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Abstract: Integration of information technologies with power systems has unlocked unprecedented
opportunities in optimization and control fields. Increased data collection and monitoring enable
control systems to have a better understanding of the pseudo-real-time condition of power systems.
In this fashion, more accurate and effective decisions can be made. This is the key towards mitigating
negative impacts of novel technologies such as renewables and electric vehicles and increasing their
share in the overall generation portfolio. However, such extensive information exchange has created
cybersecurity vulnerabilities in power systems that were not encountered before. It is imperative
that these vulnerabilities are understood well, and proper mitigation techniques are implemented.
This paper presents an extensive study of cybersecurity concerns in Smart grids in line with latest
developments. Relevant standardization and mitigation efforts are discussed in detail and then the
classification of different cyber-attacks in smart grid domain with special focus on false data injection
(FDI) attack, due to its high impact on different operations. Different uses of this attack as well as
developed detection models and methods are analysed. Finally, impacts on smart grid operation and
current challenges are presented for future research directions.

Keywords: smart grid cybersecurity; false data injection; power system operation; power system
protection; cybersecurity attacks; intruder detection; cybersecurity for scada systems

1. Introduction

The traditional electricity grid system of the 20th century is insufficient to meet today’s
needs. Novel technologies such as Electric Vehicles (EVs), smart inverters and renewable
energy-based generators are continually being deployed [1]. They change power system
operation paradigms, introduce bi-lateral power flow and create a dynamic operation
structure which was not originally envisioned [2]. To tackle these issues, power systems are
equipped with more measurement, communication, and control capabilities. More accurate
information about the grid’s current state can be obtained in this fashion, and a decision can
be made in pseudo-real time [3]. This modern power system structure is collectively called
the Smart Grid (SG). There are many definitions of SG concept, such as “A network where
all consumers can reach efficient, cheap, accessible, and reliable energy by using control and
communication technologies” [4]. Alternatively, SG is a system that is adaptive, reliable,
interactive and allows for renewable energy sources integration and optimization [5,6].
In addition to these definitions, the National Institute of Standards and Technology (NIST)
gives a high-level perspective and classifies SGs. Moreover, application characteristics and
requirements of SG infrastructure are divided into different layers [7]:

• Application;
• Security;
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• Communication;
• Control of Power;
• Power system.

As shown in Figure 1, SGs are divided into generation, transmission, distribution,
service providers, and consumers. According to fields of study, control of power and
communication technologies should solve possible problems encountered in the SG [7].
The working principles of all power electronics elements integrated into the network should
be well analysed to achieve effective SG system [8]. Stable and efficient transmission of
energy to the end customer is crucial for a reliable network implementation. If it is made,
energy efficiency and local renewable energy usage will increase, and the ideal grid system
will be realised by reducing the transmission losses [9].
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Figure 1. NIST SG Model.

Considering the vast geographical span of SGs and the number of devices they host,
it is inevitable that the cybersecurity vulnerabilities become more prevalent than the other.
Furthermore, the consequences of security breaches in such critical infrastructure will have
significant ramifications, as all organizations with energy-providing authorities agree [10].
According to [11], SG can be considered an electrical system that uses cyber secure in-
formation and communication technologies. The system works to obtain a safe, reliable,
and efficient computational intelligence system integrated with electricity transmission,
generation, and distribution substations. It is possible to classify cybersecurity into three
systems, as shown below in Figure 2: Smart energy, information, and communication
systems listed under smart infrastructure system. They must work simultaneously with the
smart management system and support its protection system [12]. Existing cybersecurity
solutions have difficulties in meeting the needs of SG communication systems. When
recent research is examined, it can be understood that traditional cybersecurity methods
and algorithms have usually studied, and there are separate studies on power and commu-
nication regarding cyber risks. If critical systems such as the power system communication
infrastructure have cybersecurity risks, that can have severe consequences and traditional
risks are now included in risk assessments. However, SG communication systems security
is a relatively new topic; few academic and experimental studies have been found [13].
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A general assessment of the vulnerabilities can split into five categories:

• Interaction control framework security;
• Smart meter measurement security;
• Assessment of power system status security;
• Intelligent network communication convention security;
• Security analysis with SG simulation.

Cybersecurity in SGs is an emerging field [14]. Therefore, they need cybersecurity
protection studies for each security component because traditional techniques are applied
for the first time. Because the SG system is a cyber-physical and communication system, the
power is also exchanged [15]. A thorough review that studies components of the SG system
security is required. Several reviews focus only on bad data detection and state estimation
attacks [16,17]. Moreover, both attacks’ effects may be different, and all processes should
terminate within a certain period. The aims and objectives of the research focus on this point.
This paper presents a comprehensive review of security concerns in different system parts
of smart grids, different types of attacks, standards, and available mitigation techniques to
fill this gap. Due to its enormous impact, False Data Injection (FDI) attack and detection
methods are discussed in detail. The rest of the paper is organized as follows: Section 2
introduces the cybersecurity concerns in SGs and discusses the mitigation requirements.
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Section 3 reviews different types of cyber-attacks and discusses the impacts of attacks on
SG. Section 4 introduces false data detection methods and proposed efficiency analysis,
and Section 5 concludes the paper. See Appendix A for abbreviations and meanings. Main
contributions of this survey paper are as follows:

• A thorough discussion on changing paradigms in power systems is presented. Differ-
ent levels of communication and information exchange are discussed so that readers
can grasp why smart grid cybersecurity became important in recent times.

• Different communication standards used in power system communication are studied.
Issues that are unique to each standard and the protocols it uses are presented. Benefits
and drawbacks of using single or multiple standards in a system are presented.

• A thorough review of SG attacks is performed so that readers can understand the
types of attacks and their impacts on the system. Among these attacks, FDI attacks
have significant potential to disrupt power system operation or cause damages. For
this reason, a survey is performed on techniques developed to detect FDI attacks.

• Based on the discussions and insights of this work, future research directions are pro-
vided.

2. Cybersecurity Vulnerabilities in Smart Grids and Mitigation Requirements

Secure and safe operation of SG is critical for ensuring its effective operation [18].
Cybersecurity for the SG promotes both the grid’s reliability and the stability of the infor-
mation transmitted [19]. SG automatically modifies electrical power and communication
systems to optimize their operation. For example, SG is defined as “The transition from
today’s power systems to future systems based on information, transmission and com-
munication technologies” and it monitors all components to prevent its attacks because
cybersecurity holds a special place in it [19]. The vital information can be understood in
a way that all the security risks in the system can be protected with measures. In this
context, it will be useful to examine some studies to understand mitigation requirements.
Cybersecurity challenges and existing solutions within the SG environment are reviewed
in [13] and [20]. This is classified as the SG communication security studies into software
and hardware simulations [21–23]. Risk definition within the scope of information security
can express the loss of integrity, privacy, or continuity in the data by using vulnerabilities
in information data by malicious threats [24]. The security aspects, especially the Internet
of Things (IoT) and the types of cyber threats facing the SG, are examined in [25], and the
environmental conditions related to cybersecurity of the SG are split into three categories:

• Power grid vulnerabilities at the time of the cyber-attack;
• The facilitate of infraction to the control system;
• Describe the ease of earning control over the management system.

Cyber-attacks are dissociated into three steps: First step is the attacker has in mind
to control the management and communication system. Once the management access is
acquired, the attacker should identify the system to initiate a smart and effective malicious
attack. In the third step, the attacker launches the control of SG component or tries to
influence its operation. These attacks may be directed at power systems equipment [26]
or auxiliary systems such as Advanced Metering Infrastructures (AMI) [27,28]. Security
vulnerabilities in power and communication protocols can cause dangerous attacks on the
SG system. When the content of the applied standards is examined to prevent this, it can
be seen that they are based on authentication, encryption, and confidentiality technologies
to ensure SG security. Malicious people may be interested in launching large-scale attacks
on the smart grid with potentially unpredictable consequences. In light of these concerns,
security is one of the most important issues in the SG’s current development and future
deployment [14,29]. Figure 3 illustrates the importance of cyber security in SGs.
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2.1. Cyber Security Requirements in SGs

The term “Cyber-Physical systems” (CPS) relates to the currently prevalent terms
Industry 4.0, Internet of Things (IoT), Machine-to-Machine (M2M), the Internet of Every-
thing, TSensors (Trillion Sensors), and the Fog. These reflect a view of a technology that
profoundly engages the physical world with the information world [30].

Cyber means computed, communicated, and controlled but discrete, logical, and
switched. On the other hand, physical means that systems are bound by physics laws and
operating continuously. Cyber-Physical (CP) means the systems in which the cyber and
physical systems are closely integrated at all environmental conditions and levels.

Therefore, SG is a typical CP System which integrates a physical energy transmission
and distribution system with the cyber process of communication and control [31]. As SGs
grow, millions of smart assets with two-way communication ability will be integrated. This
situation causes new security problems in a large geographical area [32]. More complex
system security can be obtained using real-time communication standards to modify
the control system between generation, transmission, distribution, and consumers in the
network structure [33].

In electrical infrastructures, various organizations have established some security stan-
dards to regulate issues such as the system’s proper operation, protection of information
and against attacks. Various standards are established by the organizations working within
the scope of cybersecurity in SGs. Some of the organizations that constitute these standards
can be listed as follows.

International Society of Automation (ISA) [34], National Infrastructure Protection Plan
(NIPP/CISA) within the Department of Homeland Security’s Cybersecurity and Infras-
tructure Security Agency, being a shareholder with the National Institute for Hometown
Security (NIHS) [35], National Institute of Standards and Technology (NIST) [36], Institute
of Electrical and Electronics Engineers (IEEE), Computer Security Division (CSD), Com-
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puter Security Resource Center (CSRC), Organization for Standardization/International
Electrotechnical Commission (ISO/IEC), Federal Energy Regulatory Commission (FERC),
and The North American Electric Reliability Corporation (NERC) [37].

In addition to these organizations, ISO 17,799 (27,000 series) security standard is
fundamental in establishing more secure, consistent, and scalable systems [38].

In this study, security standards are researched about all the SG parts, which is shown
in Figure 4, and divided into three sections and then examined detail in the following section:

• Examining the firewalls of communication systems and the vulnerabilities in the protocols;
• Based on attacks on energy transmission and distribution systems;
• Applied for remote control security of the devices connected to the system.

Energies 2021, 14, x FOR PEER REVIEW 6 of 38 
 

 

(CSD), Computer Security Resource Center (CSRC), Organization for Standardization/In-
ternational Electrotechnical Commission (ISO/IEC), Federal Energy Regulatory Commis-
sion (FERC), and The North American Electric Reliability Corporation (NERC) [37].  

In addition to these organizations, ISO 17,799 (27,000 series) security standard is fun-
damental in establishing more secure, consistent, and scalable systems [38]. 

