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Abstract: This publication presents a multi-faceted analysis of the fuel consumption of motor vehicles
and the way human impacts the environment, with a particular emphasis on the passenger cars. The
adopted research methodology is based on the use of artificial neural networks in order to create
a predictive model on the basis of which fuel consumption of motor vehicles can be determined.
A database containing 1750 records, being a set of information on vehicles manufactured in last
decade, was used in the process of training the artificial neural networks. The MLP (Multi-Layer
Perceptron) 22-10-3 network has been selected from the created neural networks, which was further
subjected to an analysis. In order to determine if the predicted values match the real values, the
linear Pearson correlation coefficient r and coefficient of determination R2 were used. For the MLP
22-10-3 neural network, the calculated coefficient r was within range 0.93–0.95, while the coefficient
of determination R2 assumed a satisfactory value of more than 0.98. Furthermore, a sensitivity
analysis of the predictive model was performed, determining the influence of each input variable on
prediction accuracy. Then, a neural network with a reduced number of neurons in the input layer
(MLP-20-10-3) was built, retaining a quantity of the hidden and output neurons and the activation
functions of the individual layers. The MLP 20-10-3 neural network uses similar values of the r and
R2 coefficients as the MLP 22-10-3 neural network. For the evaluation of both neural networks, the
measures of the ex post prediction errors were used. Depending on the predicted variable, the MAPE
errors for the validation sets reached satisfactory values in the range of 5–8% for MLP 22-10-3 and
6–10% for MLP 20-10-3 neural network, respectively. The prediction tool described is intended for
the design of passenger cars equipped with internal combustion engines.

Keywords: artificial neural networks; prediction; fuel consumption

1. Introduction

The fuel consumption of motor vehicles powered by internal combustion engines
unchangeably constitutes an essential issue in forming not only the development trends of
the automotive industry, but is also an important factor in the economics of transport [1–4].
On the basis of the analysis of a set of the research papers, this problem is certainly a
complex issue and must be considered as a many-faceted one. In logistics and business
economics, fuel consumption generates costs relating to the transport of materials and
products, which are an important component of a company’s expenditure [5]. From
the viewpoint of enterprise economics, an underlying direction of an optimisation is to
minimise the costs linked to fuel consumption [6–8].

Climate change and the degradation of the natural environment, related to the human
and industrial activities, are an aetiology of an ecological approach to the processes of
the consumption of petroleum-based fuels in vehicles powered by internal combustion
engines [9–11]. The manufacturers from the automotive industry are obliged to fulfil
the more and more strict EURO emission standards, which are applicable within the
European Union. The assumption of EURO standards consists in protecting the natural
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environment by limiting the emission of nitrogen oxides, hydrocarbons, carbon oxides
and particulates. The objective of the successive tightening up of the exhaust emission
standards is to reduce the air pollution caused by vehicles powered by internal combustion
engines, especially in large urban agglomerations [12]. According to Regulation (EU)
2019/631 of the European Parliament and of the Council, the fleetwide CO2 Emission
Targets for new passenger cars are 95 g/km (if we want to compare the previous standards
in years 2015–2020, it was on the level of 130 g/km). The supply and exhaust systems of
the internal combustion engines were the subject of a large amount of research concerning
the decrease in fuel consumption and the emission of harmful chemicals [1,13–16]. In
the case of fuel consumption, optimisation and the reduction in the emission of harmful
chemical compounds by vehicles powered by a hybrid powertrain, the genetic algorithms
have already been implemented, lowering the values of the optimised variables by over
40% [17].

In the literature, one of the current research problem is the impact of the technical
solutions and road conditions on fuel consumption. The publication by C. D. Rakopoulos
et al. [18] contains the influence analysis of vegetable-origin additives to diesel oil on the
volumetric fuel consumption in a direct injection diesel engine. Relationships between
road conditions, driving style and combustion in buses and passenger cars providing taxi
services were considered in the research papers authored by Jinghui Wang et al. [3] and
Ying Yao et al. [19], respectively. In an article by P. Typaldos et al. [20] attempts were
made to determine the conditions and kinematic trajectories of the vehicle that could lead
to a minimisation of fuel consumption according to the principles of eco-driving. In the
abovementioned papers, the statistical and analytical methods were used to analyse the
relationships between the variables under consideration.

Artificial Neural Networks (ANNs) as a research tool for estimating fuel consumption
were used in many published scientific studies. They were applied in modelling problems
for aircrafts [21], sea vessels [22–27], mining trucks [28] and agricultural tractors [29].
In publication [30], the authors implemented artificial neural networks to determine a
relationship between the engine velocity and torque and the actual fuel consumption
while driving trucks, and the achieved results were encumbered with mean percentage
errors at a low level (below 5%). The advantage of this solution was a high accuracy of an
estimation of the values of the predicted variables. In the case of passenger cars, research
studies where the ANN was used to search for the relations between technical parameters
and conditions of the use and fuel consumption were found [31]. In publication [32], the
authors used artificial neural networks to predict fuel consumption and torque generated
by a spark-ignition engine, obtaining a mean absolute percentage error (MAPE) under 3%.

The research papers presented above were focused on the search for the relationships
between the studied variables in a strictly defined vehicle, machine or another technical
object. In the paper authored by Zargarnezhad S. et al. [8] an attempt was made to
use neural networks in fuel consumption prediction on a database of 51 Toyota and
Hyundai vehicles. A network combining five input and one output variables was proposed.
On the basis of the correlation coefficient values of training, testing and validation sets,
ranging from 0.94–0.99, with mean square error (MSE) at a level not exceeding 0.6, an
acceptability of prediction was determined. Table 1 presents the results of the selected
studies concerning the research problems related to fuel consumption, engine performance
and emission of the chemical compounds generated during the fuel combustion, to which
artificial neural networks were applied. Among these results, the analyses focused on the
area of research related to engine performance, fuel consumption and the emissions of
chemical compounds from compression ignition engines. A common property of most of
the analyses compared is the high accuracy of the developed predictive models, where
MAPE errors fail to exceed 5%.
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Table 1. Comparative analysis of research results obtained in the selected research papers.

