. As the curve shape is jointly determined by two factors, the height
of the starting point and the speed of decrease, neither factor can fully reflect the flowback
volume. Hence, a variable composed of γ and β was used in this study to directly describe
the flowback volume or flowback rate and is used in conjunction with static variables to
perform a binary analysis. The fitting results are as follows: the minimum and maximum
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values of β̂ are 0.0068 and 0.0658, respectively, and the 0.01th and 99.99th percentiles of the
estimated distribution are 0.0052 and 0.0686, respectively.
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Figure 5. Correlation between γ̂ and β̂.

Figure 6 shows that the higher the value of β is for the theoretical curve, the more
rapidly f (N; β) = 1− 1

eNβ converges to 1. For β = 0.0052, f (N;β) reaches 0.9945 at N = 1000,
and for β = 0.0686, f (N;β) reaches 0.9990 at N = 100, indicating that there is a minimal frac-
turing fluid volume after 1000 days of flowback for most shale gas wells. In Equation (19),
γ/(eβ − 1) corresponds to the approximate long-term cumulative flowback rate; thus, a
flowback characteristic coefficient is defined, η = γ/(eβ − 1), that reflects the flowback
potential of a horizontal well.
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Figure 6. Sensitivity analysis of f (N;β).

The flowback curve can be simplified by flowback characteristic coefficient. With
η as the analysis object, the Spearman coefficient can be used to analyse the correlation
between flowback rates and geological and engineering parameters and find the main
affecting factors.

The correlation between η and the 14 static parameters in Table 1 was analysed using
the Spearman correlation coefficient method. For comparison, the correlation between the
first-year average daily production rate and 14 static parameters was also studied. Table 3
shows the correlations between these two variables and the static parameters, where the p
value is given in parentheses. Static parameters with nonsignificant correlations with the
two variables were excluded.
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Table 3. Correlations between η, first-year average daily production rate, and static parameters.

Variable η
First-Year Average Daily

Production Rate

Fracturing lateral length −0.1767 (0.0096) 0.4435 (0.000)

Number of fracturing stages −0.2102 (0.0020) 0.4068 (0.000)

Fracturing stage intervals 0.1991 (0.0034) −0.1036 (0.1308)

Gas saturation −0.1061 (0.1216) 0.2536 (0.0002)

brittle mineral content −0.1746 (0.0105) 0.3302 (0.0000)

Pressure gradient × vertical depth 0.1923 (0.0047) −0.0335 (0.6265)

Thickness × drilling length of
high-quality reservoir −0.2928 (0.0002) 0.6400 (0.000)

Table 2 shows that the first-year average daily production rate is highly correlated
with the thickness × reservoir drilling length of high-quality reservoir, and the correlation
coefficient exceeds 0.5, indicating that the larger the thickness × drilling length of the
high-quality reservoir, the higher the first-year average daily production rate, which is
consistent with the results of Ma et al. [21]. The correlation between the static parameters
and the first-year daily production rate can be sorted by the correlation coefficient as
follows: thickness × drilling length of high-quality reservoir > fracturing lateral length >
number of fracturing stages > brittle mineral content > gas saturation > fracturing stage
interval > pressure coefficient × vertical depth. The drilling length of the high-quality
reservoir, the fracturing lateral length, the number of fracturing stages, and the fracturing
stage interval are engineering parameters. The better the drilling effect, the better fracturing
effect and the higher the first-year average daily production rate. High-quality reservoir
thickness, brittle mineral content, gas saturation and pressure coefficient × vertical depth
are geological parameters. The better physical properties of shale gas reservoir, the higher
first-year average daily production rate. This is why there is a good correlation between
the first-year average daily production rate and various parameters.