In this study, security standards are researched about all the SG parts, which is 
shown in Figure 4, and divided into three sections and then examined detail in the follow-
ing section:  
• Examining the firewalls of communication systems and the vulnerabilities in the pro-

tocols;  
• Based on attacks on energy transmission and distribution systems;  
• Applied for remote control security of the devices connected to the system. 

 
Figure 4. Smart Grid subsystems. 

2.2. Security Standards of Communication Systems Mitigation 
Substation communication of SG plays a critical role in intelligent power energy sys-

tem management. Therefore, communication security and related causes are crucial to 
power system security and should be carefully studied. Communication problems con-
cerning information can be classified into five general categories for their objectives, avail-
ability, integrity, confidentiality, authenticity, and non-repudiation [6]. SG systems have 
too many interconnected devices. It is also highly susceptible to cyber-attacks due to se-
curity vulnerabilities found in devices connected to the network. The defence and security 
layers of SG protect the network against cyber-attacks, unwanted changes, and data theft. 
For reasons such as efficiency, cost, and integration to big data, SGs depend on compre-
hensive internet networks where common information is shared. Due to the internet net-
works to which SGs are connected, they are vulnerable to many attacks that cause inter-
ruption of power supplies [39,40]. This increase in security attacks has created a more 
demanding control requirement to ensure a smooth SG communication system. There-
fore, it is exposed to the general problems and threats of internet networks.  

As power systems become more secure and complex, SGs also need more connec-
tions to highly external networks, especially the internet. However, this commitment to 
the said external networks causes cybersecurity vulnerabilities and violations [41–44]. 
Therefore, all communication links in SG networks must have access to high security. 

Figure 4. Smart Grid subsystems.

2.2. Security Standards of Communication Systems Mitigation

Substation communication of SG plays a critical role in intelligent power energy
system management. Therefore, communication security and related causes are crucial
to power system security and should be carefully studied. Communication problems
concerning information can be classified into five general categories for their objectives,
availability, integrity, confidentiality, authenticity, and non-repudiation [6]. SG systems
have too many interconnected devices. It is also highly susceptible to cyber-attacks due
to security vulnerabilities found in devices connected to the network. The defence and
security layers of SG protect the network against cyber-attacks, unwanted changes, and
data theft. For reasons such as efficiency, cost, and integration to big data, SGs depend
on comprehensive internet networks where common information is shared. Due to the
internet networks to which SGs are connected, they are vulnerable to many attacks that
cause interruption of power supplies [39,40]. This increase in security attacks has created
a more demanding control requirement to ensure a smooth SG communication system.
Therefore, it is exposed to the general problems and threats of internet networks.
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As power systems become more secure and complex, SGs also need more connections
to highly external networks, especially the internet. However, this commitment to the said
external networks causes cybersecurity vulnerabilities and violations [41–44]. Therefore,
all communication links in SG networks must have access to high security. When choosing
encryption technologies and standards, the criticality and risks of the communication
system that needs to be protected should be evaluated.

• The ISO 27,001 standard is vital in providing communication security. It defines the
functions that must be performed within the scope of living information security.
Information security management system (ISMS) standard defines the organizations’
needs to establish an ISMS. ISO/IEC 27,001 consists of twelve parts. These are risk
operation, security of human resources, security policy, physical security, environmen-
tal security, communication and operation management, asset management, entry
control, development and reparation, information security management, acquisition
and business permanence management submission [33].

• The NIST standard started with the priorities determined by for SGs and added the
subjects it determined. The eight priorities identified are: Meeting the demands
and consumer energy adequacy, Large area application awareness, Energy storage,
Electricity transport, Advanced measurement infrastructure, Distribution network
management, Cybersecurity, and Network communication [41,42].

• The FERC SSEMP standard sets the standards that must be followed in communication
networks connected to power systems [42].

• The Common Criteria (CC) that can be evaluated among the standards is interna-
tionally accepted SC evaluation criteria for information technology products. They
were created as a result of the merger of The Information Technology Security Eval-
uation Criteria (ITSEC) in Europe, Trusted Computing Security Evaluation Criteria
(TCSEC) in the USA, and Canadian Trusted Computer Product Evaluation Criteria
(CTCPEC) [44] in Canada, which are accepted as information security evaluation
criteria. CC are defined in the ISO/IEC 15,408 standard. It also defines the Evaluation
Assurance Level (EAL) levels [44,45].

• AGA Report No. 12 Part 3 includes protection of SCADA Communications Net-
worked Systems. It is focused on high-speed communication systems, including the
Internet [44,45]. It is notable that AGA series are voluntary standards and do not
mandate any companies to install encryption technology as recommended in the
standards.

• Virtual Private Networks (VPNs) and Internet Protocol Security (IPSec) technologies
provide the security of wired grids. A VPN system can make on top of existing
CP networks, providing a safe communications contraption for message and infor-
mation transmitted among two addresses. The data exchange in the middle of the
web browser and the VPN device is encrypted with the Secure Sockets Layer (SSL),
Transport Layer Security (TLS), SSL/TLS [46] or Secure Shell (SSH), which are high
layer security mechanisms, can also be used [46,47].

• ISO/IEC 62,351 standard covers communication security issues for energy systems
management and information sharing. It deals with communication protocols and
network and operating systems [48]. IEC Standards provide communication and
information security, security for profiles containing TCP/IP, Quality of service (QoS),
mobility, multi-homing, and other enhancements essential for SG applications to be
efficiently secured and well-controlled if TCP/IP is to be adopted [36].

• IEC S63 report generally includes status and advisory standards for smart grid cyber-
security requirements. It covers industrial security standards, access controls, identity
management, secure network, wired and wireless connection standards [48].

• Security for profiles with Manufacturing Messaging Specifications (MMS) [49], Secu-
rity for IEC 60870-5, and its derivatives (DNP) [50] Security for IEC 61,850 profiles,
Elements (targets) to grid security can be counted [43].
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• The level of security provided by the different degrees of wireless communication
protocols is also varied. IEEE 802.11i [50] and IEEE 802.16e [51] standards can be used
to safety wireless grids.

• IEC 61,850 structure provides digital fast communication and use Internet Protocol
(IP) based addresses [52].

• Federal Information Processing Standard (FIPS) certifies the Advanced Encryption
Standard (AES) [53].

• Triple Data Encryption Standard (3DES) [54] for robust security and high performance.

SG communication system has an architecture in which data collection and control
can be performed [13]. Distributed control centre (DCC) supports metering and metering
systems, power system stability, data management, power system activities, and data
exchange control. Transformer centre includes Remote Management Units (RTU) and
fuses, Human Machine Interfaces (HMI), Control and communication assets (equipment
of switchers or routers), log servers, data collectors, and protocol gateways. Intelligent
Electronic Devices (IED) are field equipment which includes a set of converter tools, tap
changers, circuit terminators, phase measuring units (PMUs), and protection relays. It is
defined in the IEC 61,850, when data transmitted with the IED contains the MAC (Media
access control) address. When this address determines which device or equipment will
receive this message, they allow data transmission with DCS securely. Accessibility means
that data can be used to open, close, hold, and allow the system; they work in compliance
with communication protocols. Therefore, this authentication allows authorization.

The purpose of security in the SG is to protect the user’s integrity [6]. The advanced
smart grid system should prevent sensitive data from being exposed to unauthorized
persons or harmed by others. The security definition should ensure that the smart grid
system’s use does not endanger the individual’s privacy. Different stakeholders’ combined
efforts, including government, consumers, industry, and academia, are needed [29].

Table 1 summarizes communication technologies which have to work simultaneously
with standards and protocols.

Table 1. Classification of communication technologies in Smart Grid.

SG Structure Category Reference

Communication
Technologies

Wireless

IEEE 802.15 [52,53]
Wireless Mesh Network [4,54]
Cellular Communication [55]

Cognitive Radio [56]
Bluetooth, ZigBee, Microwave and Free

Space Optical Communication [4,6,11]

Satellite Communication [57]

Wired
Fibre Optic Communication [58]

Powerline
Communication

Broadband PLC
Technology (BPLC) [8,59,60]

Narrowband PLC
Technology (NBPLC) [8,60,61]

2.3. Security Standards of Generation, Distribution, and Transmission Systems Mitigation

Cybersecurity in the generation, transmission, and distribution of electrical energy
should be considered together with all the power system components integrated on SG.
Cauterizing the protection of the produced energy until it reaches the consumer is one of
the main tasks of the SG. In this section, standards that will ensure the safe transmission of
power to the user are examined.

• IEEE 2030-2011 Standard provides a guide for SGs electrical power systems, and
energy technologies can be used together. It is the first combined application that
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includes IEEE 2030 standards in smart grids. Three additional standards complement
in [62].

• IEEE P2030.1, Guidelines for Electrically Based Transport Infrastructures.
• IEEE P2030.2, Guidelines on the Interoperability of Energy Storage Systems Integrated

in Electric Power Infrastructures.
• IEEE P2030.3, Guide to Test Practices for Electrical Energy Storage Equipment and

Systems [62].
• IEC 1686-2007 is an informative document about the standards on cybersecurity

features, capabilities, and functions for Smart Electronic Devices used in the substation
and the security of critical infrastructures [47,48].

• NIST has proposed a 3-phase plan to fulfil the requirements of the Energy Indepen-
dence and Security Treaty (EISA) and to set the standards initially required for the
installation of smart grids [41]:

1. To engage with stakeholders to identify applicable standards and requirements,
gaps and priorities in existing standards in the open process;

2. To create mutual usability of smart grids to ensure long-term operability;
3. To develop and implement a framework for compliance testing and certification.

• NERC 1200 standard covers energy transmission and distribution units, and studies in
NERC 1200 CIP 002-1 and CIP 009-2 series have been extended to include production
facilities [42].

• Federal Energy Regulatory Commission (FERC) compliance with standards has be-
come an obligation for the energy industry [42]. Electricity transportation and distribu-
tion network management, one of the leading departments of NIST FERC, establishes
the necessary safety standards for energy transmission and distribution.

• In the IEEE 1402-2000 (R2008) standard, the security of electrical power generation
and distribution stations is mostly subject to the physical level, and leakages from the
electronic environment are also included [63].

• Another standard aimed at controlling data is NISTIR 7628, which includes the three
following topics on risk assessment and security analysis [36,64]:

1. The security architecture section: includes Cybersecurity strategy; Logical ar-
chitecture, including high-level security requirements; Cryptography, and key
management topics.

2. Requirements section: includes privacy and smart grid issues.
3. Supporting analysis and references section: concerning Vulnerability classifica-

tion, Security in bottom-up smart networks analysis, Research and development
on cybersecurity in smart networks, Overview of standard controls, Solutions
used by switch power systems for security topics.

2.4. Security Standards of Control Systems Mitigation

Control systems in SGs are generally used in a distributed or centralized manner to
manage power generation facilities. DCS can be thought of as a process control architecture
that controls, in particular, more than one region’s integrated subsystem. The DCS is
designed to oversee a smaller group of supervisors who share responsibilities in order to
run the entire production operation [65].