Research Area Structure of ANNs Predicted Variables Results Publication

Fuel consumption of
many vehicles

5-17-17-1 Fuel consumption R: 0.94–0.99
MSE < 0.6 [8]

3-128-1
3-64-64-1

3-(4 × 32)-1
3-(8 × 16)-1

Fuel consumption R2: 0.72–0.78 [33]

9-4-1
9-6-1
9-8-1
9-10-1
9-12-1

Fuel consumption R = 0.82 [34]

Diesel engine

4-8-2
4-14-3
4-13-5

BSEC (Brake Specific Energy
Consumption)

BTE (Brake Thermal Efficiency)
ID (Ignition Delay)

CD (Combustion Duration)
CPP (Cylinder Peak Pressure)

Exhaust emission (CO, CO2, UBHC,
NOx, Smoke)

R2 > 0.98
R: 0.95–1.00
MAPE < 5%

[35]

3-9-5
Brake thermal efficiency

BSEC
Exhaust emission (NOx, UBHC, CO)

R2 > 0.99
MAPE < 4%

[36]

3-7-2 Fuel consumption
Exhaust temperature MAPE < 3% [37]

4-10-10-5

BSEC
BTE

Exhaust emission (CO2, NOx)
PM (Particulate matter)

R2 > 0.98
MAPE < 5%

[38]

4-2-7
4-4-7
4-6-7
4-8-7

4-10-7

BSFC (Brake Specific Fuel
Consumption)

BTE
Exhaust temperature

Exhaust emission (CO, HC, NOx)
Smoke

R: 0.97–0.99
MSE = 0.06 [39]

3-8-9

Exhaust gas temperature
BSFC
Power
Torque
Smoke

Exhaust emission (CO, CO2, HC,
NOX)

R2: 0.80–0.96 [40]

Gasoline engine 4-13-1
4-15-1

Torque
BSFC

R > 0.98
MAPE < 3% [32]

Stirling engine
4-H-2

(H = {3,4,5, . . . ,13})
Power
Torque R2 > 0.97 [41]

3-10-1 Power R2 > 0.97 [42]

HCNG (hydrogen
enriched compressed
natural gas) engine

4-H-1
(H = {2,4,6, . . . ,30})

BSFC
Torque

Exhaust emission (NOx, CO, THC,
CH4)

R: 0.79–1.00 [43]

Electric vehicles 5-5-1 Energy consumption R = 0.81
MAPE < 5% [44]
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The essence and the originality of this study is the determination of the synergistic
impact of many technical parameters on fuel consumption for a broad range of the motor
vehicles—modern passenger cars. The effect of such an approach is the development
of a general predictive model for a prediction of fuel consumption. In this study, fuel
consumption corresponding to the operating environment of the vehicle is adopted, as
reflected by three predictor variables (city, motorway and mixed cycle). The outcomes
of the formerly analysed research papers give a opportunity of artificial neural networks
application as tools to develop predictive models. The use of artificial neural networks
allows for conducting an effective analysis of a very large quantity of the empirical data.
Contrary to the former research, the authors of the publication considered a broad range
of passenger cars featuring different technical parameters. This paper constitutes a more
generalised approach in comparison to the previously published predictive models based
on artificial neural networks.

2. Materials and Methods

Artificial Neural Networks (ANNs) constitute an artificial intelligence tool, a method
of data analysis that was widely used as an alternative to the traditional analytical methods.
The objective of their use is to create a time-effective and accurate predictive model for
the objects or phenomena under investigation [45]. The construction of the artificial
neural network is modelled after the human brain, and for this reason, it is composed of
neurons and synaptic pathways occurring between them. Each neuron may receive sets
of information reflected by a value of a quantity of the variables, but only one piece of
information represented by the value of one variable is the output [46]. Among the various
types of artificial neural networks, MLP (Multi-Layer Perceptron) networks are the most
prevalent and most commonly used. They consist of neurons divided into couple layers:
input, hidden (one or more) and output. High accuracy of the predictive models based
on MLP networks induced the authors of this research to use this type of artificial neural
network to predict fuel consumption.

Studies dedicated to the use of artificial neural networks for prediction of fuel con-
sumption were divided into the following stages of implementation:

• Selecting the technical parameters having a significant impact on the quantity of
fuel consumption;

• Developing a database for the neural network learning process;
• Creating a set of neural networks and selecting the best of them;
• Calculating a correlation and determining the coefficients and carrying out a sensitivity

analysis in respect of the input variables;
• Making an attempt to simplify the predictive model—an elimination of the input

variables for which the sensitivity coefficient takes values less than or is equal to 1.0;
• Creating a new set of neural networks from a reduced database and selecting the best

of them;
• Calculating the correlation and determining the coefficients, as well as performing a

sensitivity analysis of the input variables for the reduced model;
• Comparing and evaluating an acceptability of the predictive models on the basis of

the values of the ex post prediction error measures.

In Figure 1 the proprietary algorithm of using artificial neural networks to create a
predictive model, according to the methodology described above, is shown.
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Figure 1. The concept of creating a prognostic model using ANNs.

2.1. Identification of the Input and Output Variables

The impact of the design solutions and technical parameters of the vehicles on fuel
consumption was repeatedly analysed in the earlier studies carried out by other researchers.
A significant relation between displacement capacity, vehicle weight, number of cylinders,
number of valves and fuel consumption were presented in the paper by Zargarnezhad
et al. [8]. On the basis of the literature analysis, a set of input and output variables for
further studies was determined and it is presented in Table 2. It contains 12 input variables
(7 quantitative and 5 qualitative) and 3 output variables. In the case of quantitative
variables, a system of units was defined, while in the case of the individual qualitative
variables, sets of admissible nominal values were assigned.



