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Abstract: Computed X-ray tomography (CT), together with pulse and pressure decay permeability
methods were used to evaluate a formula for absolute reservoir permeability. For this reason, 62 core
samples representing geological material of tight, gas-bearing sandstones, mudstones, limestones,
and dolostones were studied. Samples were divided into two groups with lower and higher per-
meability values. Images of the pore space were processed and interpreted to obtain geometrical
parameters of the objects (pores, microfractures) with 0.5 × 0.5 × 0.5 µm3 voxel size. Statistical
methods, which included basic statistical analysis, linear regression, and multiple linear regression
analysis, were combined to evaluate the formula for absolute permeability. It appeared that the
following parameters: Feret Breadth/Volume, Flatness/Anisotropy, Feret Max/Flatness, moments
of inertia around middle principal axis I2/around longest principal axis I3, Anisotropy/Flatness,
Flatness/Anisotropy provided the best results. The presented formula was obtained for a large set
of data and is based only on the geometric parameters of the pore space. The novelty of the work
is connected with the estimation of absolute permeability using only data from the CT method for
tight rocks.

Keywords: permeability; computed X-ray tomography; shale gas; tight rocks; geoscience; multiple
linear regression

1. Introduction

New methods to evaluate the absolute permeability in low-porosity and low-permeability
rocks are a challenge for the petroleum industry [1–4]. Kozeny presented one of the most
useful relations among permeability, porosity, and specific surface area, assuming that the
rock consists of a set of straight capillary tubes (the porosity component) and cement (the
skeleton component) [5]. One of the equations used for permeability estimation is built
based on the porosity and specific surface area of a porous material Svgr (the total area
exposed within the pore space per unit of grain volume). The parameter, which is called
the specific surface area of a porous material Svgr, can be obtained from the specific surface
area per unit of pore volume Svp, which is calculated from capillary data or petrographic
image analysis. The Kozeny equation is reasonable for use when the pore space structure
is similar to the set of straight capillary tubes, and the porosity is relatively high. Usually,
these requirements cannot be satisfied, especially in tight rocks [6–10]. Valuable studies are
conducted regarding the integrated production logging tool for permeability measurements
in multi-layered fractured reservoirs [11] and the subject of the enhanced oil recovery and
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various aspects of unconventional reservoirs specificity [12–18]. Nevertheless, the Kozeny
equation is still used to evaluate absolute permeability in both the standard and modified
forms [19,20]. Assessment of absolute permeability will always be a top problem to solve
because it is a key parameter in evaluating fluid flow abilities in reservoirs [21,22].

Currently, computed X-ray tomography (CT) is a technique that enables the details
of the internal structure of porous materials to be determined [23–28]. The results of CT
measurements can be used in fluid flow simulations through the pore space and permeabil-
ity estimation [29–32] and in rock heat transfer modelling [33,34]. Moreover, CT provides
information at the nano, micro (pore space analysis), and macro scales (medical CT of
cores). Many studies consider CT scanning a useful method for analyzing small samples to
obtain information about the pore space and standard cores (medical CT). Permeability
measurements are expensive and often destroy the material. Hence, research has con-
centrated on searching for an equation to initially estimate permeability, subsequently
determining the place locations of plug probing (places of permeability variation) and,
finally, minimizing the cost of laboratory measurements. This equation will not replace
laboratory measurements but can help to estimate permeability in the core profile, where
low porosity and low permeability rocks are present.

The computed X-ray tomography, pressure and pulse decay permeability laboratory
method combined with the statistical method of multiple linear regression are used to
search for a formula to estimate the absolute permeability in tight rocks. Statistical methods
such as multiple linear regression, neural networks, principal component or cluster analysis
are helpful in geological materials analysis. Kayabasi et al. [35] used the pioneer study in
estimating the rock mass permeability by non-linear multiple regression analysis and Adap-
tive Neuro-Fuzzy Inference System. Furthermore, Habib et al. [36] proposed a practical
equation that consists of different statistical and fractal characteristics of fracture patterns
using multivariate regression analysis to estimate modelled permeabilities. This approach
represents the scientific background for the similar future analysis. Puskarczyk et al. [37]
tested principal component analysis and cluster analysis in gas-saturated horizons iden-
tification using well logs. Investigations between the lithology combination index and
fracture porosity using machine learning, regression analysis, and weighting methods are
presented by Zhang et al. in the [38]. Moreover, the machine learning technique is also
presented in Zhang et al. [39] for permeability estimations of isolated channel sands and
in Sudakov et al. [40] for prediction of permeability in 3D computed X-ray tomography
images of rock samples, as well as in Erofeev et al. [41] for estimating the alteration of
porosity and permeability without conducting the measurement in the laboratory. Neural
networks were used by Roshani et al. [42] for determining the density and velocity for
single-phase flow and by Wu et al. [43] in predicting permeability from the pore-scale
images. The question is, what is the advantage of the statistical method compared to other
methods? Definitely, statistical methods allow finding and understanding any patterns
within the data and dealing with the large number of data [44,45].

The novelty of this study was the investigation of the influence of several geometrical
parameters of pores from computed X-ray tomography on the logarithm of permeability
simultaneously. Multilinear regression analysis gave that opportunity. Moreover, the
usefulness of all CT geometrical parameters of pores was carefully checked in efficient
permeability determination. There is a linear relationship between the porosity and the log-
arithm of permeability in most reservoirs, so it was assumed, that pore-related parameters,
as CT geometrical parameters of the pore space can give also a result.

First, computed X-ray tomography data are described in this paper with qualitative
and quantitative interpretations of the pore space of 62 tight rock samples. The laboratory
results from the pulse and pressure decay permeability methods are considered with
reference to the porosity values. Next, a basic statistical analysis of the quantitative,
geometrical parameters of the rock pore space is presented to show the relationships among
the parameters. Finally, multiple linear regression analysis is performed to determine a
formula for the absolute permeability estimation in tight Paleozoic rocks based only on
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computed X-ray tomography data, which yields consistent results with the laboratory
permeability measurements.

The study was focused on determining the absolute permeability for the tight Paleo-
zoic gas-saturated rocks, no slip-flow of fluid molecules was considered [46–48]. Moreover,
the effect of organic matter presence in determining the permeability of tight rocks is im-
portant but not taken up in the study [49,50]. Anisotropic permeability, which is essential
for compacted tight rocks, cannot be predicted using the presented formula [51,52].

