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Abstract: Due to the surge in load demand, the scarcity of fossil fuels, and increased concerns
about global climate change, researchers have found distributed energy resources (DERs) to be
alternatives to large conventional power generation. However, a drastic increase in the installation of
distributed generation (DGs) increases the variability, volatility, and poor power quality issues in
the microgrid (MG). To avoid prolonged outages in the distribution system, the implementation of
energy management strategies (EMS) is necessary within the MG environment. The loads are allowed
to participate in the energy management (EM) so as to reduce or shift their demands to non-peak
hours such that the maximum peak in the system gets reduced. Therefore, this article addresses the
complication of solutions, merits, and demerits that may be encountered in today’s power system
and encompassed with demand response (DR) and its impacts in reducing the installation cost, the
capital cost of DGs, and total electricity tariff. Moreover, the paper focuses on various communication
technologies, load clustering techniques, and sizing methodologies presented.

Keywords: distributed energy resources; demand response; microgrid; load clustering techniques;
sizing methodologies; communication technologies

1. Introduction

The ever-increasing population has led to a plethora of electricity needs in the country.
Existing power systems got overstressed to meet the increased load demands. Though
the power generation by the conventional fossil fuel-fired generators is flexible, control-
lable, and dispatchable, the demerits of these sources are not economic, environmentally
unfriendly, and non-sustainable [1]. Moreover, the triple bottom line [2] approach suggests
the reduction in global emissions, increasing profits, and achieving maximum benefits for
the people. It encourages people to develop in a sustainable manner. Its main objective is
to enhance the economic, environmental, and social development of a home or community
or organisation. A possible solution is to ameliorate the existing system with the DERs [3],
but the output of these sources is stochastic and uncertain in nature. Another possible
solution is to deploy a battery energy storage system (BESS) into the existing MG to meet
the power balance condition, but it is a costly solution. A localized grouping of DGs, BESS,
and scattered loads form a MG [4]. Two modes of operation of MGs exist, namely, isolated
MG or off-grid modes or autonomous mode and grid-connected mode or on-grid mode.
Further, the MG has three topologies, namely, alternating current MG (AC-MG), direct
current MG (DC-MG), and hybrid MG. In AC-MG and DC-MG, the sources may be AC or
DC but the converters convert them into one form. In the case of AC-MG the converters
convert the power into AC, whereas, in case of DC-MG the converters convert all the
generations to DC. This process increases the number of converter operations. Hybrid MG
enhances the performance and reduces the redundancy of converters required. MG can be
operated in grid-connected mode and isolated or stand-alone mode based on the system
type. The higher the peak load demand on the system, the more the generation capacity
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to be installed is, which increases the capital cost of MG. To mitigate the present issues
such as load increment, fossil fuel deficit, and environmental degradation, steps have been
taken to reshape existing power systems into green and efficient systems. Therefore, an
EM system [5] is essential in a MG system for achieving efficient operation. Other factors
that drive the EM of MG are economic benefits [6], environmental benefits [7], energy secu-
rity [8], and energy integration [9]. Developments in power systems are due to advances
in technology and an increase in electricity usage. Figure 1 shows various stages of the
evolved power system from a source point of view.

Figure 1. The evolution of power systems before DR implementation.

EM can be done in two ways: supply-side management and demand-side management
(DSM). DSM focuses on DR, so as to improve the energy efficiency of the MG. DR can be
stated as changes in electricity consumption by end-users based on market price fluctuation
(Rs/kWh) without jeopardizing power system security. Response of the loads in accordance
with the proper way benefits both the utility and the consumer. By adjusting a part of peak
load to other time horizons results in reduced peak demand on the system, reduces the
peak to average ratio of the load demand, and increases the load factor.

Therefore, the proposed work addresses the complication of solutions, merits, and
demerits that may be encountered in today’s power system and encompasses demand
response (DR) and its impacts in reducing the installation cost, the capital cost of DGs, and
total electricity tariff. To achieve this an objective function was formulated and an optimal
sizing method has been proposed by considering the impact of DR for finding the optimal
size of DGs, i.e., WT, PV, and diesel generator. Further, the proposed algorithm clusters
the load into ILs and NILs and assigns a priority to the non-essential loads with the order
of scheduled times by using TOU pricing. In addition, the paper suggests a limit on the
amount of load shift to avoid the issues like rebound effect, increase in marginal price,
and operational cost of the MG due to load recovery. Three penetration levels of demand
responsive loads were considered, namely, 0%, 5%, and 10%, for studying the impact of DR
programs on optimal sizing of the DGs and on consumer tariffs.

2. Literature and Contributions of the Work

Figure 2 shows a general layout of hybrid MG systems where the DC bus and AC
bus are connected using a bi-directional converter. The EM achieved in grid-connected
mode [10] is as follows: all the DGs, i.e., wind turbine (WT) and photo voltaic (PV) operate
in maximum power point tracking (MPPT), and the dispatchable sources in the main grid
supply the surplus load demand if any. During the energy surplus from MG, the BESS gets
charged based on SOC. If the maximum SOC level is met, then the DGs supply the main
grid and all dispatchable sources control their outputs as shown in Figure 3.

Pdisp = PLoad − PWind − PPV − PBESS (1)
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Figure 2. A general layout of hybrid MG.

Figure 3. (a) Power dispatch mode in connected grid, (b) Un-dispatched power mode in iso-
lated modes.

In isolated mode [11], based on the level of SOC, the DGs may or may not operate in
MPPT. BESS supplies the surplus load if any. In off-MPPT, the DGs output is controlled by
derating its power where PVs operate in voltage-controlled mode and WT output power
operates with the pitch control mechanism. During MPPT operation, the DGs work in
MPPT and the BESS charges/discharges based on the energy surplus/deficit.

PBESS = PLoad − PWind − PPV (2)

The stochasticity produced by DGs and loads injects high frequency switching tran-
sients within the MG which degrades the life of the BESS, because of its low frequency and
low power density capability. A super capacitor (SC) has low energy and high density;
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therefore, to enhance the life of the BESS [12], the BESS operates with a SC and forms a
hybrid storage energy system. Proper EM is needed to boost the efficiency of the power
system and manage the ever-increasing peak demand. Deployment of new sources for
meeting the shortage of electrical power is not a key solution. A promising solution to
overcome the above challenges is the active participation of customers in electricity usage.
In the last few decades, the power system has been in a situation where the sporadic nature
is at the customer end and the generation should meet the fluctuations in the load demand.

The modern power system is quite complex, and the sporadic nature is also shifted
towards the source side [13]. Therefore, it is necessary for the implementation of DR
programs in the existing environment so as to manage the energy flow and control the
stochasticity of loads, sources, and electricity price as shown in Figure 4.

Figure 4. Stochasticity in MG.