Energies 2021, 14, 2639 6 of 23

Table 2. List of the input and output variables.

Type of Variables Name of Variable Designation (Unit)/Nominal Values

Input

Quantitative

Cubic capacity DE (cm3)

Quantity of cylinders NC (unitless)

Quantity of valves NV (unitless)

Maximum power PMAX (kW)

Maximum torque TMAX (Nm)

Compression rate CR (unitless)

Kerb weight of vehicle WV (kg)

Qualitative

Type of engine ET

Gasoline (ET1)

Diesel (ET2)

Hybrid: gasoline + electric (ET3)

Hybrid: diesel + electric (ET4)

Fuel injection FI
Indirect (FI1)

Direct (FI2)

Type of charge BT

Naturally aspirated (BT1)

Turbocharger (BT2)

Biturbo (BT3)

Compressor (BT4)

Gearbox TG
Manual (TG1)

Automatic (TG2)

Drivetrain DT

FWD (DT1)

RWD (DT2)

AWD (DT3)

Output Quantitative

Fuel consumption in the urban cycle FCU (l/100 km)

Fuel consumption in the extraurban cycle FCH (l/100 km)

Fuel consumption in the mixed cycle FCM (l/100 km)

2.2. Correlation Coefficients

For the purposes of evaluation of the matching between predicted and real values
of FCU, FCH and FCM variables, the commonly used Pearson correlation coefficients
r [41,47–49] and the coefficient of determination R2 [35,36,38,42] were employed. Pearson
correlation coefficient is used to evaluate the level of linear relationship between the vari-
ables. It takes values from range [−1;1], where values close to 1 mean a positive dependence,
close to -1 mean a negative dependence, and 0 means no linear dependence. The coefficient
of determination R2 takes values from the range [0;1]. The relationships enabling the
calculation of values of coefficients r and R2 are presented using the Equations (1) and (2),
adjusting them to the needs of carried-out research:

r =

n
∑

i=1
(EFCi − EFC)× (PFCi − PFC)√

n
∑

i=1
(EFCi − EFC)2 n

∑
i=1

(PFCi − PFC)2
, (1)
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R2 = 1 −

n
∑

i=1
(PFCi − EFCi)

2

n
∑

i=1
EFC2

i

, (2)

where: EFCi—experimental fuel consumption value for vehicle i, PFCi—predicted fuel
consumption value for vehicle i and n—number of records.

2.3. Sensitivity Analysis

A sensitivity analysis in the neural networks is used to determine the impact of
individual input variables on predicted values of output variables [50,51]. The indicator
used to determine the sensitivity of the predictive model to the values of the individual
input variables is the coefficient Wj [52,53] calculated according to formula (3):

Wj =
MSEj

MSE
, (3)

where: Wj—sensitivity coefficient of the model to variable j, MSE—mean squared error of
the model prediction with all input variables and MSEj—mean squared error of the model
prediction without the variable j.

If the coefficient Wj takes a value equal to or less than 1, then there are presumptions
to eliminate variable j from the model while maintaining a current or higher accuracy of
the predictive model [52].

2.4. Prediction Errors

A significant element of the result analysis of the use of artificial neural networks to
predict fuel consumption is an evaluation of the admissibility of the predictions received as
a result of the implementation of a given predictive model. In the literature [54,55], ex post
errors are commonly used to analyse the accuracy of a prediction. The most frequently
used measures of the prediction errors are presented below, along with the dependencies
adjusted to the essence of the research problem [21,56–58]:

• Mean squared error (MSE):

MSE =
1
n

n

∑
i=1

(EFCi − PFCi)
2, (4)

• Root mean squared error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(EFCi − PFCi)
2, (5)

• Mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
i=1

∣∣∣∣EFCi − PFCi
EFCi

∣∣∣∣× 100%. (6)

2.5. Database

Artificial neural networks need a lot of data to conduct the learning process. For this
purpose, a real database of 1750 records was established. The basis for its creation was
data from the automotive industry, describing the technical parameters and experimentally
determined quantities of fuel consumption in compliance with declarations made by man-
ufacturers. The data concerns passenger cars manufactured all across the world during the
years 2010–2020. The values of the fuel consumption variables were determined according
to the NEDC (New European Driving Cycle) and the WLTP (Worldwide Harmonised Light
Vehicles Test Procedure) tests [33,59–63].
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The database contains a set of the vehicles featuring very different technical param-
eters and design solutions. The essence of this approach is to search for the universal
relationships between the analysed variables for a broad range of the technical objects.
Table 3 presents values obtained from the statistical analysis of the quantitative variables
(input and output) from the developed database.

Table 3. Statistics on the quantitative variables.

Variable Mean Median Min. Max. SD

Cubic capacity DE (cm3) 2096.00 1984 799 6299 831.36
Quantity of cylinders NC 4.48 4 2 12 1.18

Quantity of valves NV 17.38 16 6 48 5.15
Max. power PMAX (kW) 132.86 119.3 40.3 469.8 65.22
Max. torque TMAX (Nm) 311.77 305.0 88.0 1000.0 135.55

Compression rate CR 13.23 11.30 8.20 19.50 3.25
Kerb weight of vehicle WV (kg) 1463.70 1450.0 750.0 2656.0 294.14

Fuel consumption in the urban cycle FCU (l/100 km) 8.47 7.8 3.3 23.4 3.06
Fuel consumption in the extraurban cycle FCH (l/100 km) 5.37 5.1 3.0 13.7 1.35

Fuel consumption in the mixed cycle FCM (l/100 km) 6.51 6.1 3.2 17.0 1.94

The Pearson correlation coefficients between individual input variables presented in
Table 4 do not take values close enough to 1 to allow for the elimination of one of pair of
correlated variables.

Table 4. Values of the correlation coefficient r between quantitative input variables.