2. Materials and Methods
2.1. Material Description

The geological material consists of 62 Paleozoic core samples taken from wells in
Poland (East Europe), which were probed from a depth greater than 2000 m of the present
deposition. Samples are gas-bearing, tight sandstones, mudstones, limestones, and dolo-
stones, representing shale and tight gas reservoirs. All the samples satisfy the condition of
low permeability (absolute permeability below 1 mD). Moreover, 24 samples were cored
from wells from the Lublin Synclinorium, 14 from the Peri-Baltic Syneclise, 12 from Pol-
ish Lowlands, four from the Warsaw Synclinorium, and two each from the Pomeranian
Anticlinorium, Pomeranian Synclinorium, Holly-Cross Anticlinorium, and Nida Basin.
The age, geological unit, and lithology of each sample are presented in the Appendix A
(Table A1). The samples were deliberately collected from different lithologies, from clastics
to carbonates, to create a relatively general equation for tight rocks using computed X-ray
tomography parameters. Plugs for the laboratory measurements were probed horizontally
to the beds. Figure 1 presents the dependence of absolute permeability on total porosity
from CT. According to CT, the most numerous group of samples is placed below 0.001 mD
in permeability and has a wide range of total porosity. A slight increase in absolute per-
meability with total porosity is observed in the group of points characterized by absolute
permeability values of greater than 0.001 mD. The limitation in the data is connected with
the very low porosity value in some samples. It is connected with the samples specificity,
which belongs to the group of tight gas reservoirs.
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The pore space structures of exemplary samples of tight sandstone (sample 20, CT
porosity—1.91%, absolute permeability—30 nD), mudstone (sample 27, CT porosity—
1.01%, absolute permeability—190 nD), limestone (sample 41, CT porosity—7.06%, ab-
solute permeability—40 nD) and dolostones (sample 61, CT porosity—13.4%, absolute
permeability—40 nD) are presented in Figures 2–5. Figures 2–5 visualize only the selected
fragment of the pore space. The pores are quite evenly spaced in all of these samples.
Visible thin layers can sometimes be observed with the increasing density of objects in
mudstones. The total porosity according to CT was approximately 0.8–14%, while the
absolute permeability was from approximately 0.008 nD to 0.27 mD for all samples.

Energies 2021, 14, 2628 4 of 27 
 

 

 
Figure 1. Dependence of absolute permeability from pressure and pulse-decay method on total 
porosity from CT for all analyzed samples. Symbols: ssts—sandstones, msts—mudstones, lsts—
limestones, dsts—dolostones. 

 
Figure 2. Pore space of tight sandstone (sample 20), poROSE software. Figure 2. Pore space of tight sandstone (sample 20), poROSE software.

Energies 2021, 14, 2628 5 of 27 
 

 

 
Figure 3. Pore space of mudstone (sample 27), poROSE software. 

 
Figure 4. Pore space of tight limestone (sample 41), poROSE software. 

Figure 3. Pore space of mudstone (sample 27), poROSE software.



Energies 2021, 14, 2628 5 of 25

Energies 2021, 14, 2628 5 of 27 
 

 

 
Figure 3. Pore space of mudstone (sample 27), poROSE software. 

 
Figure 4. Pore space of tight limestone (sample 41), poROSE software. Figure 4. Pore space of tight limestone (sample 41), poROSE software.

Energies 2021, 14, 2628 6 of 27 
 

 

 
Figure 5. Pore space of tight dolostones (sample 61), poROSE software. 

Figure 6 presents box plots: the median (square), upper and lower quartiles (box), 
and minimum and maximum (lines) of median values from the pore parameters in each 
sample were collected in each lithology group. The maximum Feret diameter (caliper di-
ameter, the distance between the two defined parallel planes) is higher than the other pa-
rameters because it is calculated in the object view (projection on the plane) for the highest 
detected diameter. Lower diameters characterize only dolostones. The average thickness 
(the diameter) in the sandstone, mudstone, limestone, and dolostone groups is 2.95 µm, 
2.82 µm, 2.33 µm, and 1.77 µm, respectively. For an Equivalent diameter, the minimum 
and maximum Feret diameters were assumed to reach higher values. The analysis focused 
on objects that were detected by CT and effectively participated in the fluid flow. 

The pore size distribution is presented in Figure 7 in the form of the mean thickness 
in micrometers for the selected samples: 20, 27, 41, and 61. The largest number of objects 
is detected in limestone, followed by dolostone, while the smallest number of objects is 
detected in mudstone. Limestone has more pores than dolostone but is characterized by 
smaller pore size. 

Figure 5. Pore space of tight dolostones (sample 61), poROSE software.

Figure 6 presents box plots: the median (square), upper and lower quartiles (box),
and minimum and maximum (lines) of median values from the pore parameters in each
sample were collected in each lithology group. The maximum Feret diameter (caliper
diameter, the distance between the two defined parallel planes) is higher than the other
parameters because it is calculated in the object view (projection on the plane) for the
highest detected diameter. Lower diameters characterize only dolostones. The average
thickness (the diameter) in the sandstone, mudstone, limestone, and dolostone groups
is 2.95 µm, 2.82 µm, 2.33 µm, and 1.77 µm, respectively. For an Equivalent diameter, the
minimum and maximum Feret diameters were assumed to reach higher values. The
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analysis focused on objects that were detected by CT and effectively participated in the
fluid flow.

Energies 2021, 14, 2628 7 of 27 
 

 

 
Figure 6. Geometric parameters in the form of diameters (Equivalent dimeter, Thickness mean, Feret minimum diameter—
Feret Min, Feret maximum diameter—Feret Max) in 4 lithology groups. Symbols as in Figure 1. 

 
Figure 7. Pore size distribution reflected by thickness mean. 
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Feret Min, Feret maximum diameter—Feret Max) in 4 lithology groups. Symbols as in Figure 1.

The pore size distribution is presented in Figure 7 in the form of the mean thickness
in micrometers for the selected samples: 20, 27, 41, and 61. The largest number of objects
is detected in limestone, followed by dolostone, while the smallest number of objects is
detected in mudstone. Limestone has more pores than dolostone but is characterized by
smaller pore size.
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2.2. Mercury Injection Capillary Pressure Method