Large integration of intermittent sources and loads into the MG needs proper EM.
EM can be done at both ends, either at the source side or at the load side depending on
the method of control. Optimal scheduling of DERs, optimal sizing of DERs, and optimal
sizing of BESS perform supply-demand balance from the source end side, DR programs
perform supply-demand balance from the end-user side. Uncertainty in RES, uncertainty
in loads, and uncertainty in price require effective control. The former is mitigated by
deploying fast-acting sources, the latter two addressed by performing DR programs. Power
system restructuring leads to the usage of advanced metering infrastructure (AMI) which
helps customers to monitor the electricity prices continuously. There can be effective
scheduling of their interruptible loads (ILs) as per the charges of the real-time market
by safeguarding the security of the power system. The paradigm shift from the way
customers buy or sell energy has been enabled by the creation of a common marketplace or
platform which establishes both energy transfer and transaction settlement on both sides. A
significant change in the technologies of transmission networks is essential so as to uphold
the reliability and security of the microgrid. To overcome the above challenges, there is
a need to incorporate communication technologies into the distribution network such as
smart metering infrastructure, supervisory control and data acquisition (SCADA), etc.

Moreover, the incorporation of EMS into the distribution network leads to the active
participation of customers. The basic inputs for managing the energy in the MG are load
and weather forecasting, state of charge (SOC) levels of BESS, operational, security, and
reliability constraints, and the possible solutions from the EM algorithm are the schedule
of DERs, load shedding/load growth, and optimal sizing of DERs. There are mainly two
EMS viz., demand-side management and supply-side management and the control may
be either centralized or decentralized. It is necessary to model the loads for applying the
above two methods. Based on the elasticity and cross elasticity behavior of consumers, they
are categorized into agricultural, industrial, residential, and commercial loads.

DR is well-defined as variations in electricity consumption by end-users based on
market price fluctuation (Rs/kWh) without jeopardizing power system security [14]. DR
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contributes to the system reliability, security, efficiency, and economic operation of the
MG. Further, DR provides a dynamic balance between supply and demand in all instances.
DR is seen as one of the cornerstones of future MG for addressing the above-concerned
challenges, it can be noted that resilient control can be incorporated at this stage to deal
with faults [15]. Moreover, customer comfort [16] should be ensured while performing the
DR operations. The load consumption pattern should match the generation profile. Loads
should be diversified so that the diversity factor gets improved. DR alleviates the load
profile by shifting the peak load, filling the valley point which decreases the operational
cost of the MG. Various researchers are working in this field as DR techniques have the
potential to solve the majority of existing power system problems. This paper focuses on the
impact of DR programs on sizing problems and consumer price. Moreover, a brief review of
aggregator functions, load clustering methods, and various trading models are mentioned.

Figure 5 shows the function of DSM. The collaboration between the BESS and DR
programs will enhance the performance of the power system due to the uncertainty present
in generation, loads, and electricity price. Decomposition algorithm with three scheduling
patterns employed in [17], namely day ahead (DA) scheduling to optimize the expected
operational cost of MG, an hour ahead (HA) scheduling to reduce the gap between DA, and
real-time (RT) scheduling, and RT scheduling is employed to reduce the real power imbalance.

Figure 5. Functions of DSM in MG.

A review on DR programs and EMS is presented in [18]. A review on integration of
DGs with the BESS, utilizing the demand side resources for increasing the flexibility of MG,
and various market rules have been proposed in [19]. A review on DR strategies and EM in
smart environments is presented in [20]. A detailed review on various artificial intelligence
(AI)-based algorithms to forecast the energy requirement during peak hours is presented
in [21], in which home energy management system (HEMS) is considered for the course
of study. The forecast and EMS can be applied on any of the issues such as DGs output
power, electricity price, and on loads [22–26]. A review [27] on EM in buildings based
on reinforcement learning (RL) algorithms is applied for responsive sources in buildings,
i.e., PV, BESS, electric vehicles (EVs), and heating, ventilating and air conditioning (HVAC)
systems. Figure 6 shows various EM techniques at source side.

The deployment of RES causes a drop in the overall inertia of the modern power
system. This poor inertia subsequently leads to frequency oscillations [28]. Frequency
stability [29] can be analyzed by simulating a loss of a generator or a loss of the majority
of a load under an aggregator or a balanced fault on the steady-state system. At present,
supervision of distribution networks has become more difficult due to the penetration of
intermittent renewable energy in large amounts. Volatility and uncertainty in renewable
energy sources (RES) increase the burden on independent system operators (ISO) to match
the generation and demand. Large-size thermal generators do not have an immediate
ramp-up capability. BESS provides sufficient power balance with high speed compared to
other DGs; however, it is costly. Therefore, there is a necessity to find alternate solutions.
The literature and the case studies considered depict the influence of DR programs on the
sizing and on consumer’s tariff.
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Figure 6. Long-term methods to perform EM in the MG system from source end.

In [30], a real-time hardware prototype is developed to manage the energy flow
between the MG and the main grid efficiently. Three cases have been considered, namely,
peak hours on the conventional grid, off-peak mode on the main grid, and isolated mode
where MG is disconnected from the main grid. A peak EMS is proposed by scheduling the
PV and the BESS in order to mitigate the stress developed on the main grid during peak
hours and optimize the battery status based on SOC and grid status based on load profile.
The failure rate on the system is a function of the number of devices connected. As the type
of sources considered is of a DC nature, redundancy of equipment should be limited by
considering the DC-MG to improve the reliability and reduce the conversion losses of the
MG system. Therefore, the number of devices required to integrate DC sources with the
AC grid gets reduced which ultimately decreases the failure rate of the system.

By performing the above two strategies as shown in Figures 6 and 7, the system
operators increase the energy efficiency and improve the reliability of the MG. The area
under the curve before and after valley filling should be identical to each other. Basically,
the type of tariff should be simple and easy to understand by every consumer. There
should be a minimum number of price updates. Depending on the number of updates and
duration for each price, pricing-based tariffs are classified into three types. Table 1 shows
the key differences between price-based techniques.

Table 1. Differences between various price-based tariffs [31].

S.No. Parameter Time of Use (TOU) Tariff [32] Critical Peak Pricing (CPP) Tariff [33] Real Time Pricing (RTP) [34]

1 Volatility in
prices Fixed prices during the same season. High price during the event. Dynamic prices.

2 Complexity Easy to use. Moderate and event-driven to ensure
reliability. Imposed by the utility.

Complex and it needs a robust
hardware setup.

3 Operation
There is no curtailment of load
demand. Only shifting in time
horizon takes place.

Either curtailment or shifting of load
takes place.

Shifting of loads is difficult since
consumers may not be able to see
their incentives.

4 Frequency of
imposition Imposed on daily basis. Not imposed on daily basis. Imposed on hourly or minutes or

seconds basis.

5 Efficiency Highly efficient in reducing the
energy cost and carbon emissions.

Less efficient in reducing the energy
cost and carbon emissions.

Moderate efficient in reducing the
energy cost.
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Figure 7. Methods to perform EM in the MG system from the load end.

Incentive-based tariffs are clustered into two types, namely, direct load curtailment
(DLC) and indirect load curtailment. In the former one, utilities directly control the con-
sumer appliances, therefore there is a possibility to secure threat and customer confiden-
tiality, whereas, in the latter, customers control their loading based on the price signals
displayed. Customer baseline load is used for deriving the compensations received by the
consumers. However, it requires sophisticated metering infrastructure. Figure 8 shows
some of the DR strategies performed by the system operator for effective management of
the load whereas Figure 9 shows the benefits of applying DR strategies.