Control is often used in conjunction with bilateral communication systems. During
the process, parameters that should be controlled should be provided with high security
through communication and control systems. Distributed Network Protocol 3 (DNP3)
and Generic Object Oriented Substations Events (GOOSE), IEC 61,850 and IEC 608750-5
standards have been developed for control systems [14] to use the implementation of
consistent security solutions, but adequate standardization has not been achieved yet [66].
Isolated industrial and distributed control systems are safely accepted, and cybersecurity
dimension is substantially negligible in the first years of its installation. However, over
time, the industrial control system and communication protocol standards have shifted to
open international standards to control and monitor a geographically dispersed structure
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far apart from each other to increase productivity and efficiency and the need for internet
or intranet connectivity [67].

Transportation, energy, medical, security, and logistical control systems are used
for different purposes, such as using other protocols and services despite sharing simi-
lar characteristics [68]. For this reason, the additional control systems are used similar
methods against cybersecurity threats. Control systems used for different purposes can
be found in the SG as follows [53]: AMI, Building Automation Systems (BAS), Building
Management Control Systems (BMCS), Closed-Circuit Television (CCTV) Surveillance
Systems, CO2 Monitoring, Digital Signage Systems (DSS), Digital Video Management
Systems (DVMS), Electronic Security Systems (ESS), Emergency Management Systems
(EMMS), Energy Management Systems (EMS), Intrusion Detection Systems (IDS), Physical
Access Control Systems (PACS), Public Safety/Land Mobile Radios, Renewable Energy
Geothermal Systems (REGS), Renewable Energy Photovoltaic Systems (PVS), etc.

With these various purposes, the changes of paradigm, digitalization, standardization,
and their impacts on the smart grids are summarized in Table 2.

Table 2. Paradigm changes in power systems.

Paradigm Change Digitalization Standardization

Impact On

Operation

Easy maintenance Interoperability and Interchangeability
Serves Scalability Addition of new equipment is easy

More and High-Quality Paves the way for Plug and Play (PnP)
Data Collection

Cyber Security
Physical Security is compromised Security by obscurity is lost

Easier Access to Networks Hackers can use legitimate models to identify
Connectivity is disadvantageous All the data objects are known

As shown in Table 2, standardization is needed for easy connection, integration, and
operation. The digitalization has advantages as serving scalability, easy operation, and
access to the communication networks and this connection can be used for malicious aims.
However, this means attackers can model themselves as a legal device as a relay or circuit
breaker, exchange information with other entities as the parameters and messages are
well-known [13]. In order to ensure the stability, especially in Supervisory Control and
Data Acquisition systems, Modbus: Master/Slave—Port 502, BACnet2: Master/Slave—
Port 47,808, LonWorks/LonTalk3: Peer to Peer—Port 1679, DNP3: Master/Slave—Port
19,999, IEEE 802.x, ZigBee, and Bluetooth—Master/Slave Protocols [53] and standards in
the following should be used.

• NIST SP 800-53, Standard titled security and privacy management for Federal Infor-
mation Systems and Organizations (FISO), includes selecting a security control center,
adapting the power lines to security control, recording control selection process, new
methods and legal systems [36].

• ISA-SP99 production and control systems safety standard has been published in
2 technical report parts. The standard covers improving the accessibility, integrity
and confidentiality of the elements and systems used in control. It aims to establish
security control systems. It includes technical reports, specifically data to control
systems, safety standards and publications [43].

• SA-99 contains advice and guidance on many security technology products for indus-
trial automation and control systems. It deals with risk analysis, countermeasures,
and cybersecurity management systems [48].

• NIST 800-82 provides a direct security checklist and provides security requirements
and solutions for risk assessment studies. The standard examines the hardware and
software components used in the cybersecurity infrastructure, makes recommenda-
tions for more secure network and application services, and provides examples [62].
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NIST 800-82 control systems security guideline is listed under the following four
sub-headings [59]:

1. An overview of the reasons for security needs as well as physical measures take
in control systems;

2. Differences between control and communication systems within the scope of
openness, threats, and events;

3. Suggestions for assembling security solutions into typical grid structures found
in control systems, with decompression point on network distinction implemen-
tations;

4. Summary of managerial, operational, and technical controls.

• NERC 1300 standards are developed for the identification and certification of proce-
dures. The standards can be applied to entities performing the specified activities such
as control regions and generation company owners [43]. It contains comprehensive
information on critical issues under the following headings [69]:

1. 1301 Security Management Issues;
2. 1302 Critical Cyber Assets;
3. 1303 Personnel Subjects and Training;
4. 1304 Electronic Security;
5. 1305 Physical Security;
6. 1306 System Security Management;
7. 1307 Incident Response Plans;
8. 1308 Recovery Plans.

Different species of control systems (CS) holding imitative behaviours and many of the
suggestions from [53] are practicable and could be used as a sample to protec systems in the
face of cyber-secure assaults. Even though numerous different systems such as construction,
medical, transportation, defence, and logistics use different procedures and standards, they
all run in similar modes and have similar characteristics to conventional CS [53].

3. Classifications of Cyber-Attacks in SGs

According to EPRI, all the parts of SGs must work in simultaneously in a secure
way [48]. Thus, complete security cannot be provided without cybersecurity technologies,
policies, and risk assessments and one of the most critical dimensions: education and
awareness. This is because security vulnerabilities are also seen in the studies as mostly
occurring depending on the human factor [29,55]. By overcoming the people in control of
the system, it is much easier to circumvent antivirus software, systems reporting attacks, or
bypass firewalls. Even if all technical regulations and security policies are developed and
determined, users with lack of awareness will disable these technical solutions. Although
information security gaps can never be eliminated, they can be reduced to an acceptable
level by developing information security awareness among employees and transforming
this awareness into behaviour [39]. All the attacks are critically dangerous for the infras-
tructure sector, but there is a great danger if they originate from a disgruntled insider who
knows the system’s features. Institutions generally rely on existing SCADA systems’ tight
physical security and consider that they are safe from such an attack. Therefore, when
faced with an attack, they are exposed to severe losses and damages. When the attacker
gains control over the system, the management and activation of the attack have begun. In
this process, after the malware is loaded on computers, a connection is opened with the
command-and-control systems that allows attackers to access infected systems remotely.
After remote access was achieved, the attackers upgraded the privileged accounts, obtain-
ing user credentials [70]. The SG works with advanced technologies such as big data, IoT,
and cloud computing to preserve complex CPS security [71]. CPS refers to a system that
monitors and controls people and their physical processes in the cyber world using ad-
vanced computing and communication technologies [72]. Since CPS security is important
at all levels, attacks can have an effect on both cyber and physical infrastructure [73]. Due
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to its own physical and logical regulations, CPS is a crucial part of the SG. It regulates the
infrastructures of communication, information technology (IT), security, automated control,
protocols, standards, and features [74,75]. Moreover, the threat of cyber physical attack is a
critical issue in human society, where an attacker can exploit and leverage vulnerabilities
in the SG for personal advantage or to advance political goals [76]. Because of attacks
challenge, NIST is working on the future power grid, which includes components for con-
nectivity, electricity, and information [77], and it is considered the light shed between the
physical and cyber worlds. SGs architecture and infrastructure are faced with cybersecurity
attacks and challenges ranging from thefts, terrorism, natural disasters, etc. In the event of
SG’s breakdown due to any of the threats, potential consequences include power system
blackouts (small and large outages), IT infrastructure failures, false visualization of the
actual system’s condition, damaged consumer devices, energy market chaos, endangered
human safety, etc. [78].

It can be seen in Figure 5 [79] that CPS is an essential part of control systems architec-
ture which is related to the field of integrated sensor and actuator networks [80]. Significant
disruptions to critical infrastructures due to deliberate attacks on SG Control systems
or unintentional attacks such as slammer worms can cause far more national economic
damage than the infrastructure itself. For example, an attack [81] includes the examination,
loading, and execution. The attackers used a virtual private network (VPN) to gain access
to the control system. Then, workstations, servers, and some HMIs and logs are deleted
with KillDisk software and other machines’ events to avoid leaving traces. It was stated
that at least 27 transformers and 225,000 customers were affected due to the attack [81].
Results of an attack is provided in [82]:

• By stopping or delaying the flow of information between the control networks, the
fulfilment of critical-time functions can be prevented;

• Threshold values that can damage or deactivate or turn off the hardware by unautho-
rized changes in instructions, commands, or alarm;

• It may create negative environmental consequences;
• Wrong information can be sent to system operators;
• Software or configuration settings can be changed;
• Operation of security systems that may endanger human life can be intervened.
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The criticality and sensitivity of the infrastructures managed by CS have made it one
of the primary targets of cyber terrorism and cyber warfare. Therefore, it is vital to analyse
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it in depth to reveal gaps in control systems’ protocols and components [81]. Only in this
way it will be possible to take precautions against the detected gaps and prevent them from
being re-exploited by the attackers [82,83]. As discussed in the study [84], vulnerabilities in
control systems can cause attackers to infiltrate the network, access control software, and
cause unwanted damage by changing the systems’ operating conditions. All connections
used that only belong to the relevant institution and organization can be very useful in
preventing unauthorized access and keeping the network confidential. However, it is
impossible to manage systems with such an “isolated” network today, which is almost
mandatory to use interconnected networks [85]. A significant part of the communication
or control system attacks is not disclosed to the public by many countries due to bad
reputation. However, most of the research work in CPS security focused on transmission
or control systems.

Accordingly, a great deal of the assumptions made for attacks formulation and de-
tection algorithms do not hold for both systems [81]. The renewal and integration of SG
communication sheets in the power grids have authorized significant improvements and
have composed new issues and challenges. In this way, the communication architecture
is operated to receive real-time (RT) data between control and digital centres. This com-
bination has allowed a few challenges like incorporating high DER’s [82] and sufficient
microgrids coupling [83]. Besides, integrating the AMI has authorized two-way communi-
cation between customers and utilities and the constitutional ingredient of demand side
management [84]. However, when communication architecture includes a large geographic
area, power and control systems become vulnerable to CPS attacks, which was recently
assumed as one of the most crucial issues for SG [85–90].

The most threats and hazardous attacks in the world are examined in detail with a
timeline in Figure 6 for the last two decades. It can be seen different countries were affected
and miscellaneous systems have been damaged for years since 1982. Moreover, the impacts
of these malicious attacks are summarized.

Unwanted events that may be encountered in smart grids can be summarized as follows:

• Disruption of control and monitoring operations as a result of blocking or delay of
information carried on the network;

• Endangering the lives of the environment, employees, and other people as a result
of the system components being shut down, disabled, or damaged by unauthorized
modification of commands, instructions, and alarm thresholds;

• The adverse effects of situations that cause operators to send inappropriate commands
by sending incorrect information to system operators or hiding unauthorized changes
risk people’s lives by intervening in secure systems.

Malicious CPS attacks can have severe impacts ranging from economic effects to
partial malfunctioning of equipment, all the way to cascading failures and shut-down of
entire power systems [54,86].