Additionally, mercury injection capillary pressure (MICP) data in the form of the pore
size distribution are presented for the selected rock samples. The MICP data were collected
using an AutoPore IV 9500 (Micromeritics, Norcross, GA, USA) with a maximum working
pressure of 60,000 psi and a minimum pressure of the atmospheric (ambient) pressure.
Pores in the range of 0.003–300 µm in diameter are penetrated by mercury. The samples
were placed in a holder, which was filled with mercury (vacuum conditions). The MICP
data were corrected for the closure effect [53]. The closure effect is an error in measurement
caused by the rough outer surface of the tested sample, which results in an apparent
increase in porosity based on a mercury porosimetry of 0.1–0.5%. The closure correction is
significant for samples with low porosity. It should be used based on the volume of the
injected mercury curve compared to the pressure from the initial measurement phase. The
ink-bottle effect was not considered [54,55]. The MICP experiment was not successfully
conducted for several samples because the samples were destroyed at very high injection
pressures. The pore-fracture or fracture system was mainly detected in the analyzed
samples considering the shape of the graphs (Figure 8a–d). The pore-fracture system
forms a continuous shape with sharp peaks (e.g., Figure 8a, the section from 0.01 to 1 µm),
while the fracture system forms separate peaks (e.g., Figure 8a, the peak centered at 3 µm).
The pore size distribution from the MICP and CT data is presented for the sandstone,
mudstone, limestone, and dolostone groups (Figure 8a–d). The MICP data cover a wider
range of pore diameters than the CT data. In the analysis, the objects recognized in CT
were greater than 0.5 × 0.5 × 0.5 µm3 in volume. All the graphs show a comparison of
the detected pore sizes. For the CT data, the Y-axis presents the number of measured
objects and recognized in a specific volume, which explains the difference in the number of
observations among the samples. The MICP data for higher diameters showed a larger
mercury volume injected into the objects, while CT did not recognize any objects. The
pore size distribution from the CT data corresponds with that from the MICP data above
the specific pore diameter that was recognized by the CT and limited by the CT scanner
resolution. A part of the information about the microporosity can be missed because of
the CT limits in resolution. As a non-invasive method, CT complements the information
obtained from MICP, especially for the observed large pore diameters that did not coincide
with the CT results. CT can be used to verify and extend the closure correction.
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Several experimental and computational methods were used to evaluate the new for-
mula for absolute permeability in tight Paleozoic rocks: computed X-ray tomography (CT),
pulse and pressure decay permeability method, and multiple linear regression analysis.

2.3. Computed X-ray Tomography Method

Computed X-ray tomography is a technique that enables the recognition of the pore
space in 3D [56]. The physical background of this method is connected with the X-ray
attenuation, which is a function of X-ray energy and material density [57–60]. The CT mea-
surement is used in the petroleum industry to perform structure analysis at the macro scale
(medical CT) and determine the pore space distribution at the microscale (high-resolution
CT), which is extremely important in hydrocarbon prospecting and exploration [61–63]. CT
was performed in the Laboratory of Micro and Nano Tomography at the Faculty of Physics
and Computer Sciences (AGH UST in Krakow, Poland) using a Nanotom S 180n Sensing
& Inspection Technologies instrument (General Electric, Boston, MA, USA). The technical
parameters of CT are presented in Table 1. Core samples for the CT measurements were
investigated in “as received” state without analyzing the fluid properties. The information
about the gas saturation was provided by the contractor.

3D qualitative and quantitative analyses of CT images were performed in the poROSE
software (poROus materials examination SoftwarE), which is a platform used for 2D
and 3D analyses in both academia and industry [66,67]. The software can be run at the
Microsoft Windows operating system. It allows for object size classification regarding
volume (voxels), object parametrization (volumes, diameters, shape), tortuosity calculation
using different methods, shape factors determination, mean intercept length analysis,
and full skeleton analysis. The license is provided after licensing agreement, scientific
or commercial.
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Table 1. Specification of Nanotom S 180n General Electric Sensing & Inspection Technologies, image
reconstruction, and processing description.

Element/Process Description

X-ray tube 57-W, max working voltage 180 kV

Detector Hamamatsu 2300 × 2300
(Ham C 7942CA-02)

Voxel size 0.5 × 0.5 × 0.5 µm3

Reconstruction Feldkamp algorithm [64]
Image processing Described in [65]

The calculated quantitative parameters include the volume and shape of pores and
microfractures. Permeability mainly depends on the effective porosity, grain size, shape,
and distribution. Grain shape, sorting, and packing also affects the pore and microfracture
structures, which are extremely important for conducting fluids through interconnected
pores. The calculated parameters based on the CT images of all 62 samples are presented
in Table A2 in the Appendix A).

A combination of the quotients of the samples was defined based on the calculated
parameters, e.g., I3/I1. In summary, 291 parameters were obtained from the CT images to
analyze absolute permeability.

One of the CT parameters—Anisotropy is connected with the deviation of the pore’s
shape from the sphere, not with the anisotropic permeability. Surface Area parameter
is the surface area of the pore that are directly adjacent to the object’s surroundings and
can be related to the hydraulic radius concept and Kozeny concept in determining the
permeability but is not reflecting the features of capillary tubes, what is a disadvantage [68].

The calculation of 49 parameters from the 3D CT images is time-consuming. Never-
theless, 3D CT images are the input for porosity and pore size calculations. Geometrical
parameters presented in the paper, together with porosity, are available in commercial and
open source softwares. Having binarized 3D image of a pore space, it is feasible to calculate
all geometrical parameters in one operation time.

2.4. Pulse and Pressure Decay Permeability Method

The key parameter in the pulse and pressure decay permeability method is the abso-
lute permeability determined from laboratory measurements of core samples. Pulse and
pressure decay permeability measurements were performed at the Terra Tek Schlumberger
Reservoir Laboratory (Salt Lake City, UT, USA) [69,70]. The pressure decay permeability
measurement was conducted on mudstone samples, and the remaining samples were
investigated using the pulse decay permeability measurement. The pressure decay method
was performed on crushed material with no overburden stress using helium gas, while the
pulse decay method was performed on core plugs under a hydrostatic confining pressure
with nitrogen as the working fluid.

2.5. Multiple Linear Regression Analysis

Multiple linear regression (MLR) is included in statistical modelling to estimate the
relationships between several different independent variables and one dependent vari-
able [71,72]:

Y = b0 + b1X1 + b2X2 + . . . + bpXp, (1)

where: Y—predicted value (dependent variable); X1, X2, . . . , Xp—independent variable;
p—number of independent variables; b0, b1, . . . , bp—estimated regression coefficients.

MLR fits the linear equation to the analyzed data points. In the evaluation of the
permeability equation, it was necessary to consider both porosity as a key parameter
and other pore shape parameters. Thus, multiple linear regression was used to retrieve
information about the permeability relationships with other geometrical parameters of the
pore space. The dependent variable in MLR analysis is the absolute permeability from
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laboratory measurements (the results of the pulse or pressure decay methods on the core
samples), while the independent variables are the geometrical parameters of the pore space,
which were calculated based on the CT images of the core samples. The split in the data set
is 70% calibration, 15% validation, and 15% testing according to typical traditional statistics
or machine learning. For the analyzed data, it was decided to present all 62 samples in the
article that were included in the calibration set due to a large number of tested parameters
and the relatively small data set. Validation and testing were performed on subsamples (a
cube was randomly cut from the 3D images and treated as a separate sample) to check the
correctness of the multiple regression coefficients. The application of the obtained multiple
regression equations to the validation set confirmed the correctness of the formula. Due to
the specifics of the analyzed samples (low porosity and low permeability), the obtained
relation can only be generalized for rocks with similar reservoir parameters and a similar
pore space structure.