Figure 8. DR strategies.
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Figure 9. Merits of DR strategies.

2.1. A Brief Introduction on Optimal Scheduling in a MG

The operational cost of a MG is a function of fuel and operating crew and the amount
of fuel required is a function of available load demand on the system. Therefore, proper
scheduling of DERs is mandatory for reducing the operational cost of MG. Table 2 presents
a brief introduction to various problem definitions for the optimal scheduling of DERs in
a MG.

Table 2. Optimal scheduling of DERs in a MG.

Ref
No.

Size of
Distribution
Network

Isolated (I) or
Grid
Connected (G)

Approach Objective Function Remarks

[35] 33 bus and 69 bus
radial networks *

Population-based
incremental
learning method

To minimize the
power losses, improve
voltage profile

Optimal power flow analysis has
been done for yielding power
losses and voltage profiles.

[36]
33-bus, 69-bus, and
78-bus
radial networks

* Hybridized meta-
heuristic method

To optimize the active
and reactive
power losses

Hybridized gray wolf
optimization (GWO) and particle
swarm optimization (PSO)
algorithms. The load power is
considered as 3.715 MW and
reactive power as 2.3 MVAR.

[37] * I

Improved
multi-objective
grey wolf optimiza-
tion (IGWO)

To optimize the
annualized cost of the
system and deficiency
of power
supply probability

EM system is used to achieve
the requirement.

[38] IEEE 33 and 69 bus G Firefly algorithm To minimize the
power losses

Applied firefly algorithm for
optimal sizing and siting the DGs
in a radial network.
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Table 2. Cont.

Ref
No.

Size of
Distribution
Network

Isolated (I) or
Grid
Connected (G)

Approach Objective Function Remarks

[39] IEEE 33 and 69 bus G

Sine cosine
algorithm (SCA) +
second-order cone
program-
ming (SOCP)

To minimize the real
power losses

Effective placement and sizing
of DGs.
Placement by using sine cosine
algorithm and sizing by using the
second-order cone programming.

[40] IEEE 33 bus G Multi-leader PSO Active power loss
reduction To optimally site and size DGs.

[41] IEEE 115 bus G
Genetic algorithm
(GA) has
been used

Power loss reduction,
improved voltage
level, and short
circuit level

Proper selection and placement of
DGs certainly improve the
EM system.

[42] IEEE 33 and 69 bus *
Adaptive shuffled
frog leaping
algorithm (ASFLA)

Power loss
minimization and
voltage stability index
improvement

Novel adaptive technique is used
for solving the problem. The
performance of the algorithm is
compared with the firefly, cuckoo
search, and shuffled frog leaping
algorithm. Results suggest that
ASFLA outperforms
other algorithms.

[43]
33-bus radial
distribution
network

*

Modified
differential
evolution
algorithm

To minimize DA
composite economic
cost, i.e., operation,
economic, and
transmission loss cost

The problem is modeled as a
non-linear problem and
scheduling has been done to
optimize the fuel cost.

[44] Loads, PV, and
BESS * Time decision

algorithm
To optimize the peak
power cost

The model yields the per day load
and generation capabilities
further, a decision is made for
BESS dispatch.

[45] * G
Improved particle
swarm optimiza-
tion (IPSO)

To achieve
economic scheduling

Uncertainty in wind and solar
generation and electricity prices
has been considered and a
two-stage stochastic model is
solved to optimize the operating
cost of the MG.

[46] IEEE 33-bus
system G

Optimal power
flow calculation is
carried out and
hierarchical
distribution
network
integration method

To achieve optimal
consumption of energy
by effective economic
scheduling

Effective coordination between
prosumer and grid is required for
the well operation of the power
system. An increase in residential
loads will make the power flow
calculations complex. To
overcome the above concern
residential customers are
clustered into a single
residential MG.

* Not specified.

2.2. The Necessity of Optimal Sizing of DERs in a MG

For effective functioning of the power systems, there should be a dynamic balance
between the supply and the demand occurring on the system. Though the peak loads on
the system occur rarely, there is a need to meet the peak load demand by increasing the
supply of electricity. Therefore, the size of DGs is a function of the peak load demand.

Figure 10 depicts the various costs involved while solving the optimal size problem of
BESS where the trade-off point is taken between the operational, emission, and installation
cost of BESS. As the size increases, the installation cost of BESS increases but the operational
cost of MG decreases. The emission cost reduces to a certain point and then increases as
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the size of BESS increases. The underlying fact is that as the size of BESS increases the
recycling cost also increases. Table 3 represents a brief study on various problem definitions
for optimal sizing of DERs in a MG.

Table 3. BESS sizing for achieving EM in a MG.

Ref
No.

Isolated (I) or
Grid
Connected (G)

Sources
Considered Objective Function Approach Problem

Modelled as Remarks

[47] G BESS alone

To improve the load
factor by decreasing
the peak value to
valley point difference

The net energy
in the BESS is
considered as
the initial value
of the day

Mixed-integer
programming

DR strategies improve
the load profile which
certainly improves the
load factor.

[48] G PV and BESS
To increase the annual
net profits, PV
consumptive rate

Non-
dominated
sorting genetic
algorithm 2

Multi-objective
problem

For optimal sizing of
BESS, the constraints
considered are
reliability constraints,
BESS performance
constraints, and user
purchasing
electricity cost.

[49] G
Solar, WT,
and fuel
cell (FC)

To reduce electricity
costs. In this study,
uncertainty in the cost
of electricity and load
uncertainty is
considered for
robust sizing

Decision theory
approach
is applied

BESS is
considered as a
cluster of loads.

In this study,
decision-making is
based on three issues,
namely, minimization
of expected cost,
min-max regret,
and stability.

[50] G Solar, WT,
and FC

To reduce the total
harmonic distortion
(THD), active power
losses, and to reduce
the overall cost
of DERs

Size is a
function of the
amount of
operational cost
decrement

BESS supplies
the deficit
power and
maintains
the balance

Sizing of DERs in an
IEEE 31 bus
distribution network
was performed to
reduce the total cost for
installing DERs.

[51] G PV, grid,
BESS, and WT

The aim is to optimize
the overall operational
cost of the MG

A quasi
oppositional
swine influenza
model
is applied

The load
difference is
supplied by
the grid

Sizing of both rooftop
PV and BESS has
been done

[52] G PV, WT, grid,
BESS

The objective is to
minimize the net
operational cost and
installation of BESS

GWO
algorithm
is used

The load
difference is
supplied by
the grid

The fuel cost is reduced
so that the size of the
BESS is reduced.

[53] I

PV, WT, BESS,
FC, and micro
turbine (MT)
are
considered

The objective is to
reduce the size of BESS

The problem is
formulated as a
mixed integer
linear program-
ming (MILP)

Grid is not
present so BESS
is essential

Sizing of BESS varies
when the uncertainty
of DERs is considered.
Three cases have been
considered: no BESS,
BESS with no initial
charge, and BESS with
an initial stored charge
equal to the total
capacity of BESS.
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Figure 10. Trade-off points in sizing of BESS.