These attacks can target both the cyber part, which consists of the software and com-
munication layer, and the physical part, which consists of the electrical power devices [91].
Common attack templates include, but are not limited to, man in the middle attacks [92],
rogue devices attacks [81], denial of service attacks [86], false data injection (FDI) [16]
attacks, etc. While a variety of hazardous attacks that can be classified according to the
purpose, target, or effects generally can be expressed as follows.
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3.1. Denial of Service (Dos) Attacks

DoS (Denial of Service) means disrupting the service or destroying the function of
the service. It does not allow users to access or offer prolonged service. The purpose of
the DoS attack type is to exceed the limit of resources and disable the system. The attack
usually occurs over a single Internet Protocol (IP), and in this case, it can be prevented by
using a Firewall [86,93].

3.2. Distributed Denial of Service (DDos) Attacks

DDoS aimed to disrupt the service or make it unable to provide any service like DoS.
The attacker created it before the target’s attack with the machine or computer community.
However, the attacker can easily be concealed without revealing their identity. Unlike the
DoS attack, many machines are used in a DDoS attack, and IP detection is more complicated
than others. A firewall may not be sufficient, making DDoS more dangerous and effective
than DoS attack. Moreover, Distributed Reflective Denial of Service (DRDoS) is similar to
DDoS and uses additional networks to attack more frequently. Attacks on the protocol, grid
operation control, communication infrastructure, bandwidth, consistency observation, and
billing mechanisms are all possible forms of DDoS attacks in the SG environment [86,93].

3.3. Packet Sniffing Attacks

This type of attacks is designed to capture information packets in the network and
read their content. The term of sniffing is to listen to data traffic. An attacker aims to
capture and store all data between two entities by monitoring the network traffic. It is one
of the most used methods, and connections must be encrypted for protection [81].

3.4. Man in the Middle (MitM) Attacks

MitM attack consists of three systems, one attacker and two victim computers. The
attack starts when the attacker sending signals to the first victim system claims that
it is the second victim system while sending other signals to the second victim system,
indicating that it is the first victim system. The first victim sends all packages to the attacker,
transmitted to the second victim via himself with the MitM effect. When the fake connection
is established, the victim thinks they are using the usual network connection. MitM attacks
are most commonly carried out by taking advantage of the Address Resolution Protocol
(ARP) and changing the MAC address information expressed as ARP poisoning. In parallel
with the proliferation of internet networks, security vulnerabilities have increased [94].
Approximately 30 years have passed since the vulnerability in the ARP protocol was
detected. However, damaging systems is still one of the widely used methods. This result
shows that the security measures taken were insufficient [95–97]. Especially considering
how easy it is to join and leave the mobile network, which is widespread today; the
difficulty of preventing ARP poisoning and MitM attack is clearly understood.

3.5. Ip Spoofing Attacks

Internet Protocol (IP) connection between computers is provided through various
protocols. When connected to another computer through these protocols, the connected
computer introduces its identity to the other party. The real IP address of a connected
computer not shown is the concealment of the actual identity called IP spoofing. The
computer receiving the fake IP packet cannot detect whether the packet came from the
address from which it was sent. Although this is possible in theory, in practice, it will not be
possible to connect to someone else’s computer from a different IP unless the system on the
other side is seized. Deception is generally used to hide the source during an attack [98,99].

3.6. SQL Injection Attacks

Today, numerous databases are designed to comply with codes written in Structured
Query Language (SQL), then many websites that receive information from users receive
this data to SQL databases. Attackers take control of victims’ databases by exploiting SQL
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vulnerabilities. For example, in a SQL injection attack, a hacker writes some SQL codes
into a web form which requests identification information. If the website and database are
not checked correctly, the database may experiment to run these codes [95].

3.7. Command Manipulation Attacks

Usually, these types of attacks are directly targeted the servers unlike SQL injection. It
targets access to information on the operating system, database management system, and
server remotely using the web application’s command line. There are applications such as
Code manipulation or Database manipulation attacks depending on the usage [24,99].

3.8. Chameleon Attacks

Working like a typical program, the “chameleon” actually applies several tricks and
deceptions, saving usernames and passwords in multi-user systems thanks to its ability to
mimic a secret file, warning that the system will be shut down temporarily for maintenance.
Using the chameleon program seizes the usernames and passwords by accessing this
secret file [97].

3.9. Keylogger Attacks

Key loggers are spy programs that record keyboard operations. Unaware of the user,
they record every key touched on the keyboard and send them to previously determined
addresses when they find the opportunity. Due to such software recording keyboard
operations, it can be understood how dangerous is the information containing the users’
private information [98].

3.10. Back Door Attacks

The attacks methods provide remote access. It can pass without found by the normal
authentication processes on the computer. Hackers who make a laborious effort to infiltrate
a system want to add an easier way to access the same system. The most common backdoor
method is to keep a port on the target system with an attached listening agent open.
Backdoor attacks are mostly malicious software that can infiltrate the target system. When
many viruses infect a computer, they always try to open a backdoor. Malicious people who
are aware of this situation can use these structures. One of the most famous claims about
the backdoor is that Microsoft has installed a backdoor for the NSA (American National
Security Agency, Fort Meade, MD, USA) in all versions of the Windows operating system.
This claim is an additional input key in the name of NSAKey in the CryptoAPI structure
found in all versions of Microsoft [99].

3.11. Supply Chain Attacks

An attack could contain any methods which come to an agreement with system’s
accuracy prior to it being delivered. When the supply chain needs high sophistication
attacking, current statements propose that of plenty foreign network devices may include
back door attacks that ensure unauthorized users access [100]. Supply chain attacks do
not need any hacker person to access the physical system. Supply chain matters are also
associated to the need to have confidence in system updates and pieces utilized in improved
cyberattacks [101].

3.12. Spywares and Malware Attacks

The primary purpose of these software, which cannot be called viruses in the full
sense, is to collect information from the computer where they are installed and send it to
the people who created these programs. The danger of this software to the computer or
control systems may differ in their degree of spying, and they can be considered more
innocent than other malicious software. On the other hand, the most dangerous derivatives
can access user information by changing the data.
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Software is intended to implement an unauthorized process that will harm the confi-
dentiality, knowledge system’s credibility, or functionality in the following terms: a virus or
other command based asset contaminates a host. Some forms of Spyware are also examples
of Malware attacks with malicious code [36].

3.13. Trojan Horses

It can be defined as computer software that appears to have a useful function and
contains hidden and potentially harmful functions that can bypass security mechanisms
and sometimes exploit the legitimate authority of a control and communication system
unit [71,102]. Since they are confusing terms, it is useful to highlight the feature that
distinguish viruses from Trojans, Worms, and Stuxnet here:

• Trojans appear to be harmless software that do not interfere with the system. However,
when a situation arises, they will come into play and exploit times for other malicious
applications.

• Worms are programs on their own that can spread themselves in the net. On the
contrary, a virus is not a self-sufficient program to infect. It spreads by attaching itself
to other files, but if the infected file is not opened, the virus cannot spread to other
environments [36,102].

• Stuxnet is using spread USB devices and changing the Ladder logic code of PLCs [70].
This attack involves human factors as well as technology and process management.

3.14. Rogue Devices Attacks

These attacks give attackers an excellent opportunity to settle with the supply chain
attacks and then re-install malicious software into a device before shipment to target
location and later use it as a backdoor attack [100].

3.15. False Data Injection Attacks (FDIA)

False Data Injection Attacks aim to inject malicious measurements and modify the re-
sults. FDIA could violate data integrity in various regions as transmission, communication,
generation, control, etc.

It can be seen in a different part of the SG that contains data. In this section, the
FDIA will be evaluated in the grid without categorizing. It will be examined with the
same approach for all regions. Figure 7 depicts the diagram of the following formulated
system [100].
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In terms of common features in systems, basic principles of FDIA can be formulated
as follows [102]:

Let zd represent the measurements vector which contains false and malicious data,
and zd can be formulated as; zd = z + d , where z is the original vector measurements
z = (z1, z2, . . . , zm)

T , and d is false or malicious data d = (d1, d2, . . . , dm)
T which added to
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the original measurements. It is referred to d as a false data attack vector. The element
of di means non-zero, and the attacker conciliates the ith meter and then displaces its
original mensuration zi with a false extent zi + di. Let X̂ f alse and x̂ specify the forecasts
of x using the false mensuration’s zd and the original values z, respectively. X̂ f alse may
be written as x̂ + f , where f is a non-zero n-dimensional vector. It is worth noting that f
states the attacker’s calculation error. The intruder, on the other hand, should choose f as
a linear combination of H’s column vectors (i.e., d = Hf). Therefore, FDIA with complete
information is following and zd can pass the detector as long as z is able to pass it [102]. It
is assumed that an attacker accesses the H matrix and injects false measurements in [103],
m meters provide m measurements z1, . . . , zm, and also, it is assumed that there are n state
variables x1, . . . , zn. The m × n matrix H can be characterized by a relationship between
m meter measurements and n state variables. The measurement noise [104] is formulated
with W diagonal matrix as

x̂ =
(

HTWH
)−1

HTWZ (1)

In [102], an attack in which the attack vector d equals Hf, where f is an arbitrary
non-zero vector, is a false data injection attack. Seeing that z can pass the detection and
where τ is the threshold, ‖z− HX̂‖ ≤ τ is had; then, the vector of estimated state variables
acquired from zd can be demonstrated as x̂ + f . Described previously if d = H f , the
resulting measurement follows:

‖z− HX̂ f alse‖ = ‖z + d− H(x̂ + f )‖

= ‖z− Hx̂ + (d− H f )‖

= ‖z− Hx̂‖ ≤ τ (2)

Attackers generate malicious measurements based on the H matrix and then inject it by
starting FDIAs; they can manage the injected false data to overcome the bad measurement
detection and represent random errors into the state estimation (SE) output. On the contrary,
if attackers have no complete information about H matrix, if d 6= H f , ϕ error matrix is
created, then the solution of the state estimation follows:

x̂d =
(

HTWH
)−1

HTWZd

=
(

HTWH
)−1

HTW(z + d)

=
(

HTWH
)−1

HTW
(

z + H f + ϕ f

)
= x̂ + f +

(
HTWH

)−1
HTWϕ f

= x̂ + f (3)

where f = f +
(

HTWH
)−1

HTWϕ f (4)

The attacker aims to hack the multiple sensors and phasor measurement units (PMUs)
readings to mislead the smart grid’s decision-making process in FDIA [103,104]. False Data
Injection is one of the most dangerous types of attack among cyber-attacks. Therefore,
it should be examined most carefully. Due to its high level of importance, FDIAs are
currently the most studied cyber-physical SG security attacks [105]. For example; two
versions of FDIA scenarios have been found in [56] where in Generalized and Random
FDIA, an attacker uses small false data error in measurements and has some necessities for
an accomplished attack, like they must comprehend the topology of the energy system to
control and manipulate the measurement of the AMI. In random FDIA, attackers direct
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a wrong estimation. Figure 8 shows various false data injection attacks scenarios on
smart grid [106].
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In [107], the study is examined with the architectural structure of FDIA and divided
into two mains criteria’s: cyber and physical. According to [108], it only focused on the
physical criteria and the extensive classification of [107] study and a new control centre
model. Authors in [109] finished the work in [108] and their formulation studied the impact
of state estimation of FDIAs on electricity market operations.