For low-porosity and low-permeability rocks, the scatter of the porosity and perme-
ability values in the samples is quite large, and blind measurements are fraught with errors.
We are not sure of the exact range of value in which we operated. The relative error for
low-porosity rocks (approx. 2.5–3.5% of total porosity) is higher than for conventional rocks
(approx. 25–35% of total porosity). Suppose the porosity in the rock differs by 0.1% porosity
as a result of poor measurement. In that case, the relative error is 0.3–0.4% in conventional
rocks and as much as 3–4% in low-porosity rocks. Therefore, using any formula such as
those presented in the paper increases the accuracy and probability of determining the
correct permeability value. This process is especially important when determining porosity
and permeability based on well logging, which is calibrated to the results of laboratory
tests and increases the chance of estimating a similar permeability in the reservoir.

2.6. Stages of the Analysis

The stages of analysis begin with the CT parameter calculation and end with the
multiple linear regression analysis:

(1) calculate the geometrical parameters for each object (pore, microfracture) in each
sample (parameters in Table 2 and their quotients) and the porosity;

(2) quality check (check the value correctness in the range, e.g., 0–1, and interpretable
values, i.e., whether the value has a physical meaning) the parameters for each of the
62 samples;

(3) calculate the statistics: maximum, minimum, average, standard deviation, median,
10th percentile, 90th percentile, lower quartile, and upper quartile based on the
parameters from all the objects (pores, microfractures) in each sample, e.g., calculate
the average thickness (parameter) of all the objects in each sample (finally, 1 sample
corresponds to 1 value of a parameter);

(4) extract the parameters for the largest object in each of the 62 samples;
(5) construct the data set: one data set consists of a particular statistical parameter, which

is calculated for each sample and all the available parameters from CT, e.g., the data
set of the average values of each sample and all the parameters calculated from CT;

(6) analyze the relationships between the absolute permeability from laboratory mea-
surements and the 291 parameters from the CT images (based on their correlation
coefficients); only the parameter that correlates with the logarithm of absolute perme-
ability with a correlation coefficient above ±0.5 is considered;

(7) construct a data set from the parameters that showed a linear relationship (correlate)
with the logarithm of permeability (reject insignificant parameters);

(8) perform multiple linear regression analysis on the data set from item 7 (parameters
that correlate with the logarithm of absolute permeability).
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Table 2. List of parameters used in building the linear relationship with the logarithm of
absolute permeability.

Data Set Parameter

The largest object values

Thickness Mean,
Volume/Surface Area,
Surface Area/Volume,
Feret Breadth/Volume,
Anisotropy/Thickness Max,
Elongation/Thickness Max,
Elongation/Thickness Mean

Median values Feret Breadth/Feret Max

Maximum values

Thickness Max,
Thickness Max/Elongation,
Thickness Mean/Elongation,
Thickness Mean/Feret Shape

Upper quartile values

Flatness,
Equivalent Diameter/Feret Max,
Thickness Mean/Feret Max,
Flatness/Anisotropy,
Feret Breadth/Feret Max,
I3/I2

Lower quartile values

Feret Max/Equivalent Diameter,
Anisotropy/Flatness,
Anisotropy/ShapeVA3D,
Feret Max/Flatness,
Feret Breadth/Flatness,
Feret Max/Feret Breadth,
I2/I3

Percentile 10 values

Anisotropy,
Feret Max/Thickness Max,
Feret Max/Thickness Mean,
Anisotropy/Flatness,
Anisotropy/ShapeVA3D

Percentile 90 values

Flatness,
Sphericity,
Thickness Max/Thickness StD,
Thickness Mean/Thickness StD,
Elongation/Anisotropy,
Flatness/Anisotropy,
ShapeVA3D/Anisotropy,
Flatness/Feret Max,
Flatness/Feret Breadth,
Flatness/Feret Shape,
I3/I2

Standard deviation values

Elongation/Thickness Max,
Elongation/Thickness Mean,
Thickness StD/Elongation,
Thickness StD/Feret Shape,
Elongation/Anisotropy,
Flatness/Anisotropy,
ShapeVA3D/Anisotropy,
Flatness/Feret Shape

Thus, 291 parameters from the CT images and the logarithm of the absolute perme-
ability for the 62 core samples were collected in 11 data sets. Each data set consists of the
maximum, minimum, average, standard deviation, median, 10th percentile, 90th percentile,
lower quartile or upper quartile value of the parameters for each sample. The additional
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data set contains parameters for the largest object in each sample. An attempt was made to
find formulas for absolute permeability using only the geometrical parameters of the pore
space from CT data.

3. Results and Discussion
3.1. Basic Analysis

The geometrical parameters of the pore space for all 62 samples were checked con-
sidering the value reliability and being within the correct range. The basic parameters for
the largest object in the sample are collected in the Appendix A (Table 1), which shows the
variety of the data. The largest object is usually the most complicated structure because
it potentially has highest effective porosity. The largest objects are not close to the shape
of a ball (average Anisotropy approximately 0.64), are not flat (average Flatness approxi-
mately 0.44), are tortuous (average ShapeVa3D of approximately 0.38), and are more likely
elongated (average Elongation approximately 0.85).

The basic analysis concentrated on searching for linear relationships between basic
quantitative parameters from CT images and the logarithm of absolute permeability. Some
of the parameters exhibited linear relationships with the logarithm of permeability and a
normal distribution. There are not always perfect fits, but it does not exclude the multiple
linear regression of the data.

3.2. Linear Relationships between the Logarithm of Absolute Permeability and CT Parameters

Figures 9–11 present histograms of the example quantitative geometrical parameters
of the pore space: Sphericity, Flatness and Feret Max and Feret Breadth ratio. The parameter
distribution is close to the normal distribution, which is recommended for use in multiple
linear regression analysis.
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An exemplary relationship between the logarithm of absolute permeability and the
ratio of I2 and I3 based on the lower quartile data set is shown in Figure 12 for all samples.
A decrease in the logarithm of absolute permeability is visible with increasing I2/I3 ratio.
Additionally, an increase of the ratio of Flatness and Anisotropy based on percentile 90 data
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set for all samples results in the increase of the logarithm of absolute permeability. Still, the
correlation is moderate (Figure 13).
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In summary, 49 parameters were used to build the linear relationship with the loga-
rithm of absolute permeability (Table 2).