2.3. Functions of DR Aggregator

Customers approach a DR aggregator if they wish to participate in DR programs.
Then, the DR aggregator forms a single large load by aggregating the small load demands
and establishes linkage with a distributed network operator (DNO) for maximizing the
profits. The aggregator acts as a mediator between loads and the ISO and the direction of
data flow is bi-directional as shown in Figure 11. The below equation represents the load
profiles of ‘n’ individual customers with ‘m’ load profiles submitted to the load aggregator
customers, aggregates it, and changes the load pattern as per the electricity price elasticity,
and submits the aggregated load data to the ISO. ISO is considered as an information hub
when seen from both ends of the power system. The decision variables in DR programs are
the electricity price and the incentive cost.

Figure 11. Function of DR aggregator.
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The profit obtained by aggregators depends on the level of penetration of responsive
loads. Moreover, high penetration of DERs will offer a benefit to reduce the energy price
in the local community and address the undesirable line congestion issues. In [54], a
framework was proposed to introduce the competition between the prosumers in which an
aggregator plays as a local market operator. In [55], an aggregator model was proposed
for reducing the issues in line congestion and voltage deviation, arising in response to
flexible resources such as ILs, intelligent electronic devices (IEDs), and various sensors to
the external price signals.

The response of loads is uncertain and the consumers participating in the DR programs
should be bound to the agreed amount of curtailment or shifting of load. In [56], a method
was proposed to assign priority to the reliable loads by reliability analysis. The registration
period for the consumers participating in the DR is one month. During this, the aggregator
derives the priority based on the consumer response in the scheduled period. Moreover,
the aggregator verifies the performance of the reliable customers during the course of
action by evaluating the difference between the agreed load curtailment and the actual
load curtailment and changes the priority levels based on the response. Disputes in energy
trading are inevitable which arises due to the multiple market players of different conflicts
of interest. There should be a third party for negotiations or mediations between the
prosumers and the upstream grid for suppressing the dispute. Transparency in the supply
of electricity and price policies mitigates disputes.

The potential of residential consumers in DR events is increasing because the portion
of load consumed by the residential loads when compared with other types of loads gets
increased. In [57], the authors proposed a framework for optimal bidding strategy by
considering the uncertainty in willingness to participate in DR programs of residential
consumers. Table 4 represents the function of the aggregator in a MG whereas, Figure 12
indicates the functions of ISO. In general, the below Equation (3) is a function of time. It
may change its shape from time to time, either in minutes, hours, or a greater number of
frequent updates depending on the type of load connected, scheduled time to run, and
duration of run.

[
Pt

aggregated

]
=


pt

1 . . . pt
1,m

pt
2 . . . pt

2,m
... . . .

...
pt

n−1 . . . pt
n−1,m

pt
n · · · pt

n,m

 (3)

Figure 12. ISO function in load data collection, processing, and scheduling.
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Table 4. Need for aggregator operations.

Ref
No.

Islanded (I)
(or) Grid
Connected
Mode (G)

Loads Are
Aggregated (A)
(or) No
Aggregation (N)

Users Objectives Outcome

[58] G
Aggregated
plug-in-electric
vehicle (PEV) fleet

Low volatage
MG (LV-MG)

Three objective functions
have been considered:
Reduction of power loss,
reduction of voltage
deviated. and current
through the lines should
be optimized

The problem is modeled as a
multi-objective problem in which
the results are not a single value but
of sequence which is called Pareto
solutions therefore, it is necessary
to take trade-off points which are
called as Pareto optimum.

[59] G Clustered loads
aggregated

Residential cold
climate heat
pump (CCHP)
MG

To optimize the operating
cost of the MG

A two-stage optimal dispatch
problem was proposed for
obtaining low operating costs.

[60] G EVs Residential and
commercial

Aims to reduce the
running cost of the MG

A non-linear optimization problem
was solved by
day-ahead scheduling.

[61] G
Residential loads
within the MG
were aggregated

Residential loads To maximize the
aggregator’s profit

Day-ahead scheduling of DERs was
considered and to mitigate the
sporadic behavior a
risk-constrained stochastic model
was framed.

[62] G N IEEE 24 bus
To achieve the economic
profit, security, and
stability of the MG

A multi-objective problem was
solved to assess the
dynamic stability.

[63] * A *

To maximize the
aggregator’s profit by
balancing the real-time
deficit of power

Optimal bidding strategy of
aggregator and real-time balancing
at the local level.

[64] * A *
Profit maximization of all
the market players within
the power system

Bender’s decomposition is applied.

[65] * A
Smart
distribution
system

To maximize the operating
cost of the agents
(aggregators and
prosumers) by optimally
scheduling the resources
and maximizing the profit
of energy suppliers

Multi-follower bi-level
programming is applied. The
objective function is linearized and
KKT is applied.

[66] I EVs aggregated MG To improve the frequency
stability of the MG

In autonomous mode of operation
of the MG, there is a need for the
deployment of storage devices to
support the frequency regulation.
EVs are the active resources similar
to BESS and they enhance the
frequency regulation.

* Not specified.

2.4. Recap of Energy Trading Models

A novel approach for energy trading is proposed in [67], where a group of MGs
has been clustered into individual MGs. In each individual cluster, the deficit power or
excess power is taken from/supplied to the neighboring MGs or main grid. The price
for supplying excess power is fixed in between the grid buy power and grid sell power.
In [68], a fuzzy logic-based model was presented to assess the willingness of customers
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to participate in DR programs, and then by using the queuing method, a decision was
obtained to maximize the profit of the aggregator. In [69], a method was proposed in
order to directly control the heating and cooling loads as these loads have the ability to
maintain the temperature within tolerable limits for subsequent hours if proper insulation
is provided. A two-stage bidding strategy derived from the DA market is suggested to
address the uncertainties in the electricity price.

In the majority of European Union (EU) countries, the application of DR programs is
restricted to industrial applications. A method named DR-blocks of a building (DR-BOB) is
proposed in [70] to apply DR programs to the BOB and aggregate many such buildings
for effective bidding in electricity markets. For dynamic balance between the generation
and the load, for effective monitoring of voltage levels, frequency, and phase angles at
every instant and every point of MG, there is a need to incorporate fast and accurate data
transferring technologies. Communication devices are ubiquitous these days in power
systems because of their speed and precise data transfer. The data are bulk because more
intelligent devices are connected to the distribution network. The centralized controller
governs the entire MG by gathering information from all the devices. Therefore, if the
size of the data is large then the time taken by the central controller to issue the governing
signals gets delayed whereas, in the case of decentralized control, each agent, i.e., customer,
DGs, and BESS, defines their own load schedule which employs a multi-agent system
(MAS) is presented in [71]. Buildings consume 40% of the total load [72], therefore, Nikos
Kampelis et al. [73] implemented a genetic algorithm (GA)-based optimization technique
for EM in a building and used artificial neural networks (ANNs) prediction model for
yielding DA power requirements of the customer. Time of use (TOU) pricing is used in
this literature.