Variable DE NC NV PMAX TMAX CR WV

Cubic capacity DE — 0.9181 0.8865 0.9040 0.8195 −0.0404 0.7646
Quantity of cylinders NC 0.9181 — 0.9085 0.8425 0.7625 −0.0812 0.6729

Quantity of valves NV 0.8865 0.9085 — 0.8396 0.7500 −0.0953 0.6967
Max. power PMAX 0.9040 0.8425 0.8396 — 0.8367 −0.2092 0.6999
Max. torque TMAX 0.8195 0.7625 0.7500 0.8367 — 0.2390 0.7984

Compression rate CR −0.0404 −0.0812 −0.0953 −0.2092 0.2390 — 0.1653
Kerb weight of vehicle WV 0.7646 0.6729 0.6967 0.6999 0.7984 0.1653 —

The values of the input and output variables, before being used for learning, testing
and validation process of the neural network, were subjected to the normalization process,
according to Formula (7). All normalized values of the quantitative variables are in the
range [0; 1]. Each nominal value of all qualitative variables is assigned a corresponding
neuron in the input layer, while the signal coming from such a neuron takes a binary value
(0 or 1):

xs =
x − xmin

xmax − xmin
, (7)

where: xs—value of standardized quantitative variable, x—value of a quantitative variable
before normalization, xmin—minimum value of a quantitative variable and xmax—maximum
value of the quantitative variable.

Figures 2 and 3 show the relationships between fuel consumption (FCU, FCH, FCM)
and the quantity and quality parameters of a vehicle. The graphical visualisation of the
input data illustrates the broad range of research carried out and the high multifacetedness
of relations between the individual variables of the predictive model. The shapes of the
plots are similar to each other within individual input variables. Depending on output
variable, the respective shapes come across as being scaled accordingly. This indicates the
possibility of developing one predictive model for three predicted variables. This model
corresponds to the neural network, containing three neurons in the output layer. The visual
effect of scaling the plots will be reflected in the appropriate assignment of weights of the
synaptic connections between the neurons of the hidden layer and the output layer.
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Figure 2. Fuel consumption depending on the quantitative input variables. Figure 2. Fuel consumption depending on the quantitative input variables.
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3. Results

To create the artificial neural network, Statistica 13 software was used, in which the
proprietary database developed on basis of the technical parameters of passenger cars was
analysed. The database was divided at random by the programme into three sets: training
(80%), testing (10%) and validation (10%). The neural network derives information from
the data transmitted to it and on this basis, it conducts a learning process, i.e., a selection of
the appropriate activation functions of the neurons and weights of the pathways between
neurons. The use of Statistica software for modelling artificial neural networks accelerated
and improved the process of calculation of the training algorithms. The exceptions are
papers [22,35,37,42], in which Matlab software was used to create the neural networks.
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3.1. ANN Model with 12 Input Variables

Upon the user issuing a command, the programme automatically generated 1000
artificial neural networks, of which it retained the ten best solutions. Their characteristics
are presented in Table 5.

Table 5. List of the artificial neural network with 12 input variables.

No Network
Structure

Accuracy
(Train.)

Accuracy
(Test)

Accuracy
(Val.)

Error
(Train.)

Error
(Test)

Error
(Valid.) Algorithm Activation Functions

1 MLP 22-10-3 0.9355 0.9512 0.9359 0.9105 0.8527 0.9431 BFGS 79 Tanh/Linear
2 MLP 22-17-3 0.9371 0.9507 0.9382 0.8920 0.8617 0.9370 BFGS 84 Tanh/Linear
3 MLP 22-21-3 0.9286 0.9503 0.9355 1.0156 0.8687 0.9410 BFGS 47 Tanh/Linear
4 MLP 22-22-3 0.9317 0.9522 0.9321 0.9705 0.8497 1.0237 BFGS 61 Tanh/Linear
5 MLP 22-10-3 0.9290 0.9518 0.9335 1.0052 0.8300 0.9921 BFGS 46 Sigmoidal/Linear
6 MLP 22-25-3 0.9332 0.9508 0.9334 0.9496 0.8198 0.9558 BFGS 47 Tanh/Sigmoidal
7 MLP 22-17-3 0.9328 0.9502 0.9330 0.9567 0.8454 0.9895 BFGS 41 Tanh/Sigmoidal
8 MLP 22-10-3 0.9370 0.9461 0.9432 0.8895 0.9146 0.8218 BFGS 84 Exponential/Sigmoidal
9 MLP 22-15-3 0.9397 0.9481 0.9394 0.8639 0.8772 0.8909 BFGS 79 Exponential/Exponential

10 MLP 22-15-3 0.9437 0.9467 0.9410 0.8088 0.9110 0.8869 BFGS 110 Exponential/Sigmoidal

All created artificial neural networks have an important common feature: an equal
quantity of neurons in the input layer and in the output layer. This is conditioned by
the quantity of the input and output variables. Each quantitative variable generates one
neuron, while each qualitative variable generates as many neurons as the different values
it takes. Among the ten networks retained in the programme, the one with the smallest
number of errors in the validation set was selected. This is network No. 8 (MLP 22-10-3),
comprising 10 neurons in the hidden layer. The network uses the BFGS learning algorithm
and the SOS (sum of squares) error function. The learning, testing and validation errors
presented in Table 5 correspond to half of the mean square error calculated from the values
of unnormalized input variables for each set. The best selection of the weights of the
synaptic pathway was achieved in 84th learning cycle network. The MLP 22-10-3 neural
network learning diagram, showing changes in the value of half the mean square error for
the normalized values of the variables in individual epochs (learning cycles), is presented
in two scales in Figure 4. The activation functions are, respectively, for the hidden layer—
exponential function and for the output layer—unipolar sigmoid function. The weights of
the synaptic pathways in the MLP 22-10-3 network are presented in Appendix A.
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Figure 4. Learning plot of the MLP 22-10-3 artificial neural network. Figure 4. Learning plot of the MLP 22-10-3 artificial neural network.
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In Figure 5, a simplified model of the selected MLP 22-10-3 artificial neural network
is presented, which has the lowest error value for the test set. The input layer (red) has
22 neurons, the hidden layer (blue)—10 neurons, and the output layer (green)—3 neurons.
To each input neuron a quantitative input variable or one nominal value of a qualitative
input variable is assigned. Each output neuron corresponds to one assigned output variable
describing fuel consumption in a given environment. The synaptic pathways occur between
the neurons from the input and the hidden layer, and between the hidden and the output
neuron, by combining each neuron from the concerned layer with each neuron from the
adjacent layer.
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The values of the correlation coefficients r and the coefficient of determination R2 for
the selected neural network MLP 22-10-3 are shown in Table 6. For all variables in each
sample, the value of correlation coefficient r was above 0.93, reaching a maximum value
of 0.9499 for the FCM variable in the Test trial. The coefficient of determination R2 for all
variables reached values above 0.98.