3.3. Multiple Linear Regression Analysis

Multiple linear regression analysis is performed using six independent variables
according to recommendations regarding the total number of samples (in this case values
of CT parameters): one dependent variable (the logarithm of absolute permeability) and
8–10 independent variables (the parameter values from CT for each sample) [71]. The
more independent variables in the analysis, the better the result that can be obtained for
dependent variable estimation (logarithm of absolute permeability) using multiple linear
regression. Thus, only 6 independent variables are used for the 62 samples. All analyses
were performed in Statistica 12 (StatSoft, Krakow, Poland).

First, only basic CT parameters from Table 2 were considered. The correlation coeffi-
cient was not high, below 0.55 for most of the basic parameters. Table 3 presents the results
for the data sets in which the correlation coefficient was higher than 0.6. The standardized
partial regression coefficients inform about the effect of a given parameter on the dependent
variable. Mostly, parameters connected with the pore shape have a strong effect on the
absolute permeability estimation using MLR.

Table 3. Results of multiple linear regression on standard geometrical parameters from CT images based on different
statistical data sets. Symbols: R MLR—correlation coefficient of multiple linear regression.

Type of Data Set Basic Parameters and Standardized Partial Regression Coefficients R MLR

Lower quartile Equivalent Diameter, −2.0; Thickness Mean, 1.99; Anisotropy, −1.5; Elongation, −1.9; Thickness
StD, 0.34; ShapeVA3D, −0.44 0.76

Upper quartile Flatness, 0.73; Feret Min, −2.0; Feret Max, 2.23; Feret Shape, −0.70; Elongation, −0.43; ShapeVA3D,
0.28 0.67

Percentile 10th Thickness Mean, 0.47; Anisotropy, −0.83; Elongation, −1.20; Flatness, −0.03; Feret Min, 0.48; Feret
Max, −0.71 0.76

Percentile 90th Thickness StD, −2.1; Feret Max, −2.6; Feret Breadth, 3.89; Feret Shape, 0.65; I3, 0.18, Sphericity, 0.32 0.66
Median Equivalent Diameter, −1.2; Thickness Mean, 1.44; Flatness, 1.69; I1, −4.4; I2, 4.32; Anisotropy, 1.89 0.61

After MLR analysis of each data set, the next step was performed using only the CT
parameters that showed a visible, strong linear relationship with the logarithm of absolute
permeability. Thus, 49 parameters were chosen for multiple linear regression analysis
considering 6 independent variables. For this purpose, 13,983,816 equations were tested
to find the best formula. The best result comprised of the following parameters: Feret
Breadth/Volume (from the largest object data set), Flatness/Anisotropy (from the upper
quartile data set), Feret Max/Flatness (from the lower quartile data set), moments of inertia
around the middle principal axis I2/moments of inertia around the longest principal axis
I3 (from the lower quartile data set), Anisotropy/Flatness (from the percentile 10 data set),
and Flatness/Anisotropy (from the percentile 90 data set).

The correlation coefficient of the equation is 0.82, while the determination coefficient is
R2 = 0.67. Moreover, it appears that pore flatness and anisotropy play an important role in
fluid transport (Table 4). The weakest element is connected with the Feret Breadth, scaled by
the Volume of the pores. The equation was also separately applied to the given lithologies.
The determination coefficient was higher for sandstone (R2 = 0.92) and dolostone (R2 = 0.69)
but lower for limestone (R2 = 0.50). The number of mudstone samples was not sufficient to
reach statistical conclusions. The final Equation (2) to calculate the absolute permebaility
has the form of:

logk = b0 + b1X1 − b2X2 − b3X3 − b4X4 + b5X5 + b6X6, (2)
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where: k—absolute permeability of the sample, mD; b0, b1, b2, b3, b4, b5, b6—partial re-
gression coefficients presented in Table 4; X1, X2, X3, X4, X5, X6—unitless independent
variables, defined and developed in the presented permeability calculation procedure.

Table 4. Results of the best multiple linear regression analysis. Symbols: b*—standardized partial regression coefficient,
b—partial regression coefficient.

Parameter Description Symbol
Partial Regression

Coefficient
b (b0–b6)

Standardized Partial
Regression Coefficient

b*

Intercept in the Equation (2) - 14.38 −
Feret Breadth/Volume (from the largest object data set) X1 467.62 0.28
Flatness/Anisotropy (from the upper quartile data set) X2 −9.01 −3.73
Feret Max/Flatness (from the lower quartile data set) X3 −0.10 −0.40
I2/I3 (from the lower quartile data set) X4 −15.22 −1.38
Flatness/Anisotropy (from the 90th percentile data set) X5 5.92 3.70
Anisotropy/Flatness (from the 10th percentile data set) X6 12.75 1.21

A more detailed description of the independent variables is presented below:

X1 =
FB
V

(3)

where: FB—Feret Breadth of the largest object in the sample; V—Volume of the largest
object in the sample.

Feret diameter is a caliper diameter, the distance between the two defined parallel
planes. Feret Breadth is a Feret diameter in the direction perpendicular to the line defined by
the longest Feret diameter of the object. Volume is a sum of all identified voxels (3D pixel)
in the largest object (pore space):

X2 =
FQ3

AQ3
, (4)

where: FQ3—flatness of the pores from the upper quartile data set; AQ3—anisotropy of the
pores from the upper quartile data set.

The Flatness parameter characterizes flatness of the pores. It is calculated based on
the values of the tensor of inertia, which is based on the weighted average (moment) of the
image pixels:

F =
I3

I1
, (5)

where: I3—moment of inertia around the longest main axis, I1—moment of inertia around
the shortest main axis.

Anisotropy parameter characterizes the deviation of the pore’s shape from the sphere,
based on values of the tensor of inertia:

A =
I3

I1
+ 1. (6)

The X3 variable has the form:

X3 =
FRQ1

FQ1
, (7)

where: FRQ1—the maximum Feret diameter from the lower quartile data set; FQ1—flatness
of the pores from the lower quartile data set.

The maximum value of Feret diameter is the maximum caliper diameter of the pores
in the analyzed sample.
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The following independent variables are in the form of:

X4 =
I2, Q1

I3, Q1
, (8)

where: I2,Q1—moment of inertia around the medium main axis from the lower quartile
data set, I3,Q1—moment of inertia around the longest main axis from the lower quartile
data set;

X5 =
FP90

AP90
, (9)

where: FP90—flatness of the pores from the 90th percentile data set; AP90—anisotropy of
the pores from the 90th percentile data set;

X6 =
AP10

FP10
, (10)

where: AP10—anisotropy of the pores from the 10th percentile data set; FP10—flatness of
the pores from the 10th percentile data set.