There is a need for a protocol [74] in order to effectively monitor, communicate,
optimize, and control the information flow between the loads, distributed generators,
intelligent devices, and ISO. The automation system should fetch data from the sensors,
process, and be able to give necessary feedback signals to all the essential infrastructure to
which it is connected. Implementation of DR-BOB by using DR-technology readiness level
(DR-TRL) is proposed in [75]. The distribution system can be made smarter only when
the data regarding the states of operation available at all nodes should be transferred by
using a wireless communication link as shown in Figure 13. A great amount of information
is generated by metering, detecting, and monitoring devices. Therefore, the MG needs
dedicated and advanced communication technologies for holding, integrating, processing,
and transferring the data. The function of smart meters here is to monitor, troubleshoot, and
analyze the energy usage and billing for each period concerned and transfer to the grid as
well as to the consumer through a mobile application for effective control. Communication
infrastructures such as 5G technology are espoused seamlessly in modern power systems
because of their speed, low power consumption, security, and large frequency spectrum
presented in [76]. A real example for application of 5G technology in power systems is in
2019, China had carried out a pilot project in establishing protection of distribution network
by using 5G technology on China southern power grid [77].

The information and communication technology (ICT) in [78] should have low latency
and be able to transfer large market data for the effective operation of power systems. The
below Figure 13 shows data flow in a simple MG. A low-cost and low power consumption
device named Zig-bee communication in a home area network (HAN) [79–81]. Zig-bee,
because of its limited range constraint, cannot be used in neighboring area networks (NAN).
Wireless fidelity (Wi-Fi) can be used in HAN, NAN, and field area network (FAN). WiMAX
has maximum coverage distance compared to all wireless data transfer techniques.
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Figure 13. A detailed communication framework for effective monitoring.

In [82], a pilot project is considered for effective demand-side management and green
technology improvements. Game theory is all about achieving the equilibrium point so
as to maximize the profit of all the market players. Each and every agent participating
in the game gets profit. The profit of each agent depends on the strategy applied by that
agent and the strategy of opponents participating in the game. The market players are
DSO, aggregator, and the customers. The objective function of each player is considered
as the pay-off function. Consider two market players where player 1′s strategy to get
maximum payoff is A and player 2′s strategy to get maximum payoff is B and no other
strategy for player 1 will yield better outcome other than strategy A, similar for player B;
then this equilibrium point is said to be NASH equilibrium. This is used in order to analyze
the outcome of the tactical interaction of several choice makers. Table 5 represents a brief
introduction to various trading models in a MG.

Each order (either buy or sell option) consists of TAP (time period for energy trade,
amount of energy to be traded, and price of energy to be traded). After successful placement
of orders, they may be modified or canceled by the same peer until the gate closure time.
Once the time lapses, then the individual peer cannot alter the data; only the system
operator has the right to alter the list to ensure smooth operation of the power system. A
penalty should be imposed on those market players who do not meet their quoted amount
of energy listed in the order.

Energy these days has become more or less a commodity. Therefore, it can be related
to the stocks. The fundamental difference between them is that electricity cannot be stored,
there should be a continuous balancing of supply and demand. There is a need for a flagship
trading platform for placing bids and offers. The platform should encompass the following
provisions: order placed, the status of orders (pending or executed), portfolio window to
check the amount of energy consumed/generated with the amount to be paid/received.
There should be a watchlist with all energy participants’ data such as quantity, offer price,
bid price, and expected time for price dip: ratings and reviews for each participant should
be provided. A hierarchical decision-making trading model is proposed in [83], so as to
reduce the DR contract cost at the market operator level and to reduce the incentives at the
DR aggregator level so as to maximize social welfare.
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Table 5. Energy trading models.

Ref
No.

Size of Distribution
Network Energy Trading Model Impact of

Aggregator Remarks

[84] 33-bus radial network Bottom-up approach No An iterative algorithm was proposed for energy trade.

[85] * Block-chain model Yes The objective is to improve the reliability and user
security in trading a blockchain approach.

[86] * Block-chain model Yes
Developing multi-directional trading is of significance.
In this paper, the authors proposed a parallel
trading model.

[87] * Energy broker model Yes

This method is for maximizing the energy trading
between the grid and the consumer. The energy broker
decides the demand and the price of electricity by using
dual optimization. The problem is modeled as a convex
optimization problem.

* Not specified.

2.5. A Combined Literature Survey on Various EMS

Table 6 represents various EM methods for achieving lower operational costs and
reducing the installation cost and capital cost of a MG.

Table 6. A literature survey on various EMS.

Ref
No.

Size of
Distribution
Network

Approach Objective Function Remarks

[88] 118-bus radial
network

Unit commitment
method

To minimize the total
expected cost

A two-stage stochastic model for achieving effective wind
power integration.

[89] Korean electricity
market

Mean-variance
portfolio method

To increase expected
return and
to increase the profitability
of the aggregator

A mean-variance portfolio method is used to avoid the risk of
the DRR portfolio.

[90] 20,310 customers,
548 DGs

Resource
scheduling,
aggregation

To minimize the
operating cost K-means algorithm for clustering loads.

[91] 180-bus
Economic dispatch
problem is taken
into account

To minimize the
running cost

A two-stage scheduling problem is solved to optimize the fuel
cost of the test system.

[92]

218 consumers
and load profile
analyzed at
96-time slots.

Economic dispatch
of DER

To minimize the
operating cost

The allowable maximum load shift by using the DR program
is less than or equal to the base load on the system.
Optimization problem modeled as a linear problem. Figure 14
shows the problem associated with unjustified shifting of
flexible loads.

[93] DISCOMs Optimal scheduling
is done

To minimize the Expected
cost of MG

Conditional value at risk (CVAR) index is used to analyze the
uncertainty of WT. Objective function modeled as MILP.
General algebraic modeling system (GAMS) and IBM ILOG
CPLEX optimization studio named simply as CPLEX are used.

[94] * A Bayesian game
model is proposed

To optimize the
bidding strategy

To compensate for the power deficit/excess due to customer
breach by placing auxiliary services like BESS.

[95]
20,000 heat
pumps with a
capacity of 1 MW.

* Techno-economic
feasibility study

Two scenarios are considered always available and
always reliable.

[96] South Korea
Capacity 10 MW

Demand-side
management
system (DSMS)

To minimize the electricity
price, energy conservation

A strategy of DSMS is proposed for calculating the customer
baseline load.

[97] * Improved elephant
herd optimization

To optimize the fuel cost
of operation

A multi-objective problem has been formulated. Three cases
were considered, namely scheduling to reduce operational
cost, scheduling to reduce operational cost and variance, and
the impact of penetrating EVs on operational cost.

* Not specified.
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Figure 14. Impact of DR on rebound effect.

If the level of penetration of flexible or non-critical loads increases, there is a chance of
occurrence of payback or rebound effect. Figure 14 shows the impact of load shifting on
the rebound effect. The formation of local peaks at low electricity price zones due to the
shifting of flexible loads. As the consumer’s participation in DR events increases, the level
of peak increases at non-peak hours. The operational cost of the MG also changes because
of the load recovery. Further, the system marginal price (SMP) depends on the incremental
fuel cost of the marginal generator. Hence, the SMP increases as the demand on the system
increases. Therefore, unjustified shifting of non-essential load from peak duration to the off
peak should be avoided to reduce the burden on the power systems.