The plots of dispersion of real values and values of predicted variables FCU, FCH
and FCM divided by datasets are presented in Figure 6. Above each of the plots there are
the linear regression formulas. The high values of the correlation coefficient r and the
coefficient of determination R2 and a small quantity of outliers in the plots indicate a good
matching of the model to the real data.
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Table 6. Correlation coefficients r and coefficients of determination R2 for the MLP 22-10-3 artificial
neural network.

Correlation Coefficient Variable
Set

All Training Test Validation

r
FCU 0.9381 0.9363 0.9450 0.9440
FCH 0.9345 0.9331 0.9434 0.9369
FCM 0.9432 0.9415 0.9499 0.9486

R2
FCU 0.9861 0.9862 0.9859 0.9879
FCH 0.9925 0.9939 0.9922 0.9930
FCM 0.9910 0.9915 0.9907 0.9922Energies 2021, 14, x FOR PEER REVIEW 14 of 25 
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For the purposes of determining the magnitude of impact of individual input variables
on the accuracy of the predictive model, a global sensitivity analysis was conducted. The
results of the analysis are presented in Table 7. The sensitivity coefficient Wj of the Gearbox
TG variable is equal to exactly 1, which means that this variable has no impact on the MSE
error of the prediction.

Table 7. Global sensitivity analysis of the MLP 22-10-3 artificial neural network.

Input Variable

ET FI DE PMAX WV BT TMAX NC CR DT NV TG

Wj 13.5900 4.0619 3.0441 2.7966 2.4305 1.9532 1.5222 1.3797 1.3096 1.2963 1.1049 1.0000

3.2. ANN Model with 11 Input Variables

The next stage of the research is an attempt to optimise the artificial neural network. It
is based on the results received in the sensitivity analysis of the input variables. Therefore,
a hypothesis was put forward assuming that an elimination of the TG variable from the set
of the input variables will not reduce the prediction accuracy by the neural network. Using
Statistica software, the process of creating the artificial neural networks was conducted,
including 11 input variables and 3 output variables. The quantity of neurons in the input
layer was decreased, while at the same time maintaining the quantity of neurons in the
hidden layer and the activation functions of the individual layers such as in the MLP
22-10-3 network. In Table 8 the results of the created ten neural networks featuring the
MLP 20-10-3 structure are presented.

Table 8. List of the artificial neural network with 11 input variables.

No Network
Structure

Accuracy
(Train.)

Accuracy
(Test)

Accuracy
(Val.)

Error
(Train.)

Error
(Test)

Error
(Valid.) Algorithm Activation Functions

1 MLP 20-10-3 0.9474 0.9519 0.9229 0.7486 0.8446 1.0351 BFGS 413 Exponential/Sigmoidal
2 MLP 20-10-3 0.9439 0.9462 0.9343 0.8061 0.9071 0.9479 BFGS 151 Exponential/Sigmoidal
3 MLP 20-10-3 0.9335 0.9441 0.9416 0.9389 0.9572 0.8343 BFGS 77 Exponential/Sigmoidal
4 MLP 20-10-3 0.9360 0.9438 0.9382 0.9007 0.9896 0.9210 BFGS 99 Exponential/Sigmoidal
5 MLP 20-10-3 0.9422 0.9457 0.9196 0.8284 0.9414 1.0715 BFGS 187 Exponential/Sigmoidal
6 MLP 20-10-3 0.9425 0.9445 0.9347 0.8157 0.9350 0.9668 BFGS 178 Exponential/Sigmoidal
7 MLP 20-10-3 0.9332 0.9450 0.9338 0.9436 0.9386 0.9031 BFGS 74 Exponential/Sigmoidal
8 MLP 20-10-3 0.9438 0.9482 0.9243 0.8020 0.9066 1.0611 BFGS 229 Exponential/Sigmoidal
9 MLP 20-10-3 0.9445 0.9492 0.9199 0.7908 0.8676 1.1337 BFGS 265 Exponential/Sigmoidal

10 MLP 20-10-3 0.9361 0.9459 0.9373 0.9077 0.9304 0.8999 BFGS 93 Exponential/Sigmoidal

The network with the lowest error on the validation set, assuming the value of 0.8343,
is network No. 3. It uses the BFGS learning algorithm, which found the best selection of the
synaptic pathway weights in 77 learning cycles. The MLP 20-10-3 neural network learning
diagram, showing changes in the value of half of the mean square error for the normalized
values of the variables in individual epochs (learning cycles), is presented in two scales in
Figure 7. The errors made by the networks with 11 input variables take similar values to
those made by the networks with 12 input variables. The weights of the synaptic pathways
in the MLP 20-10-3 network are presented in Appendix B.

