
����������
�������

Citation: Dalla Maria, E.; Secchi, M.;

Macii, D. A Flexible Top-Down

Data-Driven Stochastic Model for

Synthetic Load Profiles Generation.

Energies 2022, 15, 269. https://

doi.org/10.3390/en15010269

Academic Editors: Sasa Djokic, Jan

Desmet, Lidija M. Korunović and
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Abstract: The study of the behavior of smart distribution systems under increasingly dynamic
operating conditions requires realistic and time-varying load profiles to run comprehensive and
accurate simulations of power flow analysis, system state estimation and optimal control strategies.
However, due to the limited availability of experimental data, synthetic load profiles with flexible
duration and time resolution are often needed to this purpose. In this paper, a top-down stochastic
model is proposed to generate an arbitrary amount of synthetic load profiles associated with different
kinds of users exhibiting a common average daily pattern. The groups of users are identified through
a preliminary Ward’s hierarchical clustering. For each cluster and each season of the year, a time-
inhomogeneous Markov chain is built, and its parameters are estimated by using the available data.
The states of the chain correspond to equiprobable intervals, which are then mapped to a time-varying
power consumption range, depending on the statistical distribution of the load profiles at different
times of the day. Such distributions are regarded as Gaussian Mixture Models (GMM). Compared
with other top-down approaches reported in the scientific literature, the joint use of GMM models
and time-inhomogeneous Markov chains is rather novel. Furthermore, it is flexible enough to be
used in different contexts and with different temporal resolution, while keeping the number of states
and the computational burden reasonable. The good agreement between synthetic and original load
profiles in terms of both time series similarity and consistency of the respective probability density
functions was validated by using three different data sets with different characteristics. In most cases,
the median values of synthetic profiles’ mean and standard deviation differ from those of the original
reference distributions by no more than ±10% both within a typical day of each season and within
the population of a given cluster, although with some significant outliers.

Keywords: load modeling for smart grid applications; time series clustering; Aggregate Load Models;
Gaussian Mixture Models; time-inhomogeneous Markov chain; power systems

1. Introduction

The non-hydro global renewable power capacity is expected to reach at least 826 GW
by 2030, but it could be even higher as a result of the implementation of the COVID-19
national economy recovery plans currently under preparation in several countries (partic-
ularly in the EU) [1]. As known, the growing penetration of such renewable Distributed
Energy Resources (DERs), as well as the increase of large time-varying loads (most no-
tably electric heat pumps and plug-in electric vehicles [2,3]), will create both opportunities
and challenges for the evolution of smart grids [4,5]. Possible problems include voltage
imbalances, excessive voltage amplitude and frequency deviations, lines and equipment
overloading, larger power losses, power quality issues and a general higher risk of grid
instability. Such problems can be mitigated through proper real-time monitoring and state
estimation/control techniques relying on real or synthetic load/generation profiles [6,7].
At system design level, these issues can be tackled through simulations and planning of
the smart grid operations, especially under increasingly stressed operating conditions, e.g.,
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by using probabilistic approaches [8]. The simulation results can identify possible critical
scenarios, increase or optimize the hosting capacity of DERs [9,10], and support strategies to
improve grid safety, reliability, efficiency, resilience and power quality. However, in order to
obtain trustworthy simulation results, realistic Load Profiles (LPs) associated with different
types of users are needed. Unfortunately, such data are hard to find: despite the widespread
deployment of smart meters in Europe [11], the disaggregated electricity consumption data
of individual users are seldom disclosed due to privacy concerns. Moreover, the few data
records made available to researchers have a limited duration and a fixed (usually hourly)
time resolution (see, for instance, in [12,13]). Therefore, they are too limited to run extensive
and reliable simulations (e.g., for power flow analysis, system state estimation or optimal
power dispatching) over long time intervals and in time-varying operating conditions.

In order to bypass this problem, suitable Synthetic Load Profiles (SLPs) can be gener-
ated and provided as inputs to grid-level simulations. As pointed out in [14], the adoption
of SLPs can overcome privacy restrictions, allowing researchers to carry out more complete
studies (e.g., to compare different strategies to manage power supply and demand), pro-
vided that the SLPs are accurate and realistic enough. Some examples of SLP generators
are reported, for instance, in [15,16]. A common feature of most of such simulators is the
bottom-up methodology for profile generation. With bottom-up approaches, the aggregate
electrical power consumption of individual customers is reconstructed from the daily use
of a variety of devices, ranging from lighting systems and standard household appliances
to power-hungry equipment such as boilers, heat pumps or EV charging stations [17].
Depending on weather conditions, time of the day and the number of occupants in the
building [18], the times series representing the power consumption of different electric
devices are individually synthesized while keeping into consideration the users’ behavior.
In general, by adding the power consumption patterns associated with different devices,
the load profile of a given customer for a given time interval can be generated. Grandjean
et al. adopt two main criteria to categorize the bottom-up approaches proposed in the litera-
ture [19]. The first one is the so-called "modeling of the diversity", namely, the capability to
reconstruct both the variety of the population’s members and the randomness inside each
consumption profile. In this regard, some approaches rely on the time-of-use of different
household devices [20–24], which require complex surveys and extensive experimental
campaigns. Other approaches combine the load signatures of different appliances on a
statistical basis, i.e., considering the actual power demand at different times and using
mathematical tools [25], such as Markov chains and probability density functions.

