
energies

Article

A New High-Gain DC-DC Converter with Continuous Input
Current for DC Microgrid Applications

Javed Ahmad 1 , Mohammad Zaid 2,*, Adil Sarwar 2 , Chang-Hua Lin 1 , Mohammed Asim 3,
Raj Kumar Yadav 4, Mohd Tariq 2 , Kuntal Satpathi 5,* and Basem Alamri 6

����������
�������

Citation: Ahmad, J.; Zaid, M.;

Sarwar, A.; Lin, C.-H.; Asim, M.;

Yadav, R.K.; Tariq, M.; Satpathi, K.;

Alamri, B. A New High-Gain DC-DC

Converter with Continuous Input

Current for DC Microgrid

Applications. Energies 2021, 14, 2629.

https://doi.org/10.3390/en14092629

Academic Editor: Teuvo Suntio

Received: 18 March 2021

Accepted: 27 April 2021

Published: 4 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, National Taiwan University of Science and Technology,
Taipei City 10607, Taiwan; javed741720@gmail.com (J.A.); link@mail.ntust.edu.tw (C.-H.L.)

2 Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh 202002, India;
adil.sarwar@zhcet.ac.in (A.S.); tariq.ee@zhcet.ac.in (M.T.)

3 Electrical Engineering Department, Integral University, Lucknow 226021, India; masim@iul.ac.in
4 Electronics Instrumentation & Control Engineering Department, College of Engineering, Ajmer 305001, India;

rajkumar.yadav@ecajmer.ac.in
5 Energy Exemplar (Singapore) Pte Ltd., 9 Battery Road, Singapore 049910, Singapore
6 Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia;

b.alamri@tu.edu.sa
* Correspondence: mohammad.zaid@zhcet.ac.in (M.Z.); ksatpathi@ieee.org (K.S.)

Abstract: The growth of renewable energy in the last two decades has led to the development of
new power electronic converters. The DC microgrid can operate in standalone mode, or it can be
grid-connected. A DC microgrid consists of various distributed generation (DG) units like solar PV
arrays, fuel cells, ultracapacitors, and microturbines. The DC-DC converter plays an important role
in boosting the output voltage in DC microgrids. DC-DC converters are needed to boost the output
voltage so that a common voltage from different sources is available at the DC link. A conventional
boost converter (CBC) suffers from the problem of limited voltage gain, and the stress across the
switch is usually equal to the output voltage. The output from DG sources is low and requires high-
gain boost converters to enhance the output voltage. In this paper, a new high-gain DC-DC converter
with quadratic voltage gain and reduced voltage stress across switching devices was proposed. The
proposed converter was an improvement over the CBC and quadratic boost converter (QBC). The
converter utilized only two switched inductors, two capacitors, and two switches to achieve the gain.
The converter was compared with other recently developed topologies in terms of stress, the number
of passive components, and voltage stress across switching devices. The loss analysis also was done
using the Piecewise Linear Electrical Circuit Simulation (PLCES). The experimental and theoretical
analyses closely agreed with each other.

Keywords: voltage stress; distributed generation (DG); high gain; quadratic boost