A simplified model of the MLP 20-10-3 network is shown in Figure 8. The selection of
colour markings of the layers corresponds to the model shown in Figure 5, similarly to the
manner of the synaptic pathways between the neurons of the adjacent layers.
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The Pearson correlation coefficients r and the coefficients of determination R2 divided
into the output variables and database sets are presented in Table 9. The highest value
of the correlation coefficient r is achieved by the FCM variable for the Test set and the
lowest value—the FCH variable for the Training set. All values of the r coefficient are in
the range 0.93–0.95, whereas the R2 coefficient, similarly to in the MLP 22-10-3 model,
assumed values above 0.98, which is a result similar to the results achieved within the
previous studies by other authors [8,32,35,42]. Nevertheless, it should be mentioned that
the papers published so far are based on a significantly narrower group of vehicles featuring
similar technical parameters, which facilitates the adjustment of the predictive model to
the experimental values.

In Figure 9 the plots of the dispersion of the experimental values (declared by the
manufacturers) and the values predicted by the MLP 20-10-3 artificial neural network for
the variables FCU, FCH and FCM, respectively, are shown. Above each of the plots the
linear regression formulas are described. The values of the correlation coefficient r and the
coefficient of determination R2 and a small quantity of outliers in the plots indicate a good
matching of the model to the real data.
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Table 9. Pearson correlation coefficients r and the coefficients of determination R2 for the MLP 20-10-3
neural network.

Correlation Coefficient Variable
Set

All Training Test Validation

r
FCU 0.9350 0.9327 0.9430 0.9433
FCH 0.9318 0.9300 0.9417 0.9358
FCM 0.9396 0.9377 0.9477 0.9457

R2
FCU 0.9855 0.9856 0.9851 0.9879
FCH 0.9922 0.9937 0.9919 0.9928
FCM 0.9904 0.9910 0.9901 0.9917Energies 2021, 14, x FOR PEER REVIEW 18 of 25 
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The global sensitivity analysis for the MLP 20-10-3 network, presented in Table 10,
indicates the influence of the values of the individual input variables on the accuracy of
the predictive model. The neural network has the highest sensitivity to the Type of charge
BT variables and the lowest sensitivity to the Quantity of valves NV variables. However, no
value is equal to or less than 1. Therefore, no further attempts were made to decrease the
quantity of input variables for the neural network.

Table 10. Global sensitivity analysis of the MLP 20-10-3 artificial neural network.

Input Variable

ET FI DE BT WV PMAX DT TMAX NC CR NV
Wj 16.0194 3.2997 3.2528 2.4795 2.2873 1.8756 1.3758 1.3124 1.2954 1.2855 1.0993

4. Discussion

On the basis of Equations (4)–(6), the ex post prediction errors were calculated for all
vehicles used in the database. The results of the calculations are presented in Table 11. The
RMSE values were in the range 0.40–1.15. The MSE achieved low values for the FCH and
FCM variables, being equal in the validation set to 0.2249 and 0.3799, respectively, in case of
the MLP 22-10-3 network, and 0.2292 and 0.4010 in case of the MLP 20-10-3 network, which
is a better result than the one achieved in other published studies bringing up the similar
problematics [8], whereas the MSE for the FCU variable slightly exceeded a value of 1.

Table 11. Prediction errors of the ANNs.

Neural Network Variable Set
Prediction Error

MSE RMSE MAPE (%)

MLP 22-10-3

FCU

All 1.1232 1.0598 10.32
Training 1.1215 1.0590 10.36

Test 1.2216 1.1053 10.88
Validation 1.0387 1.0192 8.39

FCH

All 0.2307 0.4803 6.96
Training 0.2362 0.4860 6.41

Test 0.1920 0.4382 7.05
Validation 0.2249 0.4742 5.35

FCM

All 0.4166 0.6454 7.99
Training 0.4213 0.6491 8.01

Test 0.4157 0.6447 8.07
Validation 0.3799 0.6164 5.06

MLP 20-10-3

FCU

All 1.1777 1.0852 10.57
Training 1.1824 1.0874 10.64

Test 1.2799 1.1313 11.13
Validation 1.0383 1.0190 9.51

FCH

All 0.2404 0.4903 7.07
Training 0.2471 0.4971 6.50

Test 0.1978 0.4447 7.18
Validation 0.2292 0.4788 6.80

FCM

All 0.4425 0.6652 8.16
Training 0.4484 0.6696 8.24

Test 0.4368 0.6609 8.16
Validation 0.4010 0.6332 7.56

In the literature [28], the level of acceptability of the prediction based on the MAPE is
10%. In the conducted studies this level for the predicted values of the FCU, FCH and FCM
values is in the range of 5–11% for the MLP 22-10-3 network and in the range 6.5–11.5% for
the MLP 20-10-3 network. However, for the validation set of all variables in both neural
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networks, the MAPE failed to exceed the acceptable value of 10%. The lowest value of
5.06% was recorded for the FCM variable in the validation set of the MLP 22-10-3 network.
For the accepted level of prediction acceptability, the prediction models developed can be
determined as sufficiently accurate.

The value ranges of the predicting error measures confirm the appropriate selection
of the explanatory variables used in the process of creating the predictive models based
on the artificial neural networks. It should be understood that the technical parameters of
motor vehicles that have an impact on the fuel consumption were properly determined.
The sensitivity analysis of the predictive models indicated the influence of the individual
variables on the accuracy of the prediction. An attempt to simplify the predictive model by
rejecting the variable TG with a sensitivity coefficient Wj equal to 1 resulted in a minimal
difference in the accuracy between the model with 12 variables and the model with 11 input
variables. In both models, the ET variable, which corresponds to the engine type, had
the greatest impact on fuel consumption, due to the type of fuel used to operate it and
the hybridisation aspect of the drive. Furthermore, there were the FI and DE variables,
corresponding to the fuel injection method and engine displacement. Their significance
in the predictive model is reflected in the development trends of the modern internal
combustion engines. Most manufacturers in eth automotive industry are departing from
the use of indirect injection engines towards direct injection in order to minimise fuel
consumption and further reduce engine capacity (downsizing). A predicting tool, such as
the artificial neural networks created, makes it possible to estimate fuel consumption on
the basis of the assumptions made and the values of the individual variables for motor
vehicles at the design stage.