In the AC power transmission system, FDI attacks on the SE are summarized in [92,
110,111] as a stealthy FDI attack with two steps.

The first, “Intrusion into the System” is examined. If the attacker who trying to
intervene in the system is on the outside of the system, he attacks the system using one
or more of the usual cyber hacks by endangering the wired or wireless communication
channel. In addition to this situation, the attacker may be successful in integrating malware.
In this case, the attacker may be capable of stealing system information, particularly the
bus topology.

The second step is “Carry out stealthy FDI attack” aims to perform a stealthy FDIA by
changing the measurement data. The manager supposes that the data are right and also
estimates the other values based on this false assumption. It causes the system to reverse
and hence an incorrect condition causing malfunctions or substantial deductions.

Another type of FDIA presented in [112] on power system protection suggests two tar-
geted attack scenarios: fake safe and fake vulnerable signal attacks. The first fake protected
signal attack attempts to trick the control centre into performing a required corrective acts
such as load shedding and neglecting a power line peak demand by switching from an
unstable to a secure state. The second fake unstable signal attack attempts to move from a
safe to an insecure state in order to deceive the control centre into performing inappropriate
corrective steps, thus inflating costs unnecessarily.

Security-constrained economic dispatch (SCED) proposed in [112], and SCED FDIAs
can be divided into two types: attack optimizing operating cost and attack causing overload.
The first is to boost the cost of generation or load shedding or to make an illegitimate
profit [113]. The second group aims to overwhelm power lines in order to inflict physical
harm [114].
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Contingency analysis (CA) is one of the significant functions of power system security.
These kinds of FDIAs are proposed in [115]; an attacker who knows network topology and
system parameters can smoothly run the control algorithm to have the contingency list.
CA can calculate complexity in real-time power market operations, flow-based SCED with
DC assumptions.

The study [115] constructs an attack vector by modifying the contingency list using
both analogue and optical dimensions. The problem is modelled as a mixed-integer non-
linear programming-based (MINLP) optimization problem, and the physical and economic
effects of these attacks on the SG power system have been quantified.

The attackers inject types, and FDIA measurement reports aim to disrupt the smart
grid operation through the compromised meters and sensors [116]. FDIA attacks can
disrupt the grid system state estimation and cause energy distribution false. Moreover,
meters and sensors lacking tamper-resistance hardware increase the possibility to be
compromised. The injecting FDIA types of energy systems are [116]:

• Energy-request Deceiving Attack;
• The attacker compromises demand-nodes and injects a forged quantity of demanded

energy;
• Energy-supply Deceiving Attack;
• The attacker compromises supply nodes and injects a forged quantity of energy that it

could provide to the grid.

Different FDIAs classifications divided into three-level classifications proposed in [117].
The FDIAs are categorized concerning the targeted systems at the first level, second is
targeted subsystems and can be divided into subsystems and the attack’s impact, which
can be physical and economic attacks targeting the subsystems at the third level. According
to [116], another FDIA attack assumes that the hacker can only reach specific measurements
due to the meters’ different physical protections. With this study "building a valid FDIA
by minimizing the number of attached meters", research started, and several attacks with
various conclusions and aims have been suggested on the basis of this analysis.

FDI attacks are divided into random and target FDI attacks in [118,119]. In random
FDI, attackers aim to inject any false data to cause bad state estimation in the state variables.
The target FDI is injecting an attack vector that causes an error into certain state variables.
Other types of FDI attacks, such as scaling, ramp, and pulse are proposed in [120]. Previous
studies have mostly focused on the FDIA issue in the transmission network. Unlike
them, [110] proposes attack models in transmission, storage, and micro-grid networks, with
a focus on determining the effect of FDIA on the power grid’s economic and stable activity.

FDI attacks are described into three major categories as Bad Data Injection Attacks,
Replay Attacks (RA), and Zero Dynamics Attacks (ZDA), and many end devices that
enable the smooth functionalities of energy systems even from a remote area are pro-
posed in [85]. The RAs are challenging to detect due to cryptography operations’ limited
capability [96,109]. ZDAs indicate a cluster of attacks using unstable zeros as the bug to
attack smart meters [121,122]. Then, they will inject the false output through the communi-
cation channel. In the end, the real state increases as the time passes, while nearing close
to the output-nulling space. In this way, the corresponding outcome is referred to as a
stealthy attack and too close to zero [82].

FDI attacks aim to mislead the service providers, disable the sensor nodes to cause
service failure between physical systems and the networks, or hijack the communication
channels [123]. There are two points to consider in order to understand the success of an
attack target:

• The first is to access data by infiltrating the current energy system. This way, data in
sandboxes can also be manipulated.

• Second, they control data without being detected [24,25,42,78,124,125]. A successful
attack can reduce the actual flow of power to destabilize energy systems [126]. As a
result, FDI Attacks pose major threats to both energy systems and communication
and other physical systems and are difficult to detect in real-time [100,117,127,128].
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The FDIA and all its derivatives aim to damage transmitted data; this may cause a
chain reaction between different systems in SG, when an attack is accessed in the commu-
nication system can affect the transmission or generation system [17,114,119,129,130].

According to the general nature of all FDI, attacks have the same goal [126]. The
objectives are to use physical systems or malicious packets to deceive service providers,
capture communication channels, or disable sensor nodes and create an attack that bypasses
the traditional bad data detector [71,127,131]. By the way, Detection methods are examined
in the following section.

4. False Data Injection Attacks Detection Modelling and Methods

The mathematical formulation for modelling false data injection attack (FDIA) for
both power and communication system and how stealthy FDIAs are carried out on SG
describes in this section.

4.1. Mathematical Modelling of False Data Injection Attacks Detection

An attacker can inject a malicious attack in a vectorial form with perfect knowledge
of the Jacobian matrix and FDIA calculation described previously. So, the mathematical
formulation of FDIA detection should be understood clearly. It is aimed to make sure that
the FDIA vector elements are the same in the sense of energy, so the comparison stage and
simulations are current and significant.

The classic FDIA detector J(x̂) is created first in [132] with hypothesis test in to detect
FDIA, H0 and H1. H0 is the null hypothesis, where the measurement is valid; and H1 is the
alternative hypothesis, where the measurement is under attack. So, J(x̂) as follows:

rTWrH0
H1

≷ γ (5)

Meanwhile in [133], if ε0 = Trace(Σx − KHΣx) offers minimum mean square error
(MMSE), when it is in the asset of the attack would be ε0 + ‖Ka‖2

2 which refers MMSE can
be controlled by energy. In the MMSE, an optimum attack is produced with the minimum
residue to limit the probability of detection that can be formed: min‖Ga‖2

2 subject to
‖Ka‖2

2 ≥ C where G , I − HK and C is attack’s minimum energy value. The sparsity
pattern presented in [134] and assumed the full measurement assumption.

4.2. Detection Methods of FDIA

The detection part of cyber-security in SG is vital for resisting cyberattacks in its
large-volume data-driven architecture. In this architecture, cybersecurity has become more
complicated than before, and traditional manual and signature-based approaches are no
longer useful have revealed the need for a new approach [99]. Thus, it has been heavily
investigated in contemporary literature. The signature-based detection approaches for
FDIAs have not prepared for data challenges caused by the large-scale deployment of PMU
in the CPS on SG. Real-time big data produced by PMU causes storage and computational
issues [133–135].

However, there is a remarkable fact that this issue becomes an opportunity for data
analytics techniques such as Machine Learning (ML) to detect and block FDIAs. ML
has excellent non-linear analysis capabilities to detect FDIA in more complex systems
when more data is obtained from the system; it can be solving the challenges easier [133].
Thus, it is applied very beneficially in the smart grid’s cybersecurity areas with complex
sensor networks.

For detecting FDIA, general ML techniques artificial neural network (ANN) and
support vector machines (SVM) were the most recent works and used previously, while
implementation of other techniques in such detection was also conducted. Different
methods for detecting and identifying FDIA on SG have been proposed to in this section.
Classify of different FDIA detection methods are depicted in Table 3. The attack to data
integrity is a significant threat to energy consumption and the state estimation process.
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It becomes possible for attackers to make control centres and wrong decisions through
manipulations of various SG measurements [136]. Remarkable methods are used for data
integrity aim are particle swarm optimization (PSO), Bayesian framework (BF), Adaboost,
Random Forests (RF), and Common Path Mining Method [128,137–140]. In [119], data
analytical approaches are analysed, and the Margin-setting algorithm (MSA) is a novel
data analytical approach applied to the system based on ML and MSA; it reaches better
results than the ANN and SWM methods. It is the first work to use MSA to detect FDIAs.
Kalman Filter (KF) is one of the primary detection methods for power state estimation
process on online operation [141]. In [142], KF was utilized to detect FDIA in automatic
generation control (AGC) systems. Extended Kalman filter (EKF) proposed in [143], and
Distributed Kalman Filter (DKF) can be found in [144]. The benefit of EKF provides to
reach more precise estimate and detection of FDIA. According to [145] distributed support
vector machine (DSVM) algorithm is studied for training and principal component analysis
(PCA) on an IEEE 118-bus system simulated by MATPOWER. In [146], a detection method
on phasor measurement unit (PMU) using MSA for spherical classification with data from
an IEEE 6 bus system simulated in MATLAB. The result is that FDIAs are stealth attacks
that can overcome the existing detection scheme [146]. In [137] the methods used were
perceptron, kernels nearest neighbours (k-NN), SVM with Gaussian and linear kernels,
sparse logistic regression (SLR), and the semi-supervised SVM (S3VM) studied on the
models with using IEEE 9, 57, and 118 bus systems. In [131] conditional deep belief network
(CDBN) which have one of the various deep neural network infrastructures, so catching
is proposed to the high-dimensional temporal characteristics of the stealthy FDI attacks.
Unknown input observation (UIO) was used in FDIA detection in [147]. The method which
used supervised learning to classify measurement data is proposed in [137], and it was
capable of identifying unobservable attacks and predict attacks using observation sets.
Euclidean distance-based approach is proposed in [148] to detect FDIAs. They have also
investigated on feature selection schemes with less complexity with improved accuracy
that studied genetic algorithm for BDD. In [149] FDIA and stealth attack detections in wide
area measurement in SG monitoring system is examined.

ML and Deep Learning methods for intrusion detection examined in detail for different
categories in [150]. Detection of electricity theft is discussed in [151]. ML techniques such
as PCA [125,145,152,153], game theory approaches [113], and the Stackelberg game [154]
can be used for detecting energy theft. Five ML models k-NN, SVM, ANN, NB, and DT,
and tested all proposed approaches on MATPOWER are used in [146].