The second classification criterion to categorize the bottom-up approaches relies
on the number and type of appliances and their end use [19]. The simplest modeling
frameworks consist of a reduced set of standard household appliances [23,26], while
other more evolved solutions take into account buildings envelope characteristics and
their energy efficiency [21,27]. The bottom-up approaches are particularly suitable for the
exploration of different demand–response strategies [21,28], in which external control rules
(typically driven by cost issues) are introduced to curtail or to shift the use of appliances. In
general, they provide accurate results only if all the model parameters are tuned properly.
However, the need to constrain the possible degrees of freedom for usability reasons limits
both the variability of the number of users within the simulated building and the type of
appliances included in the framework. As a result, in the vast majority of studies, only the
case of residential buildings is considered for load profile generation, although sometimes
(see, e.g., in [28]) a similar combined physical and behavioral bottom-up approach can be
extended to the case of office buildings [21]. Unfortunately, the large amount of model
parameters, the difficulty to find appropriate values for them and, the inclusion of area-
specific contour conditions (e.g., the building models or the solar radiation and external
temperature patterns) reduce the applicability of bottom-up approaches for grid-level
simulations and make them not easily adaptable to different contexts. Moreover, the
bottom-up approaches suffer from scalability problems when the size of the grid and,
therefore, the number users and nodes grows. For these reasons, the approach followed in
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this paper for SLP generation is inherently different from the techniques mentioned above,
as it relies on a top-down data-driven stochastic model. The purpose of this model is to
reconstruct the behavior of different groups of users identified from an input population
through data clustering. This implies trading modeling accuracy for easiness of use,
computational speed and flexibility. In addition, the proposed top-down methodology
is more scalable than the bottom-up model, as the SLPs inherently include the random
superimposition of a broad variety of power consumption sources that, however, do not
have to be modeled and simulated independently. Although partially based on some
previous studies on load modeling and forecasting [29–31], the proposed approach is
inherently novel and the key features of the developed model are summarized below.

• It requires just one input data record of suitable length for model parameters esti-
mation. As a consequence, the model can be used in quite heterogeneous scenarios.
Furthermore, the generated SLPs can have arbitrary length and time resolution.

• SLP generation relies on data clustering techniques, time-inhomogeneous Markov
chains and Gaussian Mixture Models (GMM) fitting.

• Unlike other similar works, in order to ensure a good consistency between the original
LPs and the SLPs, multiple features are evaluated and kept under control both in the
time and power domain.

The rest of this paper is structured as follows. In Section 2, some of the main features
of the proposed solution are briefly presented in the context of the related work. Section 3
describes the overall model in details. Finally, in Section 4, the results obtained using three
different data sets are reported to analyze its performances, advantages and limitations.

2. Related Work on Top-Down SLPs Modeling

As briefly mentioned in Section 1, the SLP generation methodology described in this
paper relies on a top-down approach. Top-down models are usually more flexible than the
bottom-up ones, as they tend to generate load profiles that are statistically similar to those
of an existing reference data set [14,30]. The high-level stochastic-based nature of these
models (which are no longer based on the actual use of a multiple electrical appliances, but
rather tend to exploit the common statistical features of the available profiles) make them
less dependent on specific physical parameters and, consequently, simpler to implement
and to use in practice. Unfortunately, Machado et al. highlight that such advantages
come at price of lower accuracy [14]. In the following, the main challenges of top-down,
data-driven SLP generation approaches are briefly recalled.

2.1. Data Preprocessing

A first crucial problem to be addressed in the implementation of effective data-driven
approaches for SLP generation is how to partition the initial data set into subsets char-
acterized by common user-dependent features. In fact, once the input data are collected
(e.g., through a metering infrastructure), they can be hardly used for SLP generation if
groups of similar users are not identified. To this end, suitable clustering techniques can
be used [29,32]. In this work, the Ward’s clustering algorithm is employed to fulfill this
purpose, in line with other solutions reported in the literature [29,33–35]. The Number Of
Clusters (NOC), however, has to be set a priori on the basis of the available information. In
the case of residential customers, the NOC ranges typically from 2 to 10 [30,33,36], while
in the case of non-residential loads, this number may grow considerably, until reaching
15–20 clusters [29,32,37]. The NOC values chosen in this paper are within the ranges re-
ported above. However, differently from other works, the yearly power consumption data
used for both clustering and model parameters’ fitting are split into four time intervals (one
for each season of the year) to mitigate the impact of seasonal factors on clustering accuracy.
As far as the clustering criterion is concerned, Granell et al. underlines the importance
of using as little as possible information to extract trustworthy results [38]. This sugges-
tion is also beneficial to the whole modeling framework simplicity and ease-of-use. Data
aggregation in time is useful both to reduce data set size and to detect possible common
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features within each cluster in the four seasons of the year [30]. The approach that was
adopted in this paper to detect important general variations of the power consumption
patterns due to daily routine activities, relies on the estimation of the mean load profiles
computed over subsequent days of the same season. In the following, such patterns will
be also shortly referred to as Typical Daily Load Profiles (TDLPs). Quite importantly, the
proposed approach can be applied to load profiles with a different time resolution. A last
remark to be made, is that even if the use of TDLPs tends to smooth the peaks of the original
consumption patterns, the underlying trend is preserved, which is enough to achieve good
clustering results.