Although the correlation coefficients between η and the static parameters are less than
0.5, relatively speaking, η and the thickness × drilling length of high-quality reservoir
are best correlated, and the correlation symbol is opposite to that of the first-year daily
production rate, which means that the higher the first-year average daily production rate,
the lower the flowback rate. The correlation between static parameters and η is sorted
by coefficient, which is basically consistent with that of first-year average production
rate, but the positions of individual parameters are interchanged. The order according to
the absolute value of correlation is thickness × drilling length of high-quality reservoir
> number of fracturing stages > pressure coefficient× vertical depth > fracturing stage
interval > fracturing lateral length > brittle mineral content > gas saturation. η is positively
correlated with the fracturing stage interval, which means that the larger the fracturing stage
interval, the worse the fracturing effect. The hydraulic fracturing process does not create
complex fracture networks, and the fracturing fluids mainly concentrate near the main
fracture and wellbore, resulting in high flowback rate. η is positively correlated with the
pressure coefficient × vertical depth. The pressure coefficient × vertical depth represents
the formation pressure. The higher the formation pressure, the stronger the liquid carrying
capacity of the shale gas well and the higher the flowback rate. η is negatively correlated
with the fracturing lateral length, the number of fracturing stages, and the content of brittle
minerals. The higher the brittle minerals, the easier the reservoir is to be fractured; the
longer the fracturing lateral length is and the more the number of fracturing stages is, the
more complex the fracture network will be formed after hydraulic fracturing and the larger
the SRV will be. The fracturing fluids are bound in complex micro fractures and cannot be
discharged, resulting in a low flowback rate.
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Table 4 shows the correlations between η and the whole static parameters in Table 1.
Figure 6 shows the hot map of correlations between η and static parameters. From Table 1
and Figure 7, it can be seen that η is well correlated with the 30 day, 90 day, 180 day,
360 day, and peak gas production flowback rates. The longer the flowback time, the better
the correlation between η and the flowback rate. The correlation between η and the 30 day,
90, 180, and 360 day flowback rate confirmed that it is reasonable and scientific to use η to
characterize the flowback rate. η is positively correlated with vertical depth, TOC content,
porosity, pressure coefficient, and average fracturing intervals, which means the higher
these parameters are, the higher the flowback rates are. η is negatively correlated with
high-quality reservoir thickness, gas saturation, brittle mineral content, fracturing fluid
intensity, proppant intensity, average hydraulic fracturing fluid displacement, and drilling
length in high-quality reservoirs, which means the higher these parameters are, the lower
flowback rates are. η is negatively correlated with the first-year average daily production
rate and EUR, but the correlation coefficients are low. It means that flowback rate is not
merely correlated with gas production.

Table 4. Correlations between η and static parameters.

Variable η

30 day flowback rate 0.7871 (0.0000)

90 day flowback rate 0.9294 (0.0000)

180 day flowback rate 0.9759 (0.0000)

360 day flowback rate 0.9950 (0.0000)

Peak gas production flowback rate 0.7352 (0.0000)

Fracturing lateral length (m) −0.1767 (0.0096)

Number of fracturing stages −0.2102 (0.0020)

First-year average daily production rate (104m3/d) −0.0544 (0.4282)

Vertical depth (m) 0.1954 (0.0041)

TOC content (%) 0.1154 (0.0922)

Porosity (%) 0.0613 (0.3722)

High-quality reservoir thickness (m) −0.1478 (0.0037)

Gas saturation (%) −0.1061 (0.1216)

Pressure coefficient 0.1849 (0.0067)

Brittle mineral content (%) −0.1746 (0.0105)

Average fracturing interval (m) 0.1991 (0.0034)

Fracturing fluid intensity (m3/m) −0.0914 (0.1827)

Proppant intensity (t/m) −0.1021 (0.1366)

Average hydraulic fracturing fluid displacement (m3/min) −0.1020 (0.1370)

Drilling length in high-quality reservoir (m) −0.2640 (0.0009)