Flatness divided by Anisotropy (from the upper quartile and 90th percentile data sets)
and the moments of inertia around the middle principal axis I2 divided by the moments of
inertia around the longest principal axis I3 more greatly affect absolute permeability.

Figure 14 includes a comparison of the logarithm of absolute permeability from
the multiple linear regression and the pulse or pressure decay laboratory method. The
MLR analysis delivers a formula for absolute permeability, which slightly decreased the
estimated permeability compared to the laboratory experiments. The presented formula
can be used as a fast method to estimate absolute permeability.
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In the formula presented in this paper (Equation (2)), the limitation regards several
issues. First of all, it is developed for the unconventional Paleozoic reservoirs, hence it can
be applied only for this specific type of rock. Secondly, a part of the information about
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the microporosity can be missed because of the CT ranges in resolution. The mean square
error (MSE) and root mean square error (RMSE) for the developed formula are 0.45 and
0.67 log mD, respectively. The investigation presented in this paper led to the conclusion
that CT method gives as a result of interpretation in the form of the geometrical parameters
of pores, so the presented permeability formula is directly connected with the pore size
influence. Moreover, the application of the different rock types in determining the formula
can provide the generalization of the permeability estimation.

Comparing the presented equation (Equation (2)) to the related works from other
researchers, it is worth mentioning that this proposition is quicker to use but requires
time-consuming CT scanning. Mahdaviara et al. [73] modeled permeability as a function
of irreducible water saturation, pore specific surface, and porosity in carbonates using
Gaussian Process Regression (state-of-the-art machine learning algorithm). Predicted
and real permeability values were similar, but some uncertainties were observed when
permeability was lower than 60 mD. The mean magnitude relative error (MMRE) and
adjusted R-squared for this method were 38% and 0.98, respectively. Rios et al. [74] analyzed
permeability in sandstones using partial last squares regression technique estimated based
on nuclear magnetic resonance data. Their obtained model suggests that this approach
is better than models evaluated only on average pore sizes. The RMSE for the presented
models were equal to 0.47 and 0.50 log mD. Garcia et al. [75] investigated the effects of
particle shape and polydispersity on permeability based on numerical studies. It appeared
that grain shape and size distribution have only small effects on the permeability in the
studied samples.

4. Conclusions

Absolute permeability is essential in determining the reservoir potential. Thus in this
paper, six parameters calculated from CT images were considered to present a new formula
for absolute permeability. First, 11 data sets were built to contain the basic statistics of
291 parameters from 62 core samples. Each data set contains one statistical parameter
calculated for CT parameters based on all identified objects (pores) in the core samples.
Multiple linear regression (MLR) provided a solution in the form of an equation with
6 variables after checking approximately 1 million equations. The final version of the
formula contains the following parameters: Feret Breadth/Volume (from the largest object
data set), Flatness/Anisotropy (from the upper quartile data set), Feret Max/Flatness
(from the lower quartile data set), moments of inertia around the middle principal axis
I2/moments of inertia around the longest principal axis I3 (from the lower quartile data
set), Anisotropy/Flatness (from the 10th percentile data set) and Flatness/Anisotropy
(from the 90th percentile data set).

The utility of this formula is connected to two factors: lithology since the geological
material consists of sandstones, mudstones, limestones, and dolostones, and application
of the geometrical parameters of the pore space from computed X-ray tomography. The
analysis is based on the laboratory measurement results of the pulse and pressure decay
permeability. The presented formula can be easily applied to estimate absolute permeability
before sending core samples for expensive laboratory investigations. Currently, computed
X-ray tomography in the form of nano- and microtomography is widely used in the
petroleum industry because of its advantages in 2D and 3D pore space recognition. CT has
an undeniable advantage over other laboratory measurements because it is nondestructive.
It is extremely important now when the core data are limited to a minimum. Hence, the
presented formula provides insight into the possible permeability values for different
materials, which consist of Paleozoic, low-porosity, and low-permeability rocks. The
presented formula can play a role in categorizing the material for further laboratory
measurements, especially invasive ones (e.g., mercury porosimetry, pulse or pressure
decay permeability measurements); can provide a fast interpretation (quick estimation
of permeability), and can be used to perform log analysis or well testing. The presented
formula also uses a combination of different parameters (also quotient) from CT, which



Energies 2021, 14, 2628 20 of 25

presents a new approach. None of the parameters used in the formula are standard
parameters but can be easily calculated from CT images. The formula is applicable for
tight, low-porous, and low-permeable Paleozoic rocks.
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Appendix A

Table A1. Basic geometrical parameters of the largest object in the analyzed samples (part of one data set consisted of parameters for the largest object in the samples). Symbols of
geometrical parameters are explained in the text. Symbols: GU—geological unit in Poland, LU—Lublin Synclinorium, PBS—Peri-Baltic Syneclise, PA—Pomeranian Anticlinorium, HCA—
Holy Cross Anticlinorium, PS—Pomeranian Synclinorium, WS—Warsaw Synclinorium, NB—Nida Basin, Cm—Cambrian, O—Ordovician, S—Silurian, D—Devonian, C—Carboniferous,
P—Permian, ss—sandstone, mds—mudstone, lms—limestone, dls—dolostone.

Sample

CT
Porosity

for
Sample

Volume Surface
Area

Equivalent
Diameter

Thickness
Max

Thickness
Mean

Thickness
StD Anisotropy Elongation Flatness Shericity Euler

Sum
Feret
Min

Feret
Max

Feret
Breadth

Feret
Shape

Shape
Va3D I1 I2 I3 GU, Age,

Lithology

% voxels px2 px px px px unitless unitless unitless unitless unitless px px px unitless unitless unitless unitless unitless