2.2. Stochastic Model Structure

A second key challenge of top-down, data-driven load models is the difficulty to
mimic both the temporal variability of the original LPs and the cluster-related random
power consumption changes. Sometimes, these completely different sources of variability
are merged together and are modeled through a single all-inclusive Probability Density
Function (PDF), which however may hide possible time-dependent repetitive patterns
that depend on users’ routine activities. Besides the classic normal distribution (which
however makes sense only in the case of a large number of aggregated loads, namely, when
the assumptions of the Central Limit Theorem hold), other widely adopted PDFs used
to describe the load profiles are the log-normal [39], the Weibull [30,39], the Beta [40]
and the GMM distributions [31]. The Weibull, Beta and GMM PDFs exhibit two common
important features: (i) a high modeling flexibility (due to the fact that the PDFs depend on
multiple parameters) and (ii) an asymmetric shape. In addition, the GMM is multimodal,
which is consistent with the histograms of the power consumption data usually collected
at the distribution level [31]. For this reason, the GMM is adopted in this paper as well,
but, in order to decouple the power consumption variability over time from the random
fluctuations within the same cluster, a set of distinct GMMs (one for each cluster and
for each time step within a typical day of a given season) is defined. To the best of the
Authors’ knowledge, this approach was not adopted in other papers. In addition, the
intervals between consecutive predefined quantiles of each PDF are mapped to the states
of a Markov chain model. This choice stems from the fact that the Markov chains are
able to successfully describe the correlation of time-varying electrical power consumption
patterns [14,30,41–43]. For instance, an homogeneous Markov chain model describing the
case of residential loads is presented in [44]. In [42,45], it is shown that the adoption of
time-inhomogeneous Markov chain models is preferable, as it can provide better modeling
accuracy [14,30]. These solutions, however, do not rely on GMMs or on distinct PDFs
for different times of the day. Furthermore, while in [30,46] higher-order Markov chain
models are used, a first-order model is adopted in this work, as in [14,42,43]. Indeed, the
use of Markov chains of order higher than one does not bring substantial benefits in the
case at hand, as it increases both model complexity and parameters estimation uncertainty
with just minor improvements in terms of modeling accuracy. On the contrary, the use of
a distinct GMM for every time step, not only makes the resulting time-inhomogeneous
Markov chain model adaptable to different operating conditions, but also reduces the
computational complexity and the uncertainty affecting GMM parameters’ estimation, as it
will be explained in Sections 3.2 and 3.3.

3. Model Description

The model structure is sketched in Figure 1 and consists of three steps:

• data aggregation and clustering,
• Markov chain model definition and
• SLP generation.

In the following, the theoretical background of the steps above is described in detail.
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and Clustering Time inhomogeneous

Markov Process
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1, . . . ,M∗ 1, . . . ,M∗

• time-aggregation to TLPs.

• Clustering Features: TLPs;

• Hierarchical Clustering (Ward).

• Random walk through
Markov chain states.

• GMMs power distribution;

• L equiprobable states;

• GMMs parameters fitting;

• Transition Matrices estim.

Figure 1. Block diagram summarizing the main steps of the proposed SLP generation model. The
key tasks of each step are also listed.

3.1. Data Aggregation and Clustering

Let N be the total number of the yearly load profiles within a given data record.
Such profiles have to be clustered on the basis of the similarity of the power consumption
patterns of different users. To this end, a preliminary data aggregation step is needed,
as also suggested in various other works [29,33,34]. Let T be the number of time steps
within a day depending on the sampling period of the available data sets (usually ranging
from a few minutes to 1 h). If pnd(t), for t = 0, . . . , T − 1, n = 1, . . . , N and d = 1, . . . , D,
represents the power consumption profile of the n-th user in the d-th day of a given
season of the year, the corresponding TDLP is given by p̄n(t) = 1

D ∑D
d=1 pnd(t). This

average-based data aggregation approach is independent of the time resolution of the
data set considered, provided that the time step is the same for all users. Unlike other
solutions [29,33,37], neither normalization nor filtering are applied to the load profiles, as
recommended in [30,38]. In fact, several normalization techniques were explored, but no
noticeable performance improvements were observed.

The TDLPs p̄n(t) for n = 1, . . . , N are processed by an AHC algorithm [47]. This
algorithm groups the input TDLPs into a multilevel binary cluster tree (or dendrogram).
The linkage criterion adopted in this paper for grouping is the so-called Ward’s minimum-
variance method, which minimizes the within-cluster variance, namely, the sums of squares
of the distances between the TDLPs in a cluster and its centroid. This choice is due to
the fact that the Ward’s method was already successfully adopted in studies on load
profiles modelling and it is recognized as one of the best linkage methods [34], as it
prevents the formation of large clusters [29]. Denoting with Ni the set of clusters at the i-th
level of the dendrogram, the steps of the AHC algorithm implemented in this work are
summarized below.

1. Initially, the elements of N0 (i.e., at level 0 for a sequence number j = 0) are exactly
N clusters consisting of 1 TDLP each. As a consequence, the initial NOC value M is
M = |N0| = N and the M×M dissimilarity matrix Dj is computed as follows:

Dj =


0 d2

12 · · · d2
1(M−1) d2

1M
d2

21 0 · · · d2
2(M−1) d2

2M
...

...
...

...
...

d2
M1 d2

M2 · · · d2
M(M−1) 0

 (1)

where drk is the distance between each pair of clusters r and k. If the Ward’s method is
used, initially drk coincides with the squared Euclidean distance between TDLPs p̄r(t)
and p̄k(t), i.e., drk = || p̄r(t)− p̄k(t)||2.

2. Starting from the current matrix Dj, the clusters with the least dissimilarity, i.e., those
with indexes

(r∗, k∗) = arg min
r,k∈Ni

drk (2)

are merged into a new cluster and the sequence number j is incremented by 1. Fur-
thermore, matrix Dj is updated by deleting the rows and columns associated with
clusters r∗ and k∗, and by adding a new row and column including the distances
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dpk between the newly formed cluster (labeled as p) and all the others. In particular,
if the Ward’s linkage method is used, the value of dpk is updated recursively using
the Lance–Williams expression reported in [48,49]. Observe that both the number of
clusters M and the size of matrix Dj are decreased by 1.

3. If M > 1 a new clustering attempt is performed restarting from step 2; otherwise the
algorithm ends.

Note that while the leaves of the tree are one-member clusters including the individual
TDLPs, the root of the dendogram consists of a single cluster containing the whole data
set. Thus, a crucial point is the selection of the best NOC value M∗, namely, the number
of clusters ensuring the best partition of the original data set into subsets of TDLPs with
similar features and with minimal error probabilities. While the M∗ value is usually set
a priori [50], in this work M∗ is unknown. Therefore, it is set heuristically by evaluating
the quality of clustering. To this end, several performance indexes exist (most notably
the Davies-Bouldin index—DBI [51], the Calinski–Harabasz criterion [38], known also as
“variance ratio criterion”, the ratio between the “within-cluster sum of squares” and the
“cluster variation” [34]). In the case at hand, the DBI was chosen as it is widely adopted in
this kind of applications [29,32–34,38]. Of course, if Nm (for m = 1, . . . , M∗) is the number
of TDLPs within the m-th cluster of set NM∗ , it results that ∑M∗

m=1 Nm = N.