1. Introduction

In recent years, the development of electricity-generation systems with nonconven-
tional energy sources has called for a new generation of high-gain DC-DC converters [1].
High-gain converters can be nonisolated or isolated. Transformerless topologies are be-
coming important in medium power applications up to 400–500 W due to their low cost
and good efficiency. Conventional topologies of a DC-DC converter, like boost, SEPIC, and
ZETA, have a simple structure, but their efficiency is low and for achieving high gain they
need to be operated at high duty ratios, which leads to a substantial increase in the stress
across the switching devices. Several topologies of high-gain DC-DC converters have been
developed by researchers. Each of the configurations has its advantages and disadvantages.
Usually, switched capacitors, voltage multiplier cells (VMCs), and switched inductors are
used for increasing the gain. Common ground, isolation, and high efficiency are the key
features that are available in isolated topologies [2] for high-power applications. High-gain
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non-isolated converters can also be used in microgrid applications with a bidirectional
power flow [3]. In [4], a new non-isolated switched-capacitor based new boost converter
was proposed by the authors. The converter utilized two inductors and a single switch,
but the gain was limited. The PV system mostly requires a step-up converter to enhance
voltage by utilizing the MPPT tracking function. In [5], a new improved boost converter
for renewable energy applications was proposed by the authors. In [6,7], a new high-gain
boost and SEPIC converter with a continuous input current are proposed by the authors.
Many techniques have been developed to enhance the gain with lower price and higher
efficiency. A generalized structure of a high gain DC-DC converter with a single switch
and switched inductors is proposed in [8]. The boost converter gain has been increased
by using the quadratic boost technique with high component voltage stress [9]. Despite
that, the output voltage was equal to the voltage stress. As a result, a higher rated switch
was used to compensate for the voltage stress on the provided switch, making excessive
conduction loss [10]. The quadratic boost converter can produce high voltage without
extreme duty ratios. The conventional quadratic boost converter (CQBC) proposed in [11]
had a single switch with a voltage stress equal to VO. In [12], a voltage doubler circuit
was introduced by the authors. With the help of diodes and switched capacitors, the
voltage at the output could be increased significantly. In [13], a new DC-DC Luo converter
having positive output voltage was introduced. Only switched capacitors and diodes
were employed for increasing gain. Coupled inductor-based topologies are also popular
to achieve very high gain. To achieve the desired gain, the coupled inductor’s turn ra-
tio is adjusted, but this results in higher input current ripple. The high-gain converters
proposed in [14–17] addressed the problems associated with coupled inductor topologies.
New boost converters with a voltage multiplier cell (VMC) were proposed by the authors
in [18–20]. VMC can be incorporated with conventional converters like boost, SEPIC, and
conventional quadratic boost (CQBC) to increase the gain. A VMC employing switched
capacitors suffers from the problem of high charging current, which results in additional
power losses. Moreover, the number of components also increases when a VMC is used,
leading to an increase in the cost and decrease in the reliability of the converter. Another
family of converters are interleaved boost converters. These converters produce high
gain at smaller duty ratios. An interleaved converter needs several VMCs [21–24] at the
output to increase the voltage. In [25], a three-port DC-DC converter suitable for solar PV
applications was proposed by the authors. In [26], an extendable switched inductor based
high-gain converter was proposed by authors. The converter in [26] had continuous input
current and reduced stress across switches, but many inductors were used to achieve high
gain. In [27], a new hybrid switched-capacitor high-gain converter for DC microgrids was
proposed. In [28], a modified SEPIC converter was proposed for solar PV applications.
In [29], a boost converter with a VMC was explained and discussed. However, the con-
verter had many voltage-multiplier levels, but the converter still provided low voltage gain.
A new high-gain converter with built-in transformers and a VMC was proposed in [30].
In [31], a non-isolated high-gain converter with switched capacitors and voltage doublers
was proposed by the authors. In [32], a new QBC with a voltage doubler and a single
switch was proposed by the authors. Some other recently developed high-gain converters
have been proposed by authors in [33–35]. Although these converters have high gain, the
number of passive components is high. The main novelty of the converter proposed in the
current study is that it has a quadratic gain with only four passive elements. The other
features of the converter are:

• Continuous input current;
• Quadratic voltage gain with reduced voltage stress across switches;
• High efficiency and easy control.

In subsequent sections, the workings of the proposed converter is discussed. Experi-
mental results and efficiency of converter are reported in Sections 5 and 6. The conclusions
are discussed in Section 7.
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2. Structure and Working of the Proposed Converter

The circuit diagram of the proposed converter is shown in Figure 1. The control signal
is the same for both the switches. Based on the control signal, there are two modes of
operation; that is, switch-on mode of operation and switch-off mode of operation. The
modes of operations can be explained as follows:
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The governing equations for the first mode are as follows: 

𝑉𝐿1 = 𝑉𝑖𝑛 + 𝑉𝐶1 (1) 

𝑉𝐿2 = 𝑉𝑖𝑛 (2) 

Mode 2: The switches are turned OFF, and both the diodes conduct. Both the capaci-
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transferred to the load as their current decreases. The conduction diagram is shown in 

Figure 3. The equations for this mode are as shown below: 

𝑉𝐿1 = 𝑉𝐶1 − 𝑉𝑂 (3) 

Figure 1. The proposed converter.