2.6. Load Clustering and Its Significance

The first step in the application of DR programs by the ISO is load clustering. Therefore,
there is a need to develop robust clustering models for avoiding the demerits of existing
algorithms. There are various clustering mechanisms, among all the clustering algorithms
partitional clustering is mostly used. Load clustering can be done by using optimization
techniques such as ant colony optimization (ACO), bee colony optimization (BCO), and
modified bee colony optimization (MBCO). There are mixed clustering methods where K-
means clustering and BCO can be used for hybridization. In K-means clustering, the loads
are split into K-clusters and the centroid of each cluster is found. The cluster is grouped with
the nearest centroid and the process continued until the centroid gets constant. A K-means
algorithm effectively works when the dataset is large. The demerit of this clustering is that
there is a need to specify the number of cluster centers before starting the trial run. However,
it is also to be noted that complex systems often indicate an intrinsic cluster number if an
appropriate tool is chosen [98]. It further explained the necessary and sufficient conditions
for cluster consensus of discrete time linear systems. Table 7 shows a brief survey on
various clustering methods.

The switching signal obtained from EMS turns on or off the non-essential loads. The
increment in load shift from peak to non-peak hours should be strictly controlled by the
EMS to avoid the rebound effect. EMS plays a significant role in effective and efficient
management of these flexible loads. Figure 15 shows the function of HEMS in a home.
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Table 7. A survey on various clustering methods.

Ref.
No.

Test System
Considered Clustering Method Remarks

[99] Residential electric
water heaters

K-means clustering method is used
for clustering the loads. To find the
number of clusters, required
Silhouette method is applied.

The goal is to reduce the impact on the availability of hot
water when a DR strategy is applied. The success rate of
such clustering methods is more dependent on the accuracy
in load forecast.

[100] 751 residential
customers Dwelling’s clustering Based on the spot market price the decision-making

algorithm shifts the load demand.

[101] Non-residential
customers Ant colony clustering The original electrical pattern is applied to the optimization

algorithm named the ant colony clustering algorithm.

[102] * The spectral clustering method
is applied.

By using the Euclidean function and load curve, the method
performs a similarity check on all the load profiles
considered. This algorithm is robust to data size.

[103] Real-world smart
meter data Hierarchical clustering Performs dissimilarity check.

[104] * Fuzzy K-means clustering The global criterion method and Bellman–Zadeh’s
maximization principle are used.

[105] Domestic customers Fuzzy subtractive clustering
is applied.

With the proposed method of load shedding and valley, the
filling can be accomplished.

* Not specified.

Figure 15. Home energy management system (HEMS) in a home.

2.7. Noteworthy Points

The following are the key conclusions obtained from a detailed literature survey.

• Effective load clustering is required to avoid unnecessary compromise in consumers’
satisfaction and lifestyle.

• The size of DGs is proportional to the peak load demand which has to be supplied by
the sources.

• The consumer’s tariff is a direct function of electricity price, therefore, if there is any
change in the consumers’ load pattern in accordance with the electricity price, it may
reduce the consumers’ tariff.

• Occurrence of payback or rebound effect during low electricity price zone.
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2.8. Contributions of the Work

A test system is considered and the impacts of DR programs on the supply-side and
demand side analyzed. With the basic load profile and the electricity price in the area
considered, the optimal size of DGs has been proposed and the electricity tariff burden
on the consumer was reduced by the mentioned methods. All the loads are considered as
residential loads and clustered into essential and non-essential loads without compromising
the lifestyle and satisfaction of the customer. There will be no shifting of essential loads
which are scheduled at a particular time. The non-essential loads may or may not be
shifted based on the availability of load demand at that instant. Priority is assigned to the
non-essential loads with the order of scheduled times by using TOU pricing. An objective
function was formulated and an algorithm was proposed for avoiding the rebound effect
during load shift. Various sizing methods have been proposed in order to optimally size
the DGs with and without considering the uncertainty in PV and WT. The TOU pricing
method has been applied for load shifting in DR programs in order to reduce the electricity
tariff of the customer.

3. Objective Function Modeling

To reduce the above-mentioned concerns such as capital and installation cost mini-
mization and reduction of consumers tariff, the objective function can be modeled which
clusters the load as follows.

The following are the objectives to be solved.

• Minimize the size of DGs in the power system.
• Minimize the consumer’s electricity bill and improve the load factor.

Minimize, Cost f unction =
(

Fcapital + Finstallation + Fcustomers bill

)
(4)

Minimize total cost of installation:

f1 = TC =
n

∑
i=1

Ccap + Cmaintenance + Creplacement (5)

∅t =


∅o f f , i f t ∈ To f f
∅mid, i f t ∈ Tmid
∅on, i f t ∈ Ton

∀ T ∈ 1, 2, . . . . . . . 24 (6)

where Ccap is the capital cost, Cmaintenance is the cost involved in maintenance, ∅t is the
electricity price at time ‘t’, ∅o f f , ∅on, and ∅mid are the price during off-peak (To f f ), on-peak
(Ton), and mid-peak (Tmid) hours, respectively.

f2 = min(TETcustomer) = min
24

∑
t=1

N

∑
i=1

Pt
i ∅

t (7)

‘N’ indicates the number of sources available for dispatch and Pt
i is the consumed power

by the consumer ‘i’ at time horizon ‘t’. The problem formulation for minimizing the
consumer’s tariff is represented in Equation (7). For achieving the objectives, the loads on
the system are effectively clustered into essential (EL) and non-essential loads (NEL) [106]
by considering all the loads as residential loads as they are sharing 25% of load demand on
the system.

Total load demand, TL = EL + NEL (8)

NEL = W1L1 + W2L2 + W3L3 (9)

Allocation of priorities to the non-essential loads or curtailable loads in such a way
that there should not be any compromise in customer comforts and lifestyle.

L1 Air conditioners, heating loads.
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L2 Washing machines
L3 EV’s

L1, L2, and L3 are the non-essential loads and the order of priority based on importance
is L1 > L2 > L3. The higher degree of charging flexibility associated with EVs makes it
less prioritized when compared to the other loads in the MG. Therefore, to represent the
importance of each load according to its priority, the weights added to the loads should
be of different values, where, W1 = 0.66, W2 = 0.33, W3 = 0.13 such that all the loads
should be met on the same day with some shift in time without violating the customer’s
satisfaction.

Subjected to the following constraints:

N

∑
n=1

Pgen
(n,t) =

L

∑
l=1

Pdem
(l,t) −

S

∑
s=1

Pshi f t
(s,t,i) +

S

∑
s=1

Pshi f t
(s,i,t) (10)

The energy recovered during peak load is shifted or re-distributed to the other time horizons
where the electricity price is low. Total energy curtailed has been re-distributed to other
time horizons where electricity price is low. Therefore, the total area before curtailment
and after curtailment becomes identical.