3.2. Markov Chain Model Definition

As known, a Markov chain relies on a given set of states L and on the transition
matrices including the probabilities of moving from one state to any other. The rationale
underlying the proposed model stems from the observation that even though the PDFs
of the power demand of the members of the same cluster changes as a function of time,
from the respective cumulative density function CDFs it is always possible to compute
the 1

L -quantiles of the load values at a given time of the day. As a consequence, at every
time step a one-to-one correspondence can be established between the states of the model
(included in the set X = {X1, . . . , XL}) and the probability intervals [ l−1

L , l
L ] for l = 1, . . . , L.

Quite interestingly, the Markov chain model built as described above exhibits some special
properties, i.e.,

1. it is irreducible and aperiodic;
2. it certainly admits an invariant measure 0 ≤ πl ≤ for l = 1, . . . , L with ∑L

l=1 πl = 1,
as the probability of visiting every state X1 of the model is constant over time. In
particular, it results by construction that πl = Pr{Xl} = 1

L .
3. it is time-inhomogeneous since the elements of transition matrix

Q(t) =


q1,1(t) q1,2(t) . . . q1,L(t)
q2,1(t) q2,2(t) . . . q2,L(t)

...
...

. . .
...

qL,1(t) qL,2(t) . . . qL,L(t)

 (3)

(with qi,j(t) being the probability of moving from state i to state j) change as a function
of time. Therefore, a sequence of T L× L transition matrices must be estimated to
implement the model.

A graphical overview of the Markov chain is shown in Figure 2. It is important to
highlight that properties 2 and 3 at a glance look contradictory. However, they are not, as
some examples of time-inhomogeneous Markov chains with a positive probability measure
which is invariant in each time step do exist [52]. Recalling that the uniform distribution
is an invariant measure for any finite Markov chain with a doubly stochastic transition
matrix (i.e., in which not only ∑L

j=1 qi,j(t) = 1 for i = 1, . . . , L, but also ∑L
i=1 qi,j(t) = 1 for

j = 1, . . . , L), it can be easily shown that in the case at hand this condition holds true by
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construction. Indeed, the individual transition probabilities in (3) can be estimated from
the raw data of the m-th cluster as follows, i.e.,

π̂i,j(t) =
ni,j(t)

∑j ni,j(t)
=

ni,j(t)
D · Nm

∀i, j = 1, . . . , L, t = 0, . . . , T − 1, (4)

where ni,j(t, t− 1) is the number of transitions between states i and j in the time interval
[t− 1, t]. As the total number of data at each time step within each cluster is constant, not
only the elements of the rows, but also those of the columns of (3) sum up to 1, because
∑L

i=1 ni,j(t) = D · Nm. Moreover, the time-inhomogeneous behavior of the considered
Markov chain does not affect the invariance property. In fact, recalling that any product of
doubly stochastic matrices is also doubly stochastic, the invariant measure π = [ 1

L , . . . , 1
L ]

T

certainly satisfies the property π = π ·Πt
t=0Q(t) even in the time-inhomogeneous case,

i.e., ∀t.

1 1 1 . . . 1 1

2 2 2 . . . 2 2

...
...

...
. . .

...
...

L L L . . . L L

t = 0 t = 1 t = 2 t = 3 . . . (T − 2) t = (T − 1) t = T

[Start of the day End of the day]

l =

l =

l =

q1,1(t)

q
1
,L (t)

q1,1(t)

q
1
,L (t)

q1,1(t)

q
1
,L (t)

q2,1
(t)

q2,2(t)

q
2,L (t)

q2,1
(t)

q2,2(t)
q
2,L (t)

q2,1
(t)

q2,2(t)

q
2,L (t)

qL,L(t) qL,L(t) qL,L(t)

Figure 2. Representation of the time-inhomogeneous Markov chain for a single cluster. The L states
are equiprobable, but the transition probabilities qi,j(t) change as a function of the time step t = 1 . . . T.
A cyclic random walk throughout the chain is generated to produce SLPs with a duration longer than
one day.

3.3. SLPs Generation

The SLPs associated with a given cluster are generated by a random walk through the
states of the Markov chain. Let pm(t) (for m = 1, . . . , M∗) be the random variable modeling
the power consumption of the users of the m-th cluster at time t, for t = 0, . . . , T − 1.
If f (pm(t)) denotes the PDF of pm(t), from the total probability theorem it follows that

f (pm(t)) =
L

∑
l=1

f (pm(t)|Xl)Pr {Xl} (5)

where f (pm(t)|Xl) is the conditional PDF of the power consumption in the l-th state of the
model at time t and Pr {Xl} = πl =

1
L for the reasons explained in Section 3.2. Moreover,

recalling that, due to Bayes’ theorem,

f (pm(t)|Pr {Xl})) =
Pr {Xl |pm(t) = p} · f (pm(t))

Pr {Xl}
l = 1, . . . , L (6)

where

Pr {Xl |pm(t) = p} =
{

1 Pm,l−1(t) ≤ p < Pm.l(t)
0 otherwise

(7)

with Pm,l−1(t) and Pm.l(t) being the l−1
L -th and l

L -th quantiles of the power profile distribu-
tion of the m-th cluster at time t, it follows that (6) can be rewritten as
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f (pm(t)|Pr {Xl}) =
{

L · f (pm(t)) Pm.l−1(t) ≤ p < Pm.l(t)
0 otherwise

l = 1, . . . , L. (8)

Therefore, while moving randomly across the Markov chain, the t-th sample of the
time series representing the SLP of the m-th cluster can be generated by triggering one of
the L distinct random number generators (depending on the visited state) whose PDF is
given by (8).

Of course, in order to apply (8), the expressions of PDFs f (pm(t)) have to be chosen
and their parameters have to be estimated by using the very same data that are also used
to compute the transition probabilities in (3).