Mode 1: Both the switches are turned ON simultaneously, and hence diodes D1 and
D2 are reverse-biased. The conduction diagram is given in Figure 2. In this operation mode,
both the capacitors discharge and transfer their energy to the inductors and to the load,
respectively, while both inductors store energy, and the inductor current subsequently
increases linearly.
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The governing equations for the first mode are as follows:

VL1 = Vin + VC1 (1)

VL2 = Vin (2)

Mode 2: The switches are turned OFF, and both the diodes conduct. Both the capacitors
are charged during this mode of operation, while the energy of both the inductors is
transferred to the load as their current decreases. The conduction diagram is shown in
Figure 3. The equations for this mode are as shown below:

VL1 = VC1 − VO (3)

VL2 = Vin − VC1 (4)
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Applying the principle of volt-sec balance in inductor L2 and L1:∫ T

0
VL2(t)·dt = 0 (5)

Vin × DT + (Vin − VC1)× (1 − D)T = 0 (6)

VC1 =
Vin

1 − D
(7)

∫ T

0
VL1(t)· dt = 0 (8)

(Vin + VC1)× DT + (VC1 − VO)× (1 − D)T = 0 (9)

From Equations (7) and (9), the gain (M) is written as:

M =
Vo

Vin
=

(
1 + D − D2)
(1 − D)2 (10)

From Equation (10), it can be inferred that the voltage gain of the proposed converter
is quadratic.

3. Design of Passive Components and Stress across Switches
3.1. Design of Inductors

Rewriting the equation of the first mode of operation in a differential form, we get:

L1
dIL1

dt
= Vin + VC1, L2

dIL2

dt
= Vin (11)

∆IL1 =
(Vin + VC1)DT

L1
, ∆IL2 =

VinDT
L2

(12)

After combining Equations (7) and (12), we get:

∆IL1 =
Vin(2 − D)DT
(1 − D)L1

(13)

The average current through L1 and L2 are:

IL1 =
VO

R(1 − D)
, IL2 =

VO
(
2D − D2)

R(1 − D)2 (14)

The minimum current through the inductors are as follows:

(IL1)Min =
VO

R(1 − D)
− Vin(2 − D)DT

2(1 − D)L1
(15)
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(IL2)Min =
VO
(
2D − D2)

R(1 − D)2 − VinDT
L2

(16)

For the continuous conduction operation mode, the minimum inductance required
can be calculated as given:

L1 ≥ (2 − D)D(1 − D)2R
fs(1 + D − D2)

(17)

L2 ≥ D(1 − D)4R
fs(1 + D − D2)

(18)

3.2. Design of Capacitor

The selection of a capacitor depends on the minimum permissible ripple in the voltage
across the capacitor. The charge stored by the capacitor is as follows:

∆Q = C∆VC (19)

IC∆T = C∆VC (20)

when the switch is ON, the current through each capacitor is as follows:

(IC1)ON =
Vo

R(1 − D)
, (IC2)ON =

Vo
R

(21)

After combining (20), (21), and (10), the value of capacitors can be calculated as follows:

C1 =
Vin
(
1 + D − D2)D

R(1 − D)3∆VC1 fs
(22)

C2 =
Vin
(
1 + D − D2)D

R(1 − D)2∆VC2 fs
(23)

3.3. Voltage Stress across Switches

The voltage stress across the various components is given by (24) and (25). It can be
seen from (24) and (25) that stress across the switch S1 and S2 is less than VO.

VS1 =
Vin

1 − D
=

VO(1 − D)

(1 + D − D2)
(24)

VS2 =
Vin

(1 − D)2 =
VO

(1 + D − D2)
(25)

The related waveforms during continuous conduction mode are shown in Figure 4.
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4. Comparison Assessment with Other Converters

In this section, the high-gain boost converter presented in this paper is compared. The
comparison is shown in Table 1. The converter given in [4] had 2 inductors (L), 3 capacitors
(C), and a single switch (S), but has lower gain than the presented converter. The converter
given in [6] had a total number of 10 components with two inductors and 4 diodes, but its
voltage gain was only 3.5 at a duty ratio of 0.5, whereas at D = 0.5, our proposed topology
has a gain of 5.3. The modified buck-boost topology proposed in [7] had 4 inductors,
6 capacitors, and 3 diodes, but the substantial gain could be achieved only by operating it
at high duty ratios. To obtain a gain of 15, the converter proposed in [7] needed to be run
at 0.8 duty, whereas the converter presented here achieve a gain of more than 30 times at
the same duty ratio. The switched inductor topology proposed in [9] employed a VMC
made of diodes and an inductor for increasing the converter gain; 7 diodes and 4 inductors
were utilized for increasing the converter gain, but the gain was still less than our proposed
converter. The quadratic buck-boost converter proposed in [10] had the advantage of
common ground, but the gain was not very high, and the input current was discontinuous,
which made it unsuitable for solar PV applications. The conventional quadratic boost
converter (CQBC) [11] also had two inductors, but its gain was low and the switch had
voltage stress, which is equal to VO. Similarly, the converter proposed in [28] had three
inductors and three capacitors; still, the gain was limited and stress across the switch was
high. As can be observed in Figure 5, our proposed high-gain structure has a gain of 8 times
at D = 0.6. The gain rapidly increases from 0.7 to 0.8 duty ratio. Apart from higher gain,
the converter utilizes only 8 components, and hence losses in the ON state and parasitic
resistance would be low. Figure 6 gives the normalized voltage stress across the switch
of the converter. It can be observed that the two switches of the converter had different
voltage stresses across them. As compared with other structures, the switch S1 had the
lowest stress across it. The stress across switch S2 was less than VO but was higher than
S1. Further, it can be observed that the stress across S2 also was less than in the converters
proposed in [28] and the conventional quadratic boost converter (CQBC) proposed in [11].
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Table 1. Comparison of the proposed converter with similar topologies.