EUR (108m3) −0.0918 (0.1811)
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From the correlation between various static parameters and the first-year average
daily production rate and η, it is reasonable to simplify and characterize the flowback
characteristics of shale gas wells by the flowback characteristic coefficient η. In our previous
study [17], based on the actual data in the Weiyuan shale gas block, combined with a deep
learning algorithm, two different depth feedforward neural networks were designed, which
are the single output neural network and the multi-output neural network, to predict the
shale gas well flowback rate. The 30 day, 90, 180, 360 day, and peak gas production
flowback rates of shale gas wells were predicted. This method can predict the flowback
rate of a specific day, but the main factors affecting the flowback rate at any time cannot
be obtained. Combining the deep learning algorithm and the backflow characteristic
coefficients proposed in this article, the flowback rate at any time in the future can be
predicted. The method proposed in this paper also has some limitations. For gas wells
with intermittent shut-in or long-term shut-in or for long-term flooded gas wells, there will
be large errors in the prediction of the flowback rate. In addition, the research does not
consider the impact of gas–liquid two-phase flow on flowback.

4. Summary and Conclusions

Based on the seepage theory of fracturing fluid in multi-stage fractured horizontal
wells, the study uses convolution and Laplace transform methods to abstract the flowback
curve into two characteristic parameters, the daily flowback rate coefficient γ and the flow-
back decline coefficient β. Taking the Weiyuan shale gas block as a study case, the flowback
data of 214 wells were fitted, and the distribution characteristics of the fitted characteristic
parameters were studied. The flowback characteristic coefficients to characterize the flow-
back potential of shale gas wells were established. The Spearman correlation coefficient
method was used to study the correlation between the geological and engineering static
parameters of 214 wells, the characteristic flowback coefficients, and the first-year average
daily production rate. There are several conclusions obtained from this research:

(1) The fitting results of the flowback curve for 214 production wells show that the
average daily flowback rate coefficient and the flowback decline coefficient of all wells are
0.0121 and 0.0293, and the average value of R2 of all fitting results is 0.9212, the mean value
of the mean absolute error is 0.0157, and the fitting effect is better. Both the daily flowback
rate coefficient γ and the flowback decline coefficient β are right-skewed distributions.

(2) The comparative study on the correlation between the flowback characteristic
coefficient and the first-year average daily production rate and static parameters shows
that the thickness× the drilling length of a high-quality reservoir is best correlated with the
characteristic flowback coefficient and the first-year average daily production rate, and their
correlation symbol is opposite, which means that the larger the thickness × the drilling
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length of the high-quality reservoir, the higher the average first-year daily production rate
and the lower the flowback rate of the shale gas well. The factors affecting the flowback
rate mainly include geological factors and engineering factors. The order of correlation
coefficients is as follows: thickness × drilling length of high-quality reservoir, number of
fracturing stages, pressure coefficient × vertical depth, fracturing stage interval, fracturing
lateral length, brittle mineral content, and gas saturation.

(3) Through the method established in this paper, the shale gas flowback curve contain-
ing complex flow mechanism can be abstracted into simple characteristic parameters and
characteristic coefficients. The method proposed in this paper can provide a novel way for
machine learning and other big data analysis methods to study the flowback characteristics
of shale gas horizontal wells. In future studies, the time-dependent gas output will be
related to the flowback rate. Combining with machine learning, the flowback rate and gas
output at any time can be predicted in the future.
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Nomenclature

K permeability, m2

Φ porosity, dimensionless
t time, day
µ viscosity, pa.s
Ct comprehensive compressibility coefficient, dimensionless
xfi half-length of the ith fracture, m
P pressure, pa
PD dimensionless pressure, dimensionless
tD dimensionless time, dimensionless
xD dimensionless distance in x direction, dimensionless
yD dimensionless distance in y direction, dimensionless
C wellbore storage constant, Pa/m3

CD dimensionless wellbore storage constant, dimensionless
S total skin factor of the fracture system, dimensionless
u Laplace transform variable
α daily flowback volume coefficient, m3/d
β decreasing flowback coefficient, 1/d
q daily flowback volume, m3/d
Qtotal total quantity of injected fracturing fluids, m3

γ daily flowback rate coefficient, 1/d
ρ Spearman correlation coefficient, dimensionless
Rl daily flowback rate, dimensionless
η flowback characteristic coefficient, dimensionless
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