As far as the PDF selection is concerned, the GMMs have been used to keep into
account the multi-modal nature of the load distributions for the reasons explained in
Section 2.2. In particular, a distinct univariate GMM is used in each time step t, i.e.,

f (pm(t)) =
Rm,t

∑
r=1

wr√
2πσr

e
− (pm(t)−µr)2

2σ2
r (9)

where:

• Rm,t is the number of Gaussian components for the m-th cluster at time t;

• coefficients 0<wr <1 (for r = 1, . . . , wRm,t with ∑
Rm,t
r=1 wr = 1) are the mixing probabilities;

• µr, for r = 1, . . . , wRm,t , are the mean values of the Gaussian components; and, finally,
σ2

r , for r = 1, . . . , wRm,t , are the respective variances.

The GMM parameters listed above can be estimated through a standard iterative EM
algorithm, as the one described, for instance, in [53]. One key advantage of using a separate
univariate GMM for each time step t is that the problem of PDFs parameter estimation can
be split into T independent subproblems. Therefore, the total number of parameters to
be estimated in each subproblem (as well as their estimation variances and the respective
Cramer–Rao lower bounds) tend to be lower than in the multivariate case. Some further
details are reported in Section 4.2.

4. Results and Discussion

The model performances have been evaluated both qualitatively and quantitatively
by using different test data sets. The use of heterogeneous data sets aims at analyzing the
flexibility and trustworthiness of the SLP model in different geographical contexts and with
different time steps. This affects the smoothness of the available LPs too, as they typically
represent the average power consumption values in every time step.

• The first data set, briefly referred to as OpenEI database (OEI – Commercial and Resi-
dential Hourly Load Profiles for all TMY3 Locations in the United States, Open Energy
Data Initiative, https://data.openei.org/submissions/153 ) includes almost 3000 com-
mercial and residential yearly load profiles reconstructed with hourly resolution on the
basis of the weather and location data of the “typical meteorological year 3” (TMY3).

• The second data set, referred to as Load Profile Generator (LPG – A Bottom-Up Cus-
tomizable Load Generator, Noah Pflugradt, https://www.loadprofilegenerator.de)
features around 300 load consumption profiles of typical German households with a
15-minute time step.

• Finally, the third data set, labeled as CER residential (CER Smart Metering Project—Electricity
Customer Behaviour Trial, 2009—2010, accessed via the Irish Social Science Data
Archive—www.ucd.ie/issda) consists of real anonymized measurement data collected
every 30 min from over 5000 Irish households that joined the project.

All records shorter than 1 year or including bad or missing data were excluded from
the analysis. Thus, the number of profiles N is equal to 2789 in the OpenEI case, 325 in the

https://data.openei.org/submissions/153
https://www.loadprofilegenerator.de
www.ucd.ie/issda
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LPG case and 3790 in CER residential case. The corresponding values of parameter T are 24,
96 and 48 for OpenEI, LPG and CER residential, respectively.

In the following Subsections, first the clustering results are reported and commented.
Then, the criteria to set and estimate the Markov chain parameters are explained. Based on
such settings, the statistical performances of the generated SLP are reported. Finally, both a
brief discussion about the limitations of the proposed approach and an evaluation of the
overall computational burden are provided.

4.1. Clustering Results

As explained in Section 3.1, the AHC algorithm was applied to the N TDLPs of each
data set within the same season. Therefore, the clustering results and the Markov chain
model parameters change as a function of the season. However, the NOC value of each
case study is the the same in all seasons. The choice of computing the mean daily TDLP
on a seasonal basis, (i.e., over D days with D ≈ 90 after splitting each one of the N yearly
available LPs into four sub-records, i.e., one per each season) provides a good trade-off
between the capability to estimate a typical cluster’s daily pattern and the attempt to
account for possible seasonal factors. As explained in Section 3.1, the DBI coefficient was
used to compute the best NOC value M∗. As the DBI results from the arithmetic average of
non-negative and symmetric functions of the ratio between the within-cluster scatter and
the cluster separation, generally a lower index value means a better clustering. The values
of M∗ associated with the lowest DBI values in each case study are reported in Table 1.
These numbers are reasonable if compared with those reported in similar studies, e.g.,
in [30]. In all cases, the clusters including less than 2% of the available LPs were rejected as
outliers and no longer used in the following analysis. Table 1 shows also the number of
clusters rejected as outliers and the share of customers Nm

N · 100 (for m = 1, . . . , M∗) within
valid clusters. Observe that, while in most cases the share of customers within a cluster is
statistically significant (quite greater than 2%), in a few cases it is borderline. This affects
the level of confidence with which the SLPs of those clusters are generated.

Table 1. Clustering results obtained with the AHC algorithm applied to the three data set under
study, i.e., OpenEI, LPG, CER residential.

Database
Name

Population
Size N

NOC
M

DBI
Values

Rejected
Clusters

% of Users within
Valid Clusters

OpenEI 2789 5 0.61 0 21, 33, 9, 33, 4
LPG 325 7 1.18 1 6, 10, 41, 4, 27, 10
CER residential 3790 5 1.90 0 12, 3, 20, 25, 40

4.2. Markov Chains Settings

While the length T of the sequence of transition matrices is dictated by the time
resolution of the considered data set, the number of states L of the Markov chain is a degree
of freedom. In principle, a high number of states tends to increase the granularity of the
model. As a consequence, the SLPs exhibit a finer resolution of the power waveforms.
However, incrementing L increases the risk of overfitting problems as well [43]. Moreover,
the estimation accuracy of the transition probabilities in (3) and of quantiles Pm.l(t) in (7)
decreases, since a larger number of model parameters has to be estimated with the same
amount of input data. Last but not least, the computational burden may grow considerably
with the number of states L.