Topology Inductors Capacitors Switches Diodes Total Components Voltage Gain
(Vo/Vin)

Normalized
Voltage Stress

(VS/Vin)

[4] 2 3 1 3 9 1+D
(1−D)

1
1−D

[6] 2 3 1 4 10 3+D
2(1−D)

1
1−D

[7] 4 6 1 3 14 3D
(1−D)

1
1−D

[9] 4 1 2 7 14 1+3D
(1−D)

1+D
1−D

[10] 2 2 1 3 8 D(2−D)

(1−D)2
2

(1−D)

[11] 2 2 1 3 8 1
(1−D)2

1
(1−D)2

[28] 3 3 1 3 9 D
(1−D)2

D
(1−D)2

Proposed 2 2 2 2 8 1+D−D2

(1−D)2

S1[P] = 1
1−D

S2[P] = 1
(1−D)2
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5. Experimental Results

Table 2 shows the specifications of the presented converter. The simulation results
were validated by running it on a hardware prototype. The working of the converter was
tested by building a 150 W prototype as given in Figure 7. The prototype was operated
at a 0.4 duty ratio. From Figure 8a, the output voltage VO was equal to 80 V, which was
proximate to the theoretical value. The voltage across the capacitor was found to be 40 V,
which was half the VO. The converter was operating in continuous conduction mode, as
evident from the waveforms of the inductor currents shown in Figure 8b. The voltage stress
across switch S1 was found to be 40 V, and the stress across the switch S2 was found to be
65 V, as observed in Figure 8c. The stress across both switches was less than VO, which was
an improvement over the other conventional topologies, thereby improving the efficiency.
The converter had a continuous input current, which is its main advantage. The average
input current Iin and output current IO were found to be 1.5 A and 0.4 A, respectively.
Furthermore, the input current had a very low voltage ripple, which eliminated the need
for any input filter.

Table 2. Ratings of components.

Elements Rating/Model

Vin 24 V, 10 V
Po (max) 150 W

fs 50 kHz
R (Load) 250 Ω, 300 Ω
Inductors L1 = L2 = 330 µH, ESR = 0.2 Ω
Capacitors C1 = C2 = 33 µF 200 V, ESR = 0.15 Ω
S1 and S2 SPW52N50C3
D1 and D2 SF8L60USM

Gate Drivers IC TLP250H
Microcontroller STM32 Nucleo H743ZI2
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Figure 9a shows the experimental results at a duty ratio of 0.65 and input voltage of
10 V, and it was found that the output voltage was almost 100 V, which also verified the
calculated gain of 10 times. The voltage across the capacitor C1 was 27 V, which was almost
the same as that of the calculated value. The inductor currents and voltage across switches
are shown in Figure 9b,c.
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Figure 8. Experimental results at Vin = 24 V, D = 0.4. (a) Vo, VC1, and Vin. (b) IL1 and IL2. (c) Vo, Vds1, 
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Figure 9a shows the experimental results at a duty ratio of 0.65 and input voltage of 
10 V, and it was found that the output voltage was almost 100 V, which also verified the 

Figure 8. Experimental results at Vin = 24 V, D = 0.4. (a) VO, VC1, and Vin. (b) IL1 and IL2. (c) VO,
Vds1, and Vds2. (d) Io, Iin, and Vgs.
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6. Efficiency Calculation

In this section, the power loss in different components of the converter is calculated.
The power loss in the converter occurs because of parasitic resistances of inductor capacitors
and ON-state resistance of switches and diodes.