The generation should meet the load demand before and after shifting. The above
Equation (10) represents the equality constraint, i.e., energy balance equation. Equation (11)
shows the simplified version of the energy balance equation, where the difference between
generation (by all the ‘N’ generators) and load demand (at all the ‘L’ loads) on the system
should be dynamically balanced throughout the considered period, i.e., 24 h. to avoid any
frequency drops. The response in loads can be modeled as an ideally flexible negative
generation. ∑S

s=1 Pshi f t
(t,i) is the amount of load that has been shifted from ‘t’ to ‘i’ and

∑S
s=1 Pshi f t

(s,i,t) is the amount of load that has been shifted from ‘i’ to ‘t’, ∑L
l=1 Pdem

(l,t) is the

amount of load demand and ∑N
n=1 Pgen

(n,t) is the total generated power.

∑N
n=1 Pgen

(n,t) −∑L
l=1 Pdem

(l,t) = 0 ∀ T ∈ 1, 2, . . . . . . . 24 (11)

∑S
s=1 Pmax shi f t

DR(s,t,i) ≤ 110 %(Pbase) ∀ s ∈ 1, 2, . . . . . . . S (12)

‘T’ represents time in h and ‘S’ represents number of shifting intervals. The generator
limits should not be violated while solving DR programs. The increased percentage of
load shift by DR programs creates local peaks which occur due to rebound or payback
phenomenon [107], at the non-peak hours. Here, Pbase is considered an average load on
the system. The maximum limit on the amount of load shift depends on the shape of
load duration curves. The maximum allowable load shift by using DR programs for this
considered system should be 110% of base load power, represented in Equation (12) as

∑S
s=1 Pmax shi f t

DR(s,t,i) . This constraint is included in order to avoid payback effect or rebound
effect. The operational cost of the MG also changes because of the load recovery. Further,
the system marginal price (SMP) depends on the incremental fuel cost of the marginal
generator. Hence, the SMP increases as the demand on the system increases.

Pbase = avg
24

∑
t=1

PL (13)

Pmin ≤ Pt ≤ Pmax (14)

PDiesel
size = max (dispatched energy by that generator in 24 hours) (15)

ECMG with DR ≤ ECMG without DR (16)
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Optimal sizing of DGs without considering the impact of uncertainty is proposed.
ECMG with DR, ECMG without DR are the emission costs of MG with DR and without DR
program, the total load demand on the system during 24 h. Pmin, Pmax are the minimum
and maximum limits on generated power ′P′t from a generator ‘t’. Aggregated load demand
is calculated based on the following Equation (17).

Pagg =
1
T

24

∑
t=1

Pt (17)

LF =
Pagg

PL,max
(18)

where Pagg is average of aggregated load demand, LF is the load factor of the MG, and
PL,max is the peak load demand that is occurring on the system over 24 h.

4. Proposed Methodology

The solution methodology for reducing the total cost of the system is represented
as follows:

• Read the load data, electricity price in each hour, generator data such as the minimum
and maximum capacity, operating costs, and maintenance cost of each generator.

• Analyze the load profile and check whether the peak load is occurring at a high
electricity price zone or not.

• As the total load on the system is considered as residential loads, cluster them as
depicted in Equation (8), based on their priority without sacrificing the customer’s
satisfaction and lifestyle.

• If yes, shift a part of non-essential loads from the peak-occurring instant to the non-
peak zone. Therefore, cluster the loads on the basis of an order of priority and based
on electricity price, the clustered loads are allocated or dispatched at a particular time
instant where the electricity price is low. Priority is added by giving large weight
to the highest priority load. If the load on the system is less than the average of the
aggregated load, no need to cluster. Shift a part of the peak load to those intervals
where the available load is less than the average aggregated load.

• There should be an upper limit imposed on the amount of load shift on the system to
overcome the rebound effect, which is represented in Equation (12).

• If yes, shift the loads to another time horizon. If no, size the sources, i.e., the sizes
of WT, PV, and diesel generators that have to be installed to supply the available
load demand in the area without considering the impact of uncertainty based on
the peak load demand. Moreover, a portion of generator capacity allocated for any
further increment on load demand is represented in Equation (19). The total capacity
of generators installed is the sum of all the DGs capacity.

PDGs
size = x % (PMT

size + PDiesel
size + PRenewales

size ) (19)

• Calculate the capital cost, installation cost, and maintenance cost of each generator by
using Table 8.

TC = ∑n
S=1 CPVSPV + CWTSWT + CdieselSdiesel (20)

• CPV , CWT , and Cdiesel are the total costs including capital and installation costs of PV,
WT, and diesel. SPV , SWT , and Sdiesel are the sizes of various sources yielded from
the simulations.

• Dispatch or schedule the load on the available generators that are committed to supply
and calculate the tariff of the consumer by using Equation (7).

• Calculate the load factor of the MG by using Equation (18). As the amount of load shift
increases, the load curve becomes more uniform thereby improving the load factor.
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Table 8. Various costs and lifetime of sources involved in installing the MG.

Source Type Capital Cost ($/kW) Fixed Maintenance
Cost ($/kW) Life (Years)

WT 1000 15 20

PV 1300 30.330 20

DG 800 0.012 15

MT 850 2.000 15

Figure 16 shows the proposed methodology for achieving the optimal total cost of
installation and optimal consumer tariff.

Figure 16. Methodology for analyzing the impact of load clustering on DGs sizing and tariff.

5. Results and Discussions

A test case has been considered to assess the influence of DR programs on optimal
sizing of DGs and on the consumer’s tariff. The IEEE-34 bus system is considered whose
average load demand is 466.5 kW and the peak demand occurring on the system is 830.3 kW.
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The case studies are considered simulated with a 24-h load profile and the TOU tariff is
taken into consideration. In general, among all the available price-based tariffs, TOU tariff
is a simple one, easy to understand, and most customers show interest in this type of tariff.

For the considered test system, the customers are charged with a time of use (TOU)
tariff where the hours in a day are clustered into peak, off-peak, and moderate peak hours,
and the price is fixed. The prices are fixed DA, therefore, there is no ambiguity to the
customer to enter into DR programs. Figure 17 shows the variation of DA electricity price
and time. The electricity price is high from hours 10:00 to 21:00 and the peak load occurring
zone is also at the same time; this results in huge customer bills. One way is to curtail the
loads during peak hours to control the tariff where customers’ load demand is not met.
Another way is to shift the load demand from the peak load time horizon to off-peak hours.
Figure 18 shows the load demand for the three cases considered. Executing DR strategies
will benefit not only customers but also the suppliers too. Three cases have been considered,
i.e., no penetration of ILs and 5% and 10% penetration of ILs, to analyze the impact of DR
programs on consumer electricity bills and load factor. The load has shifted on the time
horizon and the total demand on the system per day remains the same. Figure 18 shows
the different levels of penetration of loads, i.e., 0%, 5%, and 10%.

Figure 17. Time of use pricing.

Figure 18. Load demand for three cases considered.
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Depending on the objective function and the constraints considered the structure of
search space changes. Therefore, to avoid this, we considered three scenarios, namely
0% penetration, 5% penetration, and 10% penetration. The algorithm is valid for all the
considered scenarios even though the constraints change.