1 3.24 726,950 215,155 111.56 26.31 17.32 4.64 0.63 0.89 0.42 0.37 −9 203.86 328.34 293.73 1.60 0.18 6,999,370,015 6,216,104,512 2,591,605,767 LS, Cm, ss
2 3.38 787,549 191,991 114.58 32.62 21.03 6.51 0.73 0.87 0.31 0.27 −19 109.64 371.80 239.66 3.37 0.21 4,892,652,027 4,280,856,069 1,327,624,429 LS, Cm, ss
3 2.79 1,847,864 469,974 152.25 41.81 20.32 7.79 0.58 0.85 0.50 0.42 −13 302.00 610.30 406.56 1.96 0.15 43,697,189,479 36,937,801,507 18,330,219,573 PBS, Cm, ss
4 1.79 681,860 177,545 109.20 34.06 19.91 6.15 0.90 0.96 0.11 0.10 −4 151.12 555.97 231.17 3.72 0.21 16,914,424,334 16,224,475,146 1,703,626,692 PBS, Cm, ss
5 4.21 2,311,577 434,422 164.05 61.74 31.21 14.99 0.60 0.68 0.59 0.40 −4 229.60 586.82 440.30 2.50 0.19 53,064,095,022 36,299,710,074 21,258,717,262 LS, O, ss
6 4.05 2,287,790 484,550 163.48 53.67 25.25 11.14 0.61 0.83 0.47 0.39 −13 253.19 471.24 440.32 1.83 0.17 39,640,028,399 32,925,005,854 15,574,982,465 LS, O, ss
7 0.18 388,639 88,310 90.54 33.53 21.04 6.41 0.87 0.92 0.14 0.13 −3 88.72 259.20 146.09 2.88 0.29 2,254,552,589 2,069,303,972 291,529,652 PBS, Cm, ss
8 0.04 17,885 7770 32.45 13.86 11.38 2.10 0.54 0.61 0.76 0.46 1 26.34 69.83 62.91 2.59 0.43 7,786,275 4,715,509 3,595,464 PBS, Cm, ss
9 0.05 76,652 22,190 52.70 22.00 17.17 3.74 0.87 0.93 0.14 0.13 1 49.58 140.71 74.88 2.86 0.39 120,092,188 111,731,588 15,320,578 LS, D, ss
10 0.06 18,795 6810 32.99 18.55 15.00 3.20 0.67 0.88 0.37 0.33 1 29.91 58.06 44.71 1.97 0.50 5,375,686 4,712,797 1,765,822 LS, D, ss
11 0.36 249,711 52,648 78.13 32.80 22.68 6.91 0.55 0.72 0.63 0.45 1 83.99 167.81 138.97 2.03 0.36 469,977,991 340,243,206 213,371,871 PA, C, ss
12 0.19 199,988 74,921 72.56 21.54 11.93 3.35 0.84 0.91 0.18 0.16 −5 97.18 278.49 154.55 2.82 0.22 1,223,968,228 1,108,813,212 196,457,039 PA, C, ss
13 0.15 97,206 21,999 57.05 34.93 25.11 8.27 0.60 0.81 0.49 0.40 0 49.24 100.00 67.27 1.96 0.46 71,583,977 58,067,546 28,577,362 HCA, C, ss
14 0.08 31,674 12,025 39.26 18.22 12.79 3.40 0.82 0.97 0.19 0.18 0 41.21 105.38 53.61 2.60 0.40 20,058,876 19,508,670 3,618,960 HCA, C, ss
15 0.04 182,819 55,839 70.42 25.92 16.32 5.14 0.86 0.90 0.16 0.14 −1 77.17 239.00 122.00 3.10 0.28 887,269,266 802,051,353 127,819,677 PBS, Cm, ss
16 0.02 45,937 10,221 44.43 28.91 25.77 4.17 0.54 0.91 0.50 0.46 1 41.47 67.84 52.20 1.64 0.61 14,669,616 13,331,351 6,723,114 PBS, Cm, ss
17 3.59 2,680,076 422,888 172.34 49.68 32.05 9.16 0.85 0.94 0.16 0.32 −4 237.57 654.87 386.67 2.76 1.40 206 154 66 PBS, Cm, ss
18 4.42 11,377,462 1,560,389 279.05 76.05 38.51 15.12 0.52 0.81 0.60 0.48 −25 460.77 811.35 718.10 1.73 0.16 545,797,255,647 441,461,092,881 264,359,119,954 PBS, Cm, ss
19 0.65 240,512 41,406 77.16 49.03 35.07 13.17 0.57 0.86 0.51 0.43 1 82.00 153.57 101.74 1.87 0.45 292,644,245 250,807,924 127,014,119 PBS, Cm, ss
20 1.91 432,060 73,108 93.80 39.85 30.45 8.15 0.78 0.85 0.26 0.22 0 76.43 237.15 149.11 3.10 0.38 1,443,931,089 1,229,470,301 322,778,033 PBS, Cm, ss
21 1.92 118,250 19,133 60.90 41.42 35.43 6.82 0.51 0.93 0.53 0.49 1 54.44 89.15 66.05 1.64 0.61 67,060,407 62,150,577 32,800,561 LS, S, mds
22 0.18 16,050 4626 31.30 22.98 21.23 3.09 0.37 0.93 0.68 0.63 1 28.87 40.18 32.61 1.39 0.67 2,047,681 1,902,549 1,295,147 LS, S, mds
23 1.75 888,844 280,806 119.29 28.07 16.81 5.39 0.74 0.76 0.35 0.26 −12 118.32 481.82 288.00 4.07 0.16 16,394,052,728 12,406,888,210 4,293,084,007 LS, S, mds
24 0.12 36,615 11,442 41.20 24.41 19.16 4.64 0.93 0.99 0.07 0.07 1 32.62 110.26 45.87 3.45 0.47 46,366,708 45,687,504 3,301,050 LS, S, mds
25 1.05 52,986 17,979 46.60 22.09 15.82 4.75 0.69 0.93 0.33 0.31 1 59.00 108.53 87.66 1.67 0.38 43,791,150 40,926,664 13,426,383 LS, S, mds
26 1.76 76,254 25,711 52.61 27.86 17.68 5.60 0.72 0.78 0.37 0.28 1 53.18 171.88 117.57 3.23 0.34 174,672,108 135,495,153 49,724,555 LS, S, mds
27 1.00 20,604 5741 34.01 22.36 19.45 3.03 0.47 0.80 0.66 0.53 1 30.28 50.46 39.46 1.67 0.63 3,738,734 2,996,605 1,990,852 LS, S, mds
28 0.07 30,052 10,628 38.57 18.87 15.25 3.57 0.75 0.86 0.29 0.25 1 36.48 91.09 57.00 2.50 0.44 16,378,764 14,144,750 4,109,062 PBS, S, mds
29 0.13 31,512 8918 39.19 28.64 24.60 3.72 0.85 0.97 0.16 0.15 1 27.61 114.00 40.61 4.13 0.54 17,502,265 16,906,100 2,626,327 PBS, S, mds
30 2.17 346,986 100,602 87.18 28.91 18.44 5.44 0.71 0.75 0.39 0.29 −1 86.70 309.74 245.91 3.67 0.24 2,691,893,246 2,023,592,759 782,918,656 PBS, S, mds
31 2.76 215,558 66,533 74.39 23.41 16.68 4.69 0.74 0.82 0.32 0.26 95.30 252.00 146.41 2.61 0.26 990,056,582 813082801 257,785,651 PBS, S, mds
32 0.01 61,009 13,316 48.84 31.62 27.41 4.79 0.63 0.86 0.42 0.37 1 36.77 88.42 52.15 2.40 0.56 28,188,454 24,280,618 10,306,019 LS, D, lms
33 3.62 4,747,143 468,086 208.52 119.70 71.69 36.25 0.68 0.92 0.34 0.32 −10 211.41 518.99 348.80 2.44 0.29 64,436,502,033 59,495,693,524 20,449,929,387 LS, D, lms
34 0.47 4,553,895 380,158 205.65 106.77 69.20 28.48 0.83 0.95 0.18 0.17 −4 188.31 483.48 260.65 2.58 0.35 75,510,283,597 71,666,501,834 12,811,200,505 LS, D, lms
35 2.65 3,189,703 205,759 182.63 109.31 93.23 22.90 0.39 0.72 0.84 0.61 1 147.50 289.37 227.55 1.96 0.51 16,689,590,453 12,055,224,469 10,117,011,564 PS, D, lms
36 1.37 1,838,220 161,744 151.98 69.31 57.20 12.74 0.49 0.61 0.84 0.51 −1 122.34 249.51 229.40 2.06 0.45 9,215,574,757 5,631,885,821 4,708,239,342 PS, D, lms
37 0.14 72,846 16,294 51.82 30.13 24.72 6.13 0.51 0.78 0.62 0.49 1 39.61 76.70 73.22 1.94 0.52 33,899,579 26,436,442 16,468,541 LS, D, lms
38 0.21 61,287 13,512 48.92 33.53 27.26 7.88 0.50 0.94 0.54 0.50 1 44.00 71.96 51.97 1.64 0.56 21,950,498 2,063,4426 11,055,042 LS, D, lms
39 0.70 3,019,445 689,295 179.33 58.45 23.33 9.83 0.69 0.70 0.45 0.31 −53 89.00 813.88 615.94 9.14 0.15 147,235,174,433 102,521,620,559 45,651,346,389 LS, D, lms
40 0.77 747,225 84,203 112.59 64.31 50.77 13.23 0.60 0.85 0.47 0.40 1 103.30 181.80 139.82 1.76 0.47 1,829,345,244 1,556,650,817 732,869,744 LS, D, lms
41 7.07 4,948,008 1,605,150 211.42 34.47 16.36 7.71 0.47 0.94 0.56 0.53 −184 447.37 701.99 558.83 1.48 0.09 162,206,972,158 153,252,969,889 86,472,338,521 WS, O, lms
42 5.58 3,038,721 960,862 179.71 34.93 16.81 8.24 0.82 0.91 0.19 0.18 −125 251.00 777.08 484.10 3.09 0.11 134,220,699,572 122,671,204,473 23,777,886,020 WS, O, lms
43 2.32 1,670,898 302,363 147.23 59.90 33.05 16.06 0.41 0.96 0.62 0.59 −10 238.66 348.12 321.35 1.40 0.23 12,218,198,825 11,687,926,625 7,239,064,575 WS, P, lms
44 5.01 2,193,562 485,318 161.21 44.09 24.56 10.15 0.64 0.66 0.54 0.36 −25 157.55 582.92 448.00 3.69 0.17 58,836,874,236 39,106,427,237 21,192,405,785 WS, P, lms
45 0.09 149,732 28,229 65.88 39.50 30.65 8.85 0.65 0.83 0.42 0.35 1 52.23 129.36 79.86 2.44 0.48 141,947,006 118,201,360 50,094,546 LS, D, lms
46 0.12 84,839 15,760 54.52 38.52 33.44 8.35 0.46 0.90 0.60 0.54 1 47.00 80.00 57.20 1.70 0.59 36,447,568 32,748,593 19,728,399 LS, D, lms
47 6.80 8,015,792 1,059,250 248.30 86.83 44.94 17.01 0.64 0.87 0.41 0.36 −11 402.05 748.89 526.52 1.78 0.18 327,635,432,980 283,572,450,167 117,254,865,614 LS, D, lms
48 14.25 19,044,813 2,410,208 331.33 115.76 49.77 22.16 0.48 0.91 0.58 0.52 −42 553.59 829.13 725.97 1.52 0.14 1,016,384,785,013 920,140,041,568 531,202,690,463 LS, D, lms
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Table A1. Cont.