Power loss in inductors: Neglecting the ripple in the current, the RMS and average
current flowing in inductor can be assumed to be the same. The power loss due to parasitic
resistance of inductors is as shown in (26):

PL1 =
VO

2rL1

R2(1 − D)2 , PL2 =
VO

2(2D − D2)
2rL2

R2(1 − D)4 (26)

where rL1 and rL2 are parasitic resistances of inductors.
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Power loss in capacitors: Similarly, the loss in capacitors due to ESR is as given below:

PC1 = i2C1RMS
rC1

PC1 = VO
2DrC1

R2(1−D)3

(27)

PC2 = i2C2RMS
rC2

PC2 = VO
2DrC2

R2(1−D)

(28)

Power loss in diodes: By knowing the RMS current, the average current of the total
power loss across each diode is calculated as follows:

PD1 = VDiD1avg + i2D1RMS
rD1

PD1 = VDVO
R(1−D)

+ VO
2rD

R2(1−D)4

(29)

PD1 = VDiD1avg + i2D1RMS
rD1

PD2 = VDVO
R(1−D)

+ VO
2rD

R2(1−D)

(30)

where VD is the voltage drop across the diode.
Power loss in the switch: There are two types of switch losses: conduction loss (PswCond)

and switching loss (Psw). These losses can be calculated as follows:

Psw = PswCond + PswON + PswOFF (31)

PswCond = I2
swRMS rswON (32)

where rswON is ON-state resistance of MOSFET.

Psw1Cond =
VO

2(2D − D2)2

R2(1 − D)4D
rswON (33)

Psw2Cond =
VO

2

R2(1 − D)2 rswON (34)

PswON =
IswON VDD

2
×

tri + t f v

2
× fs (35)

Psw1ON =
VO
(
2D − D2)Vin

2R(1 − D)3 ×
tri + t f v

2
× fs (36)

Psw2ON =
VOVin

2R(1 − D)3 ×
tri + t f v

2
× fs (37)

Psw1OFF =
VO
(
2D − D2)Vin

2R(1 − D)3 ×
t f i + trv

2
× fs (38)

Psw2OFF =
VOVin

2R(1 − D)3 ×
t f i + trv

2
× fs (39)

where:
tri+t f v

2 is turn ON time;
t f i+trv

2 is turn OFF time; and
fs is switching frequency.
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To find the actual output voltage equation, we can combine all the losses and apply
the law of conservation of power. A simplified output voltage equation considering only
inductor and capacitor losses is provided in (40):

VO =

[
Vin(1 − D)

(
1 + D − D2)]R(1 − D)

R(1 − D)4 + rL1(1 − D)2 + rL2(4D2 + D2 − 4D3) + rC1D(1 − D) + rC2D(1 − D)3 (40)

Equation (40) can be verified by using the values of parameters from Table 2. The
value of VO is found to be 82.1 V for Vin = 24 V and D = 0.4, which is very close to the
experimental value of 80 V.

VO =

[
24(1 − 0.4)

(
1 + 0.4 − 0.42)](300)(1 − 0.4)

39 + 0.072 + 0.0272 + 0.036 + 0.013
= 82.1 V (41)

The bifurcation of losses in converter is shown in Figure 10. The total losses in the
MOSFETs accounted for 40% of the total losses. The total losses in diodes were 31%. In
Figure 11, efficiency of converter is plotted at different values of input voltages. At low
input voltages, the peak efficiency was found to be low. This is because high current flows
in the circuit for achieving the same output power, and hence more losses occurred in the
converter. The converter efficiency was high if the input voltages were between 24 and
40 V. Usually, the output from the solar PV module is 24 V. Hence, the proposed converter
may be applied for stepping-up the voltage with high efficiency in the power range of
200–300 W.
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7. Conclusions

A new high-gain converter was proposed and analyzed. The proposed converter
utilized only a total of eight components to achieve high quadratic voltage gain. Usually,
converters that produce quadratic voltage gain utilize more than three inductors and
several diodes. The converter has a continuous input current, which is its main feature
as it increases the life of solar PV panels. A hardware prototype of 150 W was developed
in laboratory. Experimental results validated the workings and performance of converter.
The converter was superior to quadratic boost, conventional boost, and other high-gain
converters in terms of gain and voltage stress across switch. The peak efficiency of the
converter was found to be 93.7% for Vin = 24 V. The merits of converter make it worthy for
renewable energy applications for an output power in the range of 200–300 W.
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