Due to the concerns above, we decided to set L = 10 in all the cases considered in this
paper for three reasons:

1. this value is small enough (but not too small) to have a reasonably low estimation uncer-
tainty of the elements of transition matrices even with clusters with a low numerosity;

2. this number of states is in line with those reported in other works on the same topic,
e.g., in [30];
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3. finally, processing burden and computational times are reasonable, as it will be shown
in Section 4.4.

As mentioned in Section 3.2, the elements of the state transition probabilities (3) are
estimated through (4) at each time step, whereas the corresponding GMM parameters are
computed by iteratively applying the EM algorithm described in [53]. Even though the
details of the EM algorithm are out of the scope of this paper, it is worth recalling that the
algorithm starts from an initial guess of the number of GMM components Rm,t and from
a preliminary estimate of the other parameters. In this study, Rm,t ranges from 2 to 6, in
accordance with the results reported in [31]. For each Rm,t value, a preliminary heuristic
estimation, rather than a random initialization of the GMM parameters, is performed.
In particular, the k-means++ algorithm is used to compute the weight values of each
GMM, in order to increase convergence speed. In each iteration, the GMM parameters
values are computed through the EM algorithm while maximizing the log-likelihood
function. Algorithm convergence is reached when the log-likelihood function does not
change significantly from one iteration to the next. To this end, the Bayesian Information
Criterion (BIC) is used since the weighting criterion adopted in the definition of this index
is particularly effective in penalizing the growing model complexity that, in the case at
hand, depends indeed on the number of GMM components. Of course, it is reasonable
to select that number of GMM components for which an increment of Rm,t does not
cause a significant reduction of the BIC value. This good-practice criterion is heuristically
implemented through a knee-detection logic [54]. Once the Rm,t values are plotted as a
function of the BIC ones, this logic identifies the “knee" of the curve, that is the intersection
point between the two straight asymptotic lines that best fit the curve. The y-axis coordinate
of the “knee” point is therefore the value of Rm,t to be selected.

4.3. Performance Evaluation

The evaluation of the model capability to generate SLPs that are statistically similar to
the original LPs is performed at three different levels.

1. First, the PDFs of the SLPs are qualitatively compared with the histograms of the
original LPs at different times of the day.

2. Then, the capability of the proposed model to describe the intra-day behavior of the
original LPs is evaluated by comparing their autocorrelation functions (ACFs).

3. Finally, a deeper quantitative comparison of the main stochastic features of the load
profile distributions is performed. This analysis is carried out for each cluster by
comparing the mean, standard deviation and skewness values of the PDFs of both the
SLPs and the original LPs, both within a typical day of each season and within the
cluster population over the whole season.

Note that any comment or discussion about the specific temporal or stochastic features
of the original LPs and the difference between the chosen data sets is out of the scope of
this paper. In fact, the purpose of this work is to build a model that is flexible enough to
generate SLPs in heterogeneous scenarios, regardless of context-specific aspects.

As far as the similarity of original and synthetic GMM distributions is concerned, the
PDFs of the SLPs at given times of the day are compared with the respective histograms
of the original LPs. Figures 3a–d, 4a–d and 5a–d show the results of this comparison for
the most populated clusters of each data set in the hours when the power consumption is
usually particularly high (e.g., at 08:00 and 18:00) in both winter and summer. As the above-
mentioned figures show, the proposed model is able to mimic the statistical distribution of
the original LPs quite well in all cases, although some sporadic deviations can be observed
in the mode values and in the tails of the distributions. Some significant seasonal load
variations can be observed in the OpenEI and in the CER case at 18:00. The results in spring
and autumn are quite similar and do not provide additional information. Therefore, they
are not shown for the sake of brevity. Sometimes, the GMM components are so small or
so close that they are not clearly distinguishable in the fitted PDFs of the synthetic data.
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Nonetheless, the results of Figures 3–5 show clearly that the proposed model is flexible
enough to reconstruct load distributions with a quite different shape.

(a) OpenEI (winter @ 08:00) (b) OpenEI (summer @ 08:00)

(c) OpenEI (winter @ 18:00) (d) OpenEI (summer @ 18:00)

Figure 3. Histograms of the OpenEI original LPs and PDFs of the corresponding SLPs (solid lines)
at two different times of the day (8:00 and 18:00) in winter and summer, respectively. Histograms
computation and GMM PDFs fitting are performed using the same amount of data and refer to the
most populated cluster.

(a) LPG (winter @ 8:00) (b) LPG (summer @ 8:00)

(c) LPG (winter @ 18:00) (d) LPG (summer @ 18:00)

Figure 4. Histograms of the LPG original LPs and PDFs of the corresponding SLPs (solid lines) at
two different times of the day (8:00 and 18:00) in winter and summer, respectively. Histograms
computation and GMM PDFs fitting are performed using the same amount of data and refer to the
most populated cluster.
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(a) CER residential (winter @ 08:00) (b) CER residential (summer @ 8:00)

(c) 18:00 CER residential (winter @ 18:00) (d) CER residential (summer @ 18:00)

Figure 5. Histograms of the CER residential original LPs and PDFs of the corresponding SLPs (solid
lines) at two different times of the day (8:00 and 18:00) in winter and summer, respectively. Histograms
computation and GMM PDFs fitting are performed using the same amount of data and refer to the
most populated cluster.

In order to assess the capability of the proposed model to track the intra-day variability
of the reference data set, the ACFs of original and synthetic load profiles belonging to the
same cluster are compared in different seasons. The shaded bands shown in Figure 6a–f
represent the intervals between the 0.05-quantile and the 0.95-quantile of the ACF curves
within the most populated clusters of each data set in winter and summer, respectively.
The quantiles are estimated over 100 original (blue) and synthetic (red) load profiles. The
respective median ACFs are also highlighted by thicker lines. Again, the spring and autumn
plots are very similar, and therefore they are omitted for the sake of brevity.