5. Conclusions

This publication brings up the research problem of the prediction of the fuel consump-
tion of motor vehicles equipped with internal combustion engines. An attempt was made
to develop a prediction model capable of mapping the impact of the individual technical
parameters of the vehicle on fuel consumption under different conditions of use. The
literature review presented in the introduction indicates the topicality of the undertaken
research subject. The objective of the research was to use artificial neural networks for
the prediction of fuel consumption on the basis of the selected technical parameters and
the design solutions of passenger cars. The research’s subject was the results related to
fuel consumption obtained during the international tests, according to the declarations of
the manufacturers from the automotive industry. Passenger cars with different technical
parameters, manufactured in the years 2010–2020, were used as the basis for creating the
database used for training the artificial neural networks.

For the purposes of carrying out the research on the possibility of using artificial
neural networks in the development of a predictive model of the fuel consumption of
the motor vehicles, Statistica computer software was used, supporting the analysis of the
statistical data. The created MLP 22-10-3 network was characterised by a high quality
of training, testing and validation in the range 0.93-0.95. Furthermore, upon conducting
a global sensitivity analysis, an attempt was made to optimise the neural network by
eliminating one of the variables. The effect of the optimisation was to create a reduced MLP
20-10-3 artificial neural network characterised by levels of the quality of learning, test and
validation similar to those of the MLP 22-10-3 ANN. Analysing the values of the correlation
and determination coefficients between the experimental and predicted output variables
and comparing them to the results obtained from research published by other authors, a
high capability of the created artificial neural network to predict fuel consumption was
determined.

Additionally, an analysis of the ex post predicting errors was carried out and used to
compare the predicted values with real ones. The values of the MSE, RMSE and MAPE
measures indicate the acceptable accuracy of the predictions made with the use of the
predictive models: MLP 22-10-3 and MLP 20-10-3. To sum up, the use of the artificial
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intelligence allows us to estimate fuel consumption of passenger cars driven in different
operating environments (urban, extraurban, mixed cycle) with high accuracy. At the same
time, the high accuracy of the prediction indicates a proper determination of the technical
parameters used as input variables in the predictive model.

The effectiveness of using artificial neural networks to predict the fuel consumption of
a passenger car powered by internal combustion engine, already at the stage of its design
on the basis of the technical parameters specified in the assumptions for the design is
confirmed in this publication. It is a multi-faceted issue, manifested by the tendency of the
automotive market to minimise fuel consumption in relation to the reduction of emissions
of harmful chemical compounds into the environment. Further research should focus
on improving the accuracy of the predictive models by making them more detailed and
updating the database on a successive basis.
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Appendix A

Weights of the synaptic pathways in the MLP 22-10-3 artificial neural network are
presented in Tables A1 and A2.

Table A1. Weights between the input layer and hidden layer in the MLP 22-10-3 artificial neural network.

Input Layer
Hidden Layer

1 2 3 4 5 6 7 8 9 10

1 (DE) −1.6702 −0.4328 −0.7698 0.8842 −1.3829 −0.9280 −0.6757 −1.7382 −0.6358 −1.3018
2 (NC) −0.2134 −0.2676 −0.5045 −0.7850 −0.3062 −0.8504 0.1644 −0.6858 −0.2788 −0.0615
3 (NV) 0.5032 0.8776 0.4737 0.3170 −0.7939 0.3828 −0.8991 0.1832 0.1462 1.1559

4 (PMAX) −0.5863 0.1890 0.6193 −1.6520 −1.0632 −2.2077 −0.7404 0.8146 −0.4640 −0.3713
5 (TMAX) −0.0449 0.7842 0.2105 1.1824 −0.9961 0.4626 −0.1905 0.2780 0.6646 0.1408

6 (CR) −0.0791 0.0734 0.0366 0.3923 1.0082 2.2354 0.6899 −0.1457 0.8236 0.4095
7 (WV) −0.1617 −1.7266 −0.6313 −0.9371 −0.6737 −0.0869 −0.1681 −0.3257 −0.0566 −0.9544
8 (ET1) −0.6947 −0.0671 −0.2853 0.9236 −0.1842 −0.0345 −0.2660 0.2771 −0.3976 −0.6242
9 (ET2) −0.6880 −0.0323 −0.1665 0.3564 0.2925 −0.0290 0.4719 −0.8035 −0.4205 −0.0219

10 (ET3) 0.6815 −0.1030 0.4876 −1.5242 0.3250 0.2675 −0.2736 0.3837 0.4258 0.3578
11 (ET4) 0.5295 0.4399 0.2030 −0.0720 0.2472 0.1064 0.3583 0.3559 0.2763 0.6396
12 (FI1) −0.0227 0.2997 0.0685 −0.8359 0.6512 −0.1770 0.4561 1.1345 −0.7756 −0.1540
13 (FI2) −0.1239 −0.0892 0.1578 0.4585 0.0713 0.4177 −0.1588 −0.8407 0.6401 0.4933
14 (BT1) −0.2002 0.1789 0.8938 −0.4311 −0.5010 −0.4624 −1.0636 0.3441 −0.1712 0.0991
15 (BT2) −0.0327 0.0590 −0.3720 0.1708 0.9242 0.5391 0.2677 −0.0638 0.0356 0.0960
16 (BT3) 0.2697 −0.1014 −0.3337 0.1720 −0.0261 0.7786 0.5561 −0.0178 0.1086 0.3105
17 (BT4) −0.1344 0.1468 0.0944 −0.2452 0.3221 −0.5298 0.4897 −0.0211 −0.0674 −0.1185
18 (TG1) 0.5821 0.1392 −0.1230 −0.3436 0.2794 0.1048 −0.0507 0.1859 −0.0826 0.4532
19 (TG2) −0.7316 0.1256 0.4036 −0.0241 0.4630 0.2031 0.3125 0.0607 −0.0714 −0.1088
20 (DT1) 0.2578 0.0524 0.0842 −0.1878 0.2959 0.0029 −0.0104 0.1082 −0.1622 0.1625
21 (DT2) 0.1273 0.0253 0.2565 −0.0907 0.4757 0.1312 0.2240 −0.1555 −0.0889 −0.0081
22 (DT3) −0.5231 0.1135 −0.0467 −0.1013 −0.0940 0.1615 0.0536 0.3091 0.1611 0.1881