Furthermore, [155] is used one-class SVM (OCSVM), robust covariance (RC), isolation
forest (ISOF), and local outlier factor (LOF) as individual classifiers for detection FDIA.

A feed-forward neural network (FFNN) is proposed in [111] for stealthy FDIA de-
tection with used random forest for feature selection and compared the deep learning
scheme with three methods as gradient boosting machines (GBM), generalized linear
models (GLM), and the distributed random forests (DRF). Isolation forest (ISOF) is used
in [155] to detect FDI attacks with simulated data; it reduces the data’s dimensionality
using PCA, to show that ISOF outperforms their findings using four ML methods: SVM,
k-NN, NB, and MLP. It does not say how long it took to train the models, but the fact
that ISOF outperformed the other models is surprising. On the same sample, supervised
models do better than unsupervised models in terms of precision.
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Table 3. Overview of FDIA detection methods in the SGs.

Detection Methods References Year Datasets

MGD Based [16] 2017 Synthetic Datasets in Matpower
KPCA [17] 2020 Synthetic Datasets in Matpower
FFNN [111] 2020 Random Data simulated in Matpower

RF, Adaboost [128] 2019 Synthetic Datasets in Matpower
CDBN [131] 2017 Synthetic Datasets in Matpower

Perceptron, k-NN, SLR [137] 2016 Synthetic Datasets in Matpower
XGBoost [138] 2019 Provided by Endsea

KF, DKF, EKF [141–144] 2017, 2018 Simulated
DSVM [145] 2017 Synthetic Datasets in Matpower
MSA [146] 2017 Synthetic Datasets in Simulink
UIO [147] 2019 Random Data for each grid subarea

OCSVM [155] 2018 Synthetic Datasets in Matpower
DT and SVM [156] 2016 Real Dataset in USA
SVM Based [157] 2016 Smart Energy Datasets from Ireland

S3VM Based [158] 2019 Irish Smart Energy Trial Data
ANN [159] 2013 Real Datasets in Brazil
PARX [160] 2016 Synthetic Datasets in Matpower

ARIMA and ANN [161] 2015 Real Datasets in Amsterdam
GBTD [162] 2019 Irish Smart Energy Trial Data
RNN [163] 2018 Synthetic Datasets in Matpower

CNN and Encryption [164] 2019 Released by SGCC
MFEFD [165] 2019 Irish Smart Energy Trial Data

KLD Based [166] 2015 Synthetic Datasets in Matpower
SARSA [167] 2018 Synthetic Datasets in Matpower

ISOF [168] 2019 Synthetic Datasets in Matpower
Deep autoencoder [169] 2019 Real PMU data

GAN [170] 2019 IoT-based smart home data
RNN and CNN [171] 2019 Released by SGCC
MLR and NN [172] 2019 CEFcom 2012

NNS and Game Theory [173] 2019 Synthetic Datasets in Matpower
NB [174] 2019 ISO New England

POMDP [167] 2018 Synthetic Datasets in Matpower
LR and DBSCAN [175] 2018 Real PMU Data

DRE [176] 2016 Synthetic Datasets in Matpower
SVM & ANN [177] 2019 Nigerian Power Grid

C-Vine Copulas Based [178] 2016 Low carbon London load dataset
DNN and LRC [179] 2019 Released by SGCC

GoDec [180] 2011 Simulated
ALM-based, LMaFit, GoDec [181] 2018 Simulated

D-FACTS [182] 2012 Synthetic Datasets in Matpower
D-FACTS [183] 2014 Random Data simulated in Matpower

NARX [184] 2019 Synthetic Datasets in Matpower
RPCA [185] 2011 Released by SGCC
LMP [186] 2011 Real Time Marketing Data

Subspace Methods [187] 2015 Simulated Probability Detections

Another FDIA detection method is presented in [171], a framework with anomaly
and FDIA detectors. LSTM-based CNN are used for time series anomalies of attacks
formulation. RNN with an LSTM cell is delivered to get the dynamic behaviour of cyber
activities on IEEE 39 bus system.

SAE, one of the DNN architectures with advanced feature extractor and LRC, used
to detect anomalies caused by stealthy FDI attacks, is proposed in [179]. A classification
scheme which is based on ERT algorithm and KPCA is presented in [17] and used for
dimensionality degradation. A sparse PCA approximation-based method used sparse data
sets to aim recovery functions which precision is inversely proportional to the sparsity
of available data presented in [153]. A detection method using a semi-supervised ML
technique known as the DRE is proposed [176]. It aims to validate a semi-supervised
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approach by comparing its performance with SVM and MLP; and four-phase classification
is proposed in [16]:

• Dimension degradation using PCA;
• Mixed Gaussian model structure using a positively labelled set;
• Collection of classification thresholds using a mixed dataset;
• An unlabelled dataset was used for testing.

Another detection mechanism using SARSA(λ) is proposed in [167]: reinforcement
learning algorithm with formulated problem of stealthy FDIA detection as a POMDP.

In FDIA detection as matrix separation problem, it is difficult to get global opti-
mum [180]. To address that, four algorithms are proposed in [181], the traditional ALM,
double-noise-dual-problem ALM (DNDP-ALM), the LMaFit, and “Bilateral random pro-
jections (BRP) with Go Decomposition (GoDec)”. GoDec achieves higher efficiency than
others. Another new detection approach using D-FACTS (Distributed Flexible AC Trans-
mission System) is analysed in [182,183].

ANN-based State estimation method NARX in [184] and Robust Principal Compo-
nent Analysis (RPCA) are examined in [185]. LMP method for FDIA detection is used
in [186]. Different subspace methods and examined [187] Bayesian or another dynamic
state approaches might be more appropriate to detection FDIA.

An attacker can increase his current attack’s privacy with an alternative attack pass-
word, turning it into an undetectable FDI attack. It can be named “Blind FDIA” [188].
PCA based attacks can occur if there is a significant error in the measurement data and
ALM-based stealth FDI attacks can be successfully injected [188]. MTD to detect blind FDIA
is implemented in [189]. Moreover, [190] is used PCA to Blind False Data Injection Attack.

Data Driven [191] and Geometric Approach are used to detect blind false data injection
in [192].

Observations can be made from the review of the studies above and the works listed
in Table 3:

• The researchers had attempted various approaches. However, no attempts to use
general SG-based learning approach have been undertaken up to now.

• Almost all the studies used simulated datasets for validating their methods. Power
flow data from the Ireland power grid is used in [162], but it seeded synthetic attacks
into the dataset later or [177] used data from the Nigerian power grid, but it seeded
synthetic attacks into the dataset.

• A few works mentioned here used classifiers as individual methods for communica-
tion or power but none used any ensemble fields method.

All the mentioned attacks are caused by the security vulnerabilities used with the
standards examined in the table below. In this sense, the mitigations of the protocols most
preferred by the standards are summarized in Table 4.
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Table 4. Vulnerabilities of protocols.

Standards Protocols General Issues

Communication

NIST, FERC

Structured Query Language (SQL) or Hypertext
Transfer Protocol (HTTP), TCP and User Datagram
Protocol (UDP) Internet Control Message Protocol

(ICMP), Path Maximum Transmission Unit (PMTU)
and Internet Protocol Security (IpSec)

IPv4 and IPv6 discussions [41,42,193].

ISO/IEC 15,408/EAL,
ITSEC, TCSEC,

CTCPEC

IoT and Internet Protocols such as REST, CoAP, MQTT,
MQTT-SN, AMQP . . . etc.

Insufficient for complex
infrastructures [43,194].

ISO/IEC 27,000 Series Security Management System Protocols, ISMS,
SSL/TLS/SSH, VPN, IPSec Unauthorized Access [193].

ISO/IEC 62,351, IEC
60870-5 and DNP,

IEC 563

TCP/IP and specify security requirements for
communication protocols as QoS, MMS, DNP, GOOSE

defined by IEC Technical Committee 57, specifically
the IEC 60870-5, the IEC 60870-6, the IEC 61,850, the

IEC 61,970, and the IEC 61,968 families.

Vulnerabilities about protocol-based
attack such as IP spoofing and

DoS [48,194].

IEEE 802.11.i and IEEE
802.16.e, IEEE 61,850

Wireless Communication protocols (Bluetooth, Zigbee,
WiMax . . . etc), Internet Protocol (IP), Information and

Communication Technologies (ICT), Dynamic Host
Configuration Protocol (DHCP), SMTP (Simple Mail

Transfer Protocol) with Communication
Technology-Interoperability architectural perspective

(CT-IAP)

Setting security level and protecting to
MitM [194,195]

AES

Structured Query Language (SQL) or Hypertext
Transfer Protocol (HTTP), TCP, UDP, Internet Control

Message Protocol (ICMP), Path Maximum
Transmission Unit (PMTU) and IpSec with AES-128,

AES-192, AES-256 Algorithms for cryptography.

Despite being approved by many
organizations, selection of encryption

techniques is not trivial [196].

3DES Public key-based protocols may also be used
(e.g., ANSI X9.42).

Expected to be rolled out by 2030 due
to insufficient security, as stated by

NIST [197].

Power

IEEE 2030-2011, IEEE
1686-2007, IEEE

1402-2000

IPSec, VPN, TCP/IP, Smart Energy Profile Protocol
version 2.0 (SEP 2.0), IETF with Power Systems

Interoperability architectural perspective (PS-IAP)

Non-homogenous protocol structure
of IEEE standards is a cause of

vulnerability [62,63,195,198]. Bilateral
information and power flow is
targeted with IEEE 2030 [199].

EISA, NIST, NISTIR
7628, FERC

Structured Query Language (SQL) or Hypertext
Transfer Protocol (HTTP), TCP and User Datagram
Protocol (UDP) port filtering and Internet Control

Message Protocol (ICMP), Path Maximum
Transmission Unit (PMTU) and Internet Protocol

Security (IpSec)

NIST and FERC should coordinate the
development and adoption of smart
grid guidelines and standards [41].

NERC, CIP SCADA, for dial-up accessible Critical Cyber Assets
that use non-routable protocols Unauthorized access issues [42,200].

Control

IEC 61,850, IEC
608750-5, IEEE 802.x

DNP3, GOOSE, Supervisory Control and Data
Acquisition systems, Modbus, BACnet, LonWorks,
Wireless (ZigBee, Bluetooth) Protocols, Information

Technology Interoperability architectural perspective
(IT-IAP) protocols

SCADA needs holistic security
solutions as it combines monitoring
and control which creates significant

vulnerabilities in the
system [59,66,88,195]

NIST SP 800-41, NIST
800-82 and 53

Structured Query Language (SQL) or Hypertext
Transfer Protocol (HTTP), TCP and User Datagram
Protocol (UDP) port filtering and Internet Control

Message Protocol (ICMP)

Used in corporate networks behind a
firewall. However, it is weak against

MitM, Trojan or Ddos launched within
the network [59].