The good intra-day consistency of LPs and SLPs is confirmed not only by the evident
similarity of the ACFs trend in all cases (regardless of temporal resolution and season),
but also by the fact that the ACF inter-quantile band of the ACF curves associated with
the SLPs is generally included within the corresponding ACF inter-quantile band of the
original profiles. This behavior is quite expected since the original ACFs are computed
using pairs of consecutive days over the whole season. Therefore, they may exhibit a larger
variability than the ACFs of the synthetic profiles, which instead are based just on the
typical (i.e., average) daily behavior of a given season. Further remarks on the limitations
of the proposed model over time intervals longer than one day are reported in Section 4.4.

Finally, in order to evaluate and to quantify the differences between the statistical
features of the SLPs and the original LPs distributions, about 100 profiles for each cluster of
all data sets were extracted in different seasons to build both T separate records of about
100 · D values each (namely one for every time step) and about 100 dual records of size
T ·D, i.e., one per user over the whole season. The mean, standard deviation and skewness
values of such records were then calculated to investigate their statistical behavior and
the differences between SLPs and original LPs in two complementary domains, i.e., as a
function of time over a typical day (see Figure 7) and within each cluster over the whole
season (see Figure 8).
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(a) OpenEI (winter) (b) OpenEI (summer)

(c) LPG (winter) (d) LPG (summer)

(e) CER residential (winter) (f) CER residential (summer)

Figure 6. Examples of ACF curves associated with the original LPs and the respective SLPs extracted
from the most populated clusters of different data set in winter and summer, respectively. The shaded
bands comprise the curves between the 0.5-quantile and the 0.95-quantile of 100 original or synthetic
ACFs. The median ACFs are also plotted using thicker lines.

The matrix of bar diagrams in Figure 7 represent the range of mean, standard deviation
and skewness (plots in the rows) during a typical winter day for different clusters of
different data sets (plots in the columns). The bars in blue refer to the original LPs, while
those in red refer to the SLPs. All bars include a number of values equal to the total
time steps in a day, i.e., T. Thus, the purpose of Figure 7 is to assess the capability of the
model to generate SLPs whose mean value, variability and asymmetry at different times
of day are close to those of the original LPs. The daily range of variations of both mean
and standard deviation are generally consistent in all cases, although with considerable
differences between the data sets. In the OpenEI case, the range values are very small with
a negligible offset between the SLP and LP bars in four out of five clusters. The intra-day
mean and standard deviation ranges of the clusters of the other data sets are instead larger
than in the OpenEI case. Nevertheless, the relative difference between the median of the
daily mean values of LPs and SLPs distributions is smaller than 10%, while the median
of the respective standard deviations is greater than 10% only for cluster 5 of OpenEI and
clusters 1 and 2 of LPG. However, these clusters are among the least populated ones (see
Table 1), so the estimated statistical features are inherently affected by larger uncertainty.
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Figure 7. Range of variation of the mean, standard deviation and skewness values of the estimated
PDFs of the original LPs (in blue) and the corresponding SLPs (in red), respectively, within a typical
winter day. Each pair of bars within every plot refers to one of the identified clusters. The columns
of the matrix of plots refer to the three explored data sets, while the rows refer to the analyzed
statistical features.

The skewness analysis is more controversial. Indeed, the skewness range bars of SLPs
and LPs distributions are well aligned and consistent only in the OpenEI case (except for
cluster 5 due to its aforementioned larger uncertainty). In the LPG case, the relative offsets
between the median values are below 5% on average, but the bars exhibit strong differences
from cluster to cluster. In the CER residential case, instead, a dual behavior can be observed,
i.e., the skeweness ranges of variations of the SLPs distributions are consistently slightly
smaller that those of the original LPs, but they are affected by a strong and well visible
negative bias. Such a data set-specific controversial behavior is certainly due to the use of
the GMM model, which becomes increasingly critical when the load profiles take on small
values for a significant amount of time. This is due to the fact that the domain of synthetic
GMM distributions is theoretically unbounded and not just positive. Of course, this is
impossible in practice as no negative load values exist in the considered data sets. Even
though the negative values that are sporadically returned by the GMM random generators
are discarded as outliers, their impact on skewness becomes increasingly relevant as the
distribution of the original LPs is mainly concentrated around small positive values.

The matrix of box-and-whiskers plots in Figure 8 show further complementary results,
namely, the mean, standard deviation and skewness values (plots in the rows) of both the
SLPs and original LPs distributions of up to 100 users for each cluster of different data sets
(plots in the columns) over the whole winter season. While Figure 7 aims at evaluating the
correctness of the proposed stochastic model within a typical day, the results in Figure 8 are
important to assess the statistical consistency of the synthetic profiles within the members
of each cluster over a longer time interval.

A first key achievement visible in Figure 8 is that the median values of almost all pairs
of boxplots of mean, standard deviation and skewness values are generally well aligned,
although those of the original LPs are often slightly overestimated. The absolute relative
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differences between the median of mean values, standard deviations and skewness of SLPs
and LPs distributions are under 7%, 10% and 12%, respectively, in the vast majority of cases.
However, in a few sporadic clusters twice as large offsets may occur. Again, the worst
results are those about skewness for the same reason explained above.
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Figure 8. Box-and-whiskers plots of the mean, standard deviation and skewness values of the PDFs
of the original LPs (in blue) and the corresponding SLPs (in red), respectively, within the population
of each cluster over the whole winter season. The columns of the matrix of plots refer to the three
explored data sets, while the rows refer to the analyzed statistical features.

A second interesting result is that the boxplot range of all the parameters of the
SLPs distributions is always much smaller than in the case of the respective original LPs.
Therefore, the mean, standard deviation and skeweness values of the LPs distributions of
different clusters over the whole season exhibit a much larger variability than those of the
respective SLPs distributions. This result was somehow expected since the estimated model
parameters refer to a typical day of each season. Thus, possible variability factors occurring
within each season are not captured by the model. However, this is not a limitation of
the model per se, but it rather depends on the chosen time horizon T considered for
both parameter fitting and simulations. Thus, it could be extended if longer data records
were available.