A local peak is created in the load demand curve at non-peak hour instant with a
demand of 600 kW. In fact, the load demand before publishing DA tariff is 300 kW at
that instant. This occurrence of local peaks at low price time horizon is considered as the
rebound effect. If all the utilities supply this local peak demand, the generating companies
will run in loss. Further, the emissions increase due to turning on of inefficient generators.
To overcome the occurrence of the rebound effect, here, the maximum allowable load shift
by using DR programs should be 110% of base load power. Hence, for the load profile
considered, the average load is 466.5 kW and the maximum load that can be allowed during
the non-peak hour should be less than 515 kW in the beginning hours where electricity
price is minimal. Hence, ISO is responsible for maintaining the load profile within the
specified limits.

5.1. Influence of DR Strategy on Optimal Sizing of DGs

The peak load on the system occurs occasionally and the generation and load demand
balance should be met. The sizing of DGs will be based on the peak load that has to be
supplied by the grid at any instant. Moreover, there is no need for installing new sources for
supplying the occasional load. Therefore, this section investigates the impact of DR strategy
in deciding the optimal capacity of DGs. It has been said that the DR program will reduce
the peak demand on the system which obviously reduces the capacity of the individual
generators. The lower and upper limits on the decision variables are set as [0, 500] for
all the generators considered. The inputs are initialized to the algorithm; it will yield the
optimal sizing of each DG, capital cost, installation cost, and total cost of each DG for the
proposed size. As seen from Figure 19 and from Table 9, if the penetration of non-critical
loads or flexible loads increases, then the size and cost of deploying the DGs get reduced.
This is due to the fact that DR makes the load profile near flat and the peak demand on the
system gets reduced, which reduces the size of DGs. Therefore, the costs involved such as
installation cost and capital cost get reduced. The difference in the total cost of installing
DGs in case of 0% penetration of ILs and 5% penetration of ILs is 50,675.21 $/day and
of 0% penetration of ILs and 10% penetration of ILs is 93,042.89 $/day. The reduction in
installation cost is large in the case of 10% penetration but the chances of getting peaks
during the non-peak hours are also higher. Therefore, to nullify the occurrence of rebound
effect for the considered case study, it is suggested that 5% penetration of ILs is advisable
compared to 10% penetration of ILs.

Figure 19. Sizing of sources without considering the uncertainty in RESs.
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Table 9. Capital cost involved in various sources for the percentage of ILs penetration.

Percentage of
ILs Penetration

Capital Cost of
PV $/Day

Capital Cost of
WT $/Day

Capital Cost of
DG $/Day

Total Cost of
MG $/Day

0% 279,374.621 216,914.635 325,225.678 821,514.900

5% 221,426.776 243,299.560 306,113.391 770,839.700

10% 196,888.840 248,550.155 283,033.045 728,472.000

5.2. Effect of DR Strategy on Consumer Electricity Bill and on Load Factor

The demonstrated work relates to the optimization of various costs, explicitly capital
cost [108], installation cost, operational cost, and consumer tariff. To maintain the reliability
in a heavily routed line, the ISOs basically charge more compared to the other prices. Under
this scheme, the customers will get incentives for shifting [109] their loads to non-peak
hours or curtailing their loads. This program is event-based, its fundamental focus is to
maintain reliability in the MG. Dynamic pricing techniques alone may not fetch the feasible
results as proposed in [110].

Figure 20 depicts that while increasing the level of penetration of the customer elec-
tricity bill gets reduced and the load factor gets increased. The reduction in customer bill
from 0% penetration of ILs to the 5% penetration of ILs is 3709.26 Rs/day and from 0% to
10%, the reduction is 6059.025 Rs/day. Table 10 represents the reduction of electricity price
and improvement in load factor for the system considered. Further, it also depicts that the
reduction in peak demand from 830.300 kW to 747.270 kW from 0% penetration to 10%
penetration, where the load factor is increased from 0.561957 to 0.624397.

Figure 20. Electricity price of consumers for three cases considered.

Table 10. Comparison of peak demands, electricity price, and load factor with penetration of ILs.

S.No. Penetration of
ILs in %

Peak Value of
Load, kW

Electricity Price,
Rs/Day Load Factor

1 0% 830.300 131,952.7 0.561957

2 5% 788.785 128,243.5 0.591540

3 10% 747.270 125,893.7 0.624397
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As the level of penetration increases, the load profile becomes flat and the electricity
tariff gets reduced and is clearly depicted in Figure 18 at 00:00 to 08:00 a.m. However,
there is a chance of the local peak occurring in case 3 where 10% penetration of flexible or
non-critical loads allowed it to penetrate the MG system. As a greater number of customers
participate in the DR program, the level of peak increases. Therefore, unjustified shifting
of a portion of the load from global peak to the off-peak should be avoided to reduce the
burden on the power systems. Hence, there should be an upper limit on the amount of load
shift. ISO should focus not only on possible reduction of consumer tariff but also ensure to
overcome the rebound effect.

6. Conclusions

A detailed literature survey on various effects of DR programs for EM in the MG was
done. A test system with three scenarios considered, namely no penetration of ILs (i.e., 0%
load shift), 5% penetration of ILs, and 10% penetration of ILs, showed total daily load
demand of 11,198.2 kW and maximum peak on the system on an hourly basis is 830.3 kW.
The capacity of DERs is a function of peak load occurring on the system and the system
load factor is a function of uniformity of load curve. Therefore, with the reduction in peak
demand on the system, the load curve gets more uniform which reduces the size of DERs
and improves the load factor of the system which further reduces the customer tariff. The
reduction in peak demand for the MG from 0% penetration to 5% penetration is 41.515 kW
and from 0% penetration to 10% penetration is 83.03 kW and the reduction in the cost
of installation of DGs is 50,675.21 $/day. A time of use pricing model is considered and
the loads are clustered based on the prices at each interval. From the results, it is shown
that the reduction in customer electricity tariff from 0% penetration to 5% penetration is
3709.26 Rs/day. The results show that, with the deployment of DR programs into the MG,
there is a huge impact on the above-considered test systems.

The maximum load shift constraint is a function of shape of the load curve, therefore,
for the addressed test case, the maximum shift in load is 110% of base load. This 110%
is not fixed for other problems. In the future, an effective objective function in which the
maximum constraint on amount of load shift can be modeled to avoid the rebound effect
for any type of load curve considered. A new meta-heuristic algorithm can be developed
for effective load clustering. Further, researchers can define a new set of rules for reducing
the conflicts between the consumer and aggregator and between the aggregator and ISO
such that there should be an imposition of penalty for violation of code of conduct. New
wireless technologies can be proposed for reducing the time lapse between the IEDs and
the smart meter or protection devices. One more future direction is impact of DR programs
in optimal sizing of DGs by considering the uncetainty in RES. Finding the elasticity and
cross elasticity matrix of load with respect to price changes can be performed.

Future researchers can further address the problems associated with load recovery, i.e.,
increase in production cost, increase in SMP, and increase in stress of already committed
generators. In addition, there is a difference in gross load curtailed and the net load
curtailed; this problem arises when the load curtailment of one customer overlaps with
the load recovery period of another customer. The aggregator has to pay incentives for
the gross load curtailed but the net load curtailed on the system is less. Therefore, a loss
in monetary value arises. Reasearchers may develop an effective framework to avoid
this situation.
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