ANSI/ISA-SP99, SA-99 SCADA, DNP-3, Ethernet/IP and Modbus/TCP.

Heterogeneous protocol use
inherently secures the system such as

“push for productivity” and
“Son-of-Stuxnet”. Needs mitigation of

MitM and Ddos for all protocol
types [43,48,201].

NERC 1300 NERC Cyber Security Standards Needs constant updates in parallel
with experiences in the field [43,69].
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• NIST and FERC standards’ discussions about IPv4 and IPv6 continue. When it is
needed to install or change the equipment, usage of two protocols can cause more
issues and require more complex infrastructure. Furthermore, against upper-layer
protocols attacks such as SQL injection and FDIA, IPv4 or IPv6 stack can be used to
communicate with the client. Organizations will need time to achieve solutions for
IPv6, since they have been working on IPv4 over the years [41,42,193].

• FERC does not indicate the adoption of standards or how effective they are, but
given the increasing use of communication and information technology in the field
of electricity and energy and the evolving nature of cyber threats, it tries to offer
solutions that will help reduce the risk posed by these threats on the electricity grid,
which require constant attention [41,42].

• ISO/IEC 15,408/EAL, ITSEC, TCSEC, CTCPEC Standards are built to be used as the
reference for evaluation of Internet security, but they are insufficient for complex
infrastructures. Mainly, ISO/IEC 30,111 Standard describes processes for potential
vulnerabilities in IoT services [43,194].

• In the Information Security Management System (ISMS) with ISO/IEC 27,000 Series,
following requirements can be used to provide access to facilitate organization’s data.
When the ISMS allow to access the information security requirements of customers
and other stakeholders, meet the data and manage information assets to facilitate
improvement and adjustment to current organizational goals [193].

• ISO/IEC 62,351, IEC 60870-5 and DNP, IEC 563’s IP usage causes devices to be vulner-
able to IP-based network attacks such as IP spoofing, DoS, and others. In the usage of
TCP/IP, Adequate standardization has not been achieved for the implementation of
consistent security solutions. Since the security level of different wireless protocols
also changes, it becomes difficult to adjust the security level of IEEE 802.11.i and IEEE
802.16.e, IEEE 61,850 standards, and it can be concluded that IEEE standards working
with different protocols are more vulnerable to MitM attacks [194,195].

• AES is confirmed from many organizations because of its strong security and high
performance. However, encryption technologies’ choice depends on the criticality and
risks of the communication system that needs to be protected [196].

• Traditional physical access approach in NERC-CIP standard needs to be revised to
address unauthorized access issues [42,200]. NERC1300 is dedicated to identification
and mitigation of cybersecurity vulnerabilities of critical assets [43,69].

5. Conclusions

This paper presents a review of cybersecurity vulnerabilities in smart grids. It dis-
cusses how information technologies are integrated with power systems, creating novel
issues that were previously unknown. Then, mitigation requirements are documented
as discussed in different standards and research outputs. It also includes an overview of
possible cyberattacks in smart grids, focusing on false data injection attacks. These attacks
are handled separately as their possible impact on the power system operation is much
larger. A thorough review of the literature is given on research dedicated to detecting false
data injection in the smart grid domain.

When using synthetic datasets, SVM-based methods (e.g., KF, EKF, DKF, RBF kernel,
and Gaussian and linear kernels) were used dominantly and performed better than the
classical attacks detection methods (PCA, BDD, etc.) that employ the state estimation
(SE) approach for the FDIA. The studies also showed that the semi-supervised learning
approaches (supervised learning over labelled data and trained SVM) are stronger to deal
with the different data sparsity degrees than the fully supervised learning approaches.
PCA does not require to train data to detect the deviation of the measurements. However,
in real-time data, another method of detecting FDIA against a complex system using
deep autoencoders offers better detection performance than SVM-based methods. Besides,
deep autoencoders are more comfortable to train since they do not require labelled data
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for training and can detect different attacks because they can learn hidden, complicated
correlation structures in the data.

In this study, cyber-attacks that can be encountered in grids have been examined,
with a particular focus on false data injection attacks. Future deep learning and deep
autoencoders approach such as SARSA and POMDP can be investigated as it can work on
different systems.

(1) Machine learning/AI integrated cybersecurity systems are required since hackers are
getting smarter, and attacks are getting diverse.

(2) More holistic cybersecurity designs are required instead of solutions that only focus
on 1 aspect of security such as access control or encryption.
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Appendix A
Nomenclature
3DES Triple Data Encryption Standard
AEP Advanced Encryption Standard
ALM Augmented Lagrange Multiplier
ALM Augmented Lagrange Multipliers
AMI Advanced Metering Infrastructures
ANN Artificial Neural Network
ANN Artificial Neural Network
ARP Address Resolution Protocol
ARP Address Resolution
BAS Building Automation Systems
BDDA Bad Data Injection Attacks
BF Bayesian Framework
BMCS Building Management Control Systems
BPLC Broadband PLC Technology
BRP Bilateral random projections
CA Contingency analysis
CC Common Criteria
CCTV Closed-Circuit Television Surveillance Systems
CDBN Conditional Deep Belief Network
CP Cyber-Physical
CS Control Systems
CSD Computer Security Division
CSRC Computer Security Resource Center
CTCPEC Canadian Trusted Computer Product Evaluation Criteria
DCC Distributed control centre
DDos Distributed Denial of Service Attacks
D-FACTS Distributed Flexible AC Transmission System
DKF Distributed Kalman Filter
DNDP-ALM Double-Noise-Dual-Problem Augmented Lagrange Multipliers
DNP Distributed Network Protocol Security for IEC 60870-5
DNP3 Distributed Network Protocol 3
DoS Denial Of Service Attacks
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DRE Density Ratio Estimation
DRF Distributed Random Forests
DSS Digital Signage Systems
DSVM Distributed Support Vector Machine
DT Decision Tree
DVMS Digital Video Management Systems
EAL Evaluation Assurance Level
EISA Energy Independence and Security Treaty
EKF Extended Kalman filter
EMMS Emergency Management Systems
EMS Energy Management Systems
ERT Extremely Randomized Trees
ESS Electronic Security Systems
EV Electric Vehicle
FDIA False Data Injection Attacks
FERC Federal Energy Regulatory Commission
FERC Federal Energy Regulatory Commission
FFNN A Feed-Forward Neural Network
FIPS Federal Information Processing Standard
FISO Federal Information Systems And Organizations
GBM Gradient Boosting Machines
GLM Generalized Linear Models
GoDec Go Decomposition
GOOSE Generic Object Oriented Substations Events
HMI Human Machine Interfaces
IDS Intrusion Detection Systems
IED Intelligent Electronic Devices
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
IP Internet Protocol
IPSEC Internet Protocol Security
ISA International Society of Automation
ISMS Information security management system
ISO/IEC Organization for Standardization/International Electrotechnical Commission
ISOF Isolation forest
IT Information Technology
ITSEC The Information Technology Security Evaluation Criteria
KF Kalman Filter
k-NN Kernels Nearest Neighbors
KPCA Kernel Principal Component Analysis
LMaFit Low Rank Matrix Factorization
LMP Locational Market Price
LOF Local Outlier Factor
LRC Logistic Regression Classifier
LSTM Long Short-Term Memory
M2M Machine-to-Machine
MAC Media access control
MINLP Mixed-Integer Non-Linear Programming-Based
MitM Man in The Middle
ML Machine Learning
MMS Manufacturing Messaging Specifications
MSA Margin-Setting Algorithm
MTD Moving Target Defenses
NARX Nonlinear Autoregressive Exogenous
NB Naive Bayes
NBPLC Narrowband PLC Technology
NERC The North American Electric Reliability Corporation
NIHS National Institute for Hometown Security
NIPP/CISA National Infrastructure Protection Plan
NIST National Institute of Standards and Technology
NSA American National Security Agency
PACS Physical Access Control Systems
PCA Principal Component Analysis
PMUs Phasor Measurement Units
POMDP Partially Observable Markov Decision Process
PSO Particle Swarm Optimization
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PVS Renewable Energy Photovoltaic Systems
QoS Quality of service
RA Replay Attacks
RC Robust Covariance
RCPA Robust Principal Component Analysis
REGS Renewable Energy Geothermal Systems
RF Random Forests
RNN Recurrent Neural Network
RT Real-Time
RTU Remote Terminal Unit
S3VM Semi-supervised Support Vector Machine
SAE Stacked Auto-Encoder
SCED Security-Constrained Economic
SG Smart Grid
SLR Sparse Logistic Regression
SQL Structured Query Language
SSH Secure Shell
SSL Secure Sockets Layer
SVM Support Vector Machine
TCSEC Trusted Computing Security Evaluation Criteria
TLS Transport Layer Security
UIO Unknown input observation
VPN Virtual Private Network
ZDA Zero Dynamics Attacks

References
1. Aleem, S.A.; Hussain, S.M.S.; Ustun, T.S. A review of strategies to increase PV penetration level in smart grids. Energies 2020,

13, 636. [CrossRef]
2. Ustun, T.S.; Ayyubi, S. Automated network topology extraction based on graph theory for distributed microgrid protection in

dynamic power systems. Electronics 2019, 8, 655. [CrossRef]
3. Ustun, T.S.; Farooq, S.M.; Hussain, S.M.S. Implementing Secure Routable GOOSE and SV Messages Based on IEC 61850-90-5.