The SLPs over one week are still reasonably close to the original LPs. This is indeed
visible in Figure 9a–f that shows a qualitative comparison between pairs of randomly ex-
tracted one-week-long SLPs and LPs for each data set in winter and in summer, respectively.
Figure 9a–f gives an idea of the ability of the model to generate valid SLPs over intervals
slightly longer than those used to estimate the model parameters. Clearly, the profiles
are reasonably similar, although some differences between SLPs and original LPs can be
observed, especially during at the peak consumption times, which are the most complicated
to represent with a stochastic model, as already shown in Figures 3–5.
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(a) OpenEI (winter) (b) OpenEI (summer)

(c) LPG (winter) (d) LPG (summer)

(e) CER residential (winter) (f) CER residential (summer)

Figure 9. Qualitative comparison of one-week-long SLPs and LPs in winter (plots on the left) and in
summer (plots on the right). Both the SLPs and the original LPs are randomly extracted from the
most populated cluster of each data set.

4.4. Discussion

The results at the end of Section 4.3 show that, even if the SLPs can potentially have
an arbitrary duration, the ability to generate SLPs similar to the original LPs degrades as
the length of the output time series grows. As explained above, this is due to the choice of
estimating the statistical properties of each cluster from the seasonal TDLPs. This problem
could be mitigated by performing both clustering and Markov chain model fitting over
observation intervals longer than one day. However, if one-year-long data records are
considered, choosing a longer period (e.g., a week) would decrease the number of data
available to estimate the typical profiles as well as the Markov chain transition probabilities.
This would ultimately affect model parameters estimation accuracy due to need to estimate
a larger number of parameters with less data. To partially address this problem, longer
data sets (i.e., over multiple years) should be used.

It is likely that an optimal choice of parameters T and D could be made to achieve
the best trade-off between simulated time horizon and model accuracy. However, this
analysis is very lengthy and it is left for a future work. Nevertheless, even if the intra-week
variability is not explicitly considered in the present model, the one-week-long SLPs shown
in Figure 9 are generally consistent with the original ones.

Quite importantly, the modeling methodology underlying the synthetic load profile
generation is general enough to be applied to the case of active loads as well, i.e., considering
prosumers equipped with renewable-based generators that partially reduce the power
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supply demand from the main grid. This is indeed a further important advantage of a fully
stochastic data-driven approach, like the one adopted in this paper. Unfortunately, the
available data sets did not allow us to test and to validate the model when active loads
are considered.

A final remark concerns the computational burden of the model implementation.
Table 2 reports the total processing times to run the three steps shown in Figure 1 for the
three data sets considered in this study. The SLP generation times refer to one-week-long
time series in all seasons, assuming that the number of members of each cluster is the same
as in the original input data set. Of course, size and time resolution of the original LPs
strongly affect the processing times, particularly the GMM parameter estimation due to
the iterative EM algorithm. Observe that, in all cases, the SLPs generation times (i.e., step
3) are comparable and they are not excessively high, i.e., in the order of a few minutes.
Therefore, once the preliminary clustering and parameters estimation steps are complete,
the proposed model is quite scalable, as expected.

Table 2. Processing times for preliminary data aggregation and clustering, Markov chain parameters
estimation and SLP generation. The reported values refer to the steps shown in Figure 1 and are
obtained using a PC equipped with an AMD Ryzen™ 5 2600 6C/12T microprocessor, 32 GB of
RAM, Linux (Ubuntu 18.04) and Matlab R2019a enhanced with the Parallel Computing Toolbox. The
processing times for clustering and model parameters estimation refer to the whole set of clusters for
a single season. The SLP generation times refer to one-week-long time series, assuming to generate a
number of profiles equal to the number of LPs in the original input data set.

Database
Name

Time
Resolution

Data
Clustering

Model Parameters
Estimation

SLPs
Generation

OpenEI 1 h 2 min 6 min 3 min
LPG 15 min 52 s 5 min 5 min
CER residential 30 min 15 min 18 min 7 min

5. Conclusions

The capability to generate synthetic load profiles that mimic the power demand
of different kinds of users is essential to run realistic and context-specific smart grid
simulations. In this paper, a flexible top-down stochastic model is proposed to simulate
daily load profiles with features similar to those of a given data set. Some possible target
applications of the model are listed below:

• Load flow analyses in time-varying operating conditions, especially when the grid
under study consists of many buses and the original LP data are scarce.

• Correct sizing of grid components and devices (e.g., transformers, shunt capacitors
and power converters) to improve, at a design level, grid robustness under stressed,
non-ideal conditions.

• Definition of possible baseline scenarios to evaluate the impact of different centralized
or distributed optimal control strategies for load peak shaving, users’ costs minimiza-
tion or system resilience improvement.

• Benchmarking of power systems and distribution systems state estimation algorithms.

In order to improve modeling accuracy, the data sets are partitioned on a seasonal
basis. Furthermore, a preliminary Ward’s hierarchical clustering is performed to group
users whose profiles exhibit a similar average daily pattern. The core of the model is a
time-inhomogeneous Markov chain, whose parameters are obtained by fitting a different
GMM distribution for each time step. The comparative analysis between the synthetic load
profiles obtained through a random walk across the states of the Markov chain in three
test cases and the original data sets reveals that the proposed model is able to reconstruct
the features of the original profiles quite well in a typical day of each season. Indeed, the
autocorrelation functions and the shape of the probability density functions associated
with different clusters are very similar. In addition, the median values of the mean and
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the standard deviation of the synthetic load profile distributions both within the day and
within the population of each cluster usually differ by no more than about±10% from those
of the distributions based on the original data. The skewness values are instead not always
consistent due to the fact that the load profile distributions are certainly one-sided, whereas
the adopted GMM distributions are not. Even if the model was conceived to represent a
daily consumption, the model provides reasonably realistic one-week-long synthetic load
profiles. However, further research efforts are needed to improve the performance of the
model over longer time horizons.
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