Bias −0.1355 0.2605 0.2510 −0.3920 0.6944 0.2470 0.2161 0.2704 −0.1449 0.3282
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Table A2. Weights between the hidden layer and the output layer in the MLP 22-10-3 artificial
neural network.

Hidden Layer
Output Layer

1 (FCU) 2 (FCH) 3 (FCM)

1 −1.1765 −1.1077 −0.9716
2 0.2570 −0.3898 −0.0372
3 −0.4454 −0.3606 −0.3983
4 −0.8704 −0.8448 −0.8939
5 −0.1054 −0.0468 −0.0825
6 0.2102 0.1440 0.1772
7 −0.5770 −0.6157 −0.5815
8 −0.2557 −0.0877 −0.1866
9 −1.1079 −0.1888 −0.6022
10 −0.4194 −0.4122 −0.4607

Bias 3.0602 2.3757 2.7454

Appendix B

Weights of the synaptic pathways in the MLP 20-10-3 artificial neural network are
presented in Tables A3 and A4.

Table A3. Weights between the input layer and hidden layer in the MLP 20-10-3 artificial neural network.

Input Layer
Hidden Layer

1 2 3 4 5 6 7 8 9 10

1 (DE) −1.6639 −0.5427 −0.6400 −2.2715 −0.3293 −0.0143 −1.4225 0.3937 −0.2811 −0.8970
2 (NC) −0.5674 −1.0048 −0.2679 0.0996 −0.0824 −0.6307 −0.7623 −0.6331 −0.4103 0.3619
3 (NV) 0.5247 0.0188 0.4472 −0.5617 −0.0305 0.6609 0.4463 0.3168 0.5853 −1.1059

4 (PMAX) 0.0755 −1.8274 0.1991 −0.3889 −0.3997 −0.3760 0.8215 −1.1011 −0.4183 −2.1368
5 (TMAX) 0.6920 0.3141 0.4897 0.4168 0.1669 0.2526 −0.0058 0.7507 0.1781 −0.9557

6 (CR) 0.0159 2.7565 0.2241 0.3183 1.0543 0.3537 0.3164 0.3963 0.6138 0.3405
7 (WV) −0.0144 0.6246 −1.0896 0.0063 0.0568 −1.1912 −0.6269 −0.4642 −0.5363 −0.6934
8 (ET1) −0.2732 0.0431 −0.2841 −0.1888 −0.6847 −0.0800 −0.5504 0.4216 −0.4343 −0.2838
9 (ET2) −0.3391 −0.2746 −0.1935 −0.3192 −0.4043 0.0845 0.6315 −0.0058 −0.1987 0.3312
10 (ET3) 0.5250 −0.0607 0.4576 0.1264 0.4614 −0.5007 −0.1404 −0.7093 0.4074 −0.2256
11 (ET4) 0.5208 −0.0179 0.6684 0.6342 0.1560 0.3443 0.4633 0.0942 0.0905 0.1696
12 (FI1) 0.4634 −0.3963 0.5690 0.7061 −1.4592 −0.2166 0.6892 −1.1845 −0.3073 −0.4728
13 (FI2) −0.0400 0.0486 0.1505 −0.4326 1.0319 0.1433 −0.3477 1.0755 0.2147 0.4304
14 (BT1) 0.6902 −0.1546 0.5649 −0.4344 0.0590 −0.2584 0.4335 −0.5813 0.5127 −1.0058
15 (BT2) −0.0610 0.1546 0.2930 0.1795 −0.2164 −0.0684 −0.1197 0.2826 −0.3488 0.5950
16 (BT3) −0.0225 0.1974 −0.2008 0.3968 −0.2358 0.1029 −0.0708 0.3280 −0.1172 0.1952
17 (BT4) −0.1676 −0.5538 0.0276 0.1746 0.0369 0.0677 0.1575 −0.1782 −0.0472 0.1863
18 (DT1) 0.1071 −0.2094 0.1963 0.3067 −0.2461 −0.1187 −0.1024 −0.2039 0.0837 0.4892
19 (DT2) −0.1270 0.1834 0.0999 −0.1648 0.0187 0.0880 0.3178 −0.0097 0.1443 0.7366
20 (DT3) 0.5048 −0.3027 0.3703 0.1241 −0.1429 −0.0232 0.1458 0.0309 −0.2511 −1.2196

Bias 0.4652 −0.3830 0.7129 0.2545 −0.3994 −0.1438 0.3726 −0.1437 −0.1077 −0.0582
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Table A4. Weights between the hidden layer and the output layer in the MLP 22-10-3 artificial
neural network.

Hidden Layer
Output Layer

1 (FCU) 2 (FCH) 3 (FCM)

1 −0.0978 0.1020 −0.0372
2 0.5263 0.3501 0.4651
3 −0.0622 −0.2329 −0.1141
4 −0.9635 −0.5855 −0.7522
5 −0.7370 −0.0164 −0.4454
6 0.5206 −1.2625 −0.7602
7 −0.6456 −0.3207 −0.4459
8 −0.4761 −0.2743 −0.3227
9 −1.1609 −1.1352 −1.0552
10 −0.3650 −0.3047 −0.3596

Bias 2.6763 2.0268 2.3380
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