IEEE Access 2020, 8, 26162–26171. [CrossRef]
4. Fan, Z.; Kulkarni, P.; Gormus, S.; Efthymiou, C.; Kalogridis, G.; Sooriyabandara, M.; Zhu, Z.; Lambotharan, S.; Chin, W.H. Smart

grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Commun. Surv. Tutor.
2013, 15, 21–38. [CrossRef]

5. Amin, S.M.; Wollenberg, B. Toward a smart grid: Power delivery for the 21st century. IEEE Power Energy Mag. 2005, 3, 34–41.
[CrossRef]

6. Wang, W.; Xu, Y.; Khanna, M. A survey on the communication architectures in smart grid. Comput. Netw. 2011, 55, 3604–3629.
[CrossRef]

7. Metke, A.R.; Ekl, R.L. Security technology for smart grid networks. IEEE Trans. Smart Grid 2010, 1, 99–107. [CrossRef]
8. Unsal, D.B.; Koc, A.H.; Yalcinoz, T.; Onaran, I. Medium Voltage and Low Voltage applications of new power line communication

model for smart grids. In Proceedings of the 2016 IEEE International Energy Conference, Leuven, Belgium, 4–8 April 2016.
[CrossRef]

9. Fan, J.; Borlase, S. The evolution of distribution. IEEE Power Energy Mag. 2009, 7, 63–68. [CrossRef]
10. Clements, S.; Kirkham, H. Cyber-security considerations for the smart grid. In Proceedings of the 2008 IEEE Power and Energy

Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July
2008. [CrossRef]

11. Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2012,
14, 944–980. [CrossRef]

12. Ustun, T.S.; Ozansoy, C.; Zayegh, A. Recent developments in microgrids and example cases around the world—A review. Renew.
Sustain. Energy Rev. 2011, 15, 4030–4041. [CrossRef]

13. Ustun, T.S.; Hussain, S.M.S. A Review of Cybersecurity Issues in Smartgrid Communication Networks. In Proceedings of the
2019 International Conference on Power Electronics, Control and Automation (ICPECA), New Delhi, India, 16–17 November
2019; Volume 2019. [CrossRef]

14. Ustun, T.S.; Farooq, S.M.; Hussain, S.M.S. A novel approach for mitigation of replay and masquerade attacks in smart grids using
IEC 61850 Standard. IEEE Access 2019, 7, 156044–156053. [CrossRef]

15. Hussain, S.M.S.; Aftab, M.A.; Nadeem, F.; Ali, I.; Ustun, T.S. Optimal Energy Routing in Microgrids with IEC 61850 Based Energy
Routers. IEEE Trans. Ind. Electron. 2020, 67, 5161–5169. [CrossRef]

16. Foroutan, S.A.; Salmasi, F.R. Detection of false data injection attacks against state estimation in smart grids based on a mixture
Gaussian distribution learning method. IET Cyber-Phys. Syst. Theory Appl. 2017, 2, 161–171. [CrossRef]

17. Camana Acosta, M.R.; Ahmed, S.; Garcia, C.E.; Koo, I. Extremely randomized trees-based scheme for stealthy cyber-attack
detection in smart grid networks. IEEE Access 2020, 8, 19921–19933. [CrossRef]

http://doi.org/10.3390/en13030636
http://doi.org/10.3390/electronics8060655
http://doi.org/10.1109/ACCESS.2020.2971011
http://doi.org/10.1109/SURV.2011.122211.00021
http://doi.org/10.1109/MPAE.2005.1507024
http://doi.org/10.1016/j.comnet.2011.07.010
http://doi.org/10.1109/TSG.2010.2046347
http://doi.org/10.1109/ENERGYCON.2016.7514027
http://doi.org/10.1109/MPE.2008.931392
http://doi.org/10.1109/PES.2010.5589829
http://doi.org/10.1109/SURV.2011.101911.00087
http://doi.org/10.1016/j.rser.2011.07.033
http://doi.org/10.1109/icpeca47973.2019.8975629
http://doi.org/10.1109/ACCESS.2019.2948117
http://doi.org/10.1109/TIE.2019.2927154
http://doi.org/10.1049/iet-cps.2017.0013
http://doi.org/10.1109/ACCESS.2020.2968934


Energies 2021, 14, 2657 30 of 36

18. Congressional Research Service. Cybersecurity for Energy Delivery Systems: DOE Programs. Available online: https://crsreports.
congress.gov (accessed on 10 October 2020).

19. NIST. Guidelines for Smart Grid Cybersecurity; NIST: Gaithersburg, MD, USA, 2014. [CrossRef]
20. Hussain, S.M.S.; Ustun, T.S.; Kalam, A. A Review of IEC 62351 Security Mechanisms for IEC 61850 Message Exchanges. IEEE

Trans. Ind. Inform. 2019, 16, 5643–5654. [CrossRef]
21. Godfrey, T.; Mullen, S.; Griffith, D.W.; Golmie, N.; Dugan, R.C.; Rodine, C. Modeling Smart Grid Applications with Co-Simulation.

In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6
October 2010; pp. 291–296. [CrossRef]

22. Kundur, D.; Feng, X.; Liu, S.; Zourntos, T.; Butler-Purry, K.L. Towards a Framework for Cyber Attack Impact Analysis of the
Electric Smart Grid. In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg,
MD, USA, 4–6 October 2010; pp. 244–249. [CrossRef]

23. Lu, G.; De, D.; Song, W.-Z. SmartGridLab: A Laboratory-Based Smart Grid Testbed. In Proceedings of the 2010 First IEEE
International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 143–148. [CrossRef]

24. Musleh, A.S.; Chen, G.; Dong, Z.Y. A Survey on the Detection Algorithms for False Data Injection Attacks in Smart Grids. IEEE
Trans. Smart Grid 2020, 11, 2218–2234. [CrossRef]

25. Sakhnini, J.; Karimipour, H.; Dehghantanha, A.; Parizi, R.M.; Srivastava, G. Security aspects of Internet of Things aided smart
grids: A bibliometric survey. Internet Things 2019, 100111. [CrossRef]

26. Ustun, T.S. Cybersecurity Vulnerabilities of Smart Inverters and Their Impacts on Power System Operation. In Proceedings of the
2019 International Conference on Power Electronics, Control and Automation (ICPECA), New Delhi, India, 16–17 November
2019; Volume 2019. [CrossRef]

27. Cleveland, F. Cyber security issues for Advanced Metering Infrastructure (AMI). In Proceedings of the 2008 IEEE Power and
Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24
July 2008. [CrossRef]

28. Farooq, S.M.; Hussain, S.M.S.; Ustun, T.S.; Iqbal, A. Using ID-based Authentication and Key Agreement Mechanism for Securing
Communication in Advanced Metering Infrastructure. IEEE Access 2020, 8, 210503–210512. [CrossRef]

29. Wen, M.H.; Leung, K.-C.; Li, V.O.; He, X.; Kuo, C.-C.J. A survey on smart grid communication system. APSIPA Trans. Signal Inf.
Process. 2015, 4, 1–20. [CrossRef]

30. Norbert Wiener. Cybernetics or Control and Communication in the Animal and the Machine; MIT Press: Cambridge, MA, USA, 1965;
Volume 25, pp. 210–252.

31. Yohanandhan, R.V.; Elavarasan, R.M.; Manoharan, P.; Mihet-Popa, L. Cyber-Physical Power System (CPPS): A Review on
Modeling, Simulation, and Analysis with Cyber Security Applications. IEEE Access 2020, 8, 151019–151064. [CrossRef]

32. Don Von Dellon. Report to NIST on the Smart Grid Interoperability Standards Roadmap, EPRI, (SB1341-09-CN-0031). January
2009. Available online: http://www.nist.gov/smartgrid/ (accessed on 19 October 2020).

33. Guerrero, J.M.; Vasquez, J.C.; Teodorescu, R. Hierarchical control of droop-controlled DC and AC microgrids—A general approach
towards standardization. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5
November 2009; pp. 4305–4310. [CrossRef]

34. Cichonski, P.; Millar, T.; Grance, T.; Scarfone, K. Computer Security Incident Handling Guide; National Institute of Standards and
Technology Special Publication 800-61 Revision 2; U.S. Department of Commerce: Washington, DC, USA, 2012. [CrossRef]

35. The Smart Grid Interoperability Panel—Smart Grid Cybersecurity Committee. Guidelines for Smart Grid Cyber Security, Guidelines
for Smart Grid Cybersecurity Volume 1—Smart Grid Cybersecurity Strategy, Architecture, and High-Level Requirements; National
Institute of Standards and Technology Publication, Computer Security Division, Information Technology Laboratory 100 Bureau
Drive (Mail Stop 8930); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014. [CrossRef]

36. Kiuchi, M.; Serizawa, Y. Security technologies, usage and guidelines in SCADA system networks. In Proceedings of the 2009
ICCAS-SICE, Fukuoka, Japan, 18–21 August 2009; pp. 4607–4612.

37. Rohjans, S.; Uslar, M.; Bleiker, R.; Gonzalez, J.; Specht, M.; Suding, T.; Weidelt, T. Survey of Smart Grid Standardization Studies and
Recommendations. In Proceedings of the 2010 1st IEEE International Conference on Smart Grid Communications, Gaithersburg,
MD, USA, 4–6 October 2010; pp. 583–588. [CrossRef]

38. Hauser, C.; Bakken, D.; Bose, A. A failure to communicate: Next generation communication requirements, technologies, and
architecture for the electric power grid. IEEE Power Energy Mag. 2005, 3, 47–55. [CrossRef]

39. Shawkat Ali, A.B.M. Smart Grids: Opportunities, Developments, and Trends; Springer: London, UK, 2013.
40. Sridhar, S.; Hahn, A.; Govindarasu, M. Cyber-physical system security for the electric power grid. Proc. IEEE 2012, 100, 210–224.

[CrossRef]
41. Cárdenas, A. Securing Cyber-Physical Systems (NISTIR 7916); NIST Special Publication: Gaithersburg, MD, USA, 2012.
42. Gallagher, P.; Locke, G. Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0; NIST Special Publication:

Gaithersburg, MD, USA, 2010. Available online: https://www.nist.gov/system/files/documents/public_affairs/releases/
smartgrid_interoperability_final.pdf (accessed on 23 October 2020).

43. Goel, S.; Hong, Y. Security Challenges in Smart Grid Implementation; Springer: London, UK, 2015; pp. 1–39.

https://crsreports.congress.gov
https://crsreports.congress.gov
http://doi.org/10.6028/NIST.IR.7628r1
http://doi.org/10.1109/TII.2019.2956734
http://doi.org/10.1109/smartgrid.2010.5622057
http://doi.org/10.1109/smartgrid.2010.5622049
http://doi.org/10.1109/smartgrid.2010.5622034
http://doi.org/10.1109/TSG.2019.2949998
http://doi.org/10.1016/j.iot.2019.100111
http://doi.org/10.1109/ICPECA47973.2019.8975537
http://doi.org/10.1109/PES.2008.4596535
http://doi.org/10.1109/ACCESS.2020.3038813
http://doi.org/10.1017/ATSIP.2015.9
http://doi.org/10.1109/ACCESS.2020.3016826
http://www.nist.gov/smartgrid/
http://doi.org/10.1109/IECON.2009.5414926
http://doi.org/10.6028/NIST.SP.800-61r2
http://doi.org/10.6028/NIST.IR.7628r1
http://doi.org/10.1109/SMARTGRID.2010.5621999
http://doi.org/10.1109/MPAE.2005.1405870
http://doi.org/10.1109/JPROC.2011.2165269
https://www.nist.gov/system/files/documents/public_affairs/releases/smartgrid_interoperability_final.pdf
https://www.nist.gov/system/files/documents/public_affairs/releases/smartgrid_interoperability_final.pdf


Energies 2021, 14, 2657 31 of 36

44. Cisswg, N. A Summary of Control System Security Standards Activities in the Energy Sector Enhancing Control Systems Security in
the Energy Sector NSTB; U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Publishing: USA, 2005.
Available online: https://www.energy.gov/sites/prod/files/Summary%20of%20CS%20Standards%20Activities%20in%20the%
20Energy%20Sector.pdf (accessed on 23 October 2020).

45. Security Architecture and Design/Security Product Evaluation Methods and Criteria. Available online: https://en.wikibooks.org/
wiki/Security_Architecture_and_Design/Security_Product_Evaluation_Methods_and_Criteria (accessed on 20 October 2020).
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