Sample

CT
Porosity

for
Sample

Volume Surface
Area

Equivalent
Diameter

Thickness
Max

Thickness
Mean

Thickness
StD Anisotropy Elongation Flatness Shericity Euler

Sum
Feret
Min

Feret
Max

Feret
Breadth

Feret
Shape

Shape
Va3D I1 I2 I3 GU, Age,

Lithology

% voxels px2 px px px px unitless unitless unitless unitless unitless px px px unitless unitless unitless unitless unitless

49 0.44 1,210,362 139,086 132.22 77.82 53.32 21.03 0.49 0.73 0.69 0.51 −1 127.37 242.95 200.15 1.89 0.39 4,384,387,635 3,216,307,385 2,224,065,872 NB, D, dls
50 0.77 1,020,579 124,872 124.92 74.00 51.34 21.91 0.39 0.70 0.86 0.61 1 109.59 210.45 188.38 1.91 0.39 2,949,744,677 2,079,002,498 1,792,628,271 NB, D, dls
51 0.19 210,189 47,553 73.77 28.64 22.01 5.71 0.71 0.78 0.38 0.29 68.00 178.23 120.86 2.62 0.36 431,329,642 335,771,629 126,756,088 PL, P, dls
52 0.08 24,267 8050 35.92 21.26 16.25 5.23 0.67 0.90 0.37 0.33 1 29.48 66.03 53.69 2.17 0.50 7,069,643 6,359,418 2,337,192 PL, P, dls
53 0.34 344,255 71,491 86.95 33.17 24.63 6.89 0.76 0.83 0.29 0.24 −1 82.00 244.33 149.89 2.98 0.33 1,079,288,906 890,942,737 255,812,404 PL, P, dls
54 0.14 36,932 10,216 41.32 23.15 19.64 4.21 0.64 0.89 0.41 0.36 1 41.65 72.87 53.86 1.68 0.52 13,824,225 12,304,972 5,003,150 PL, P, dls
55 0.48 60,398 13,574 48.68 33.17 27.51 7.87 0.53 0.85 0.55 0.47 1 46.60 87.57 66.01 1.89 0.55 27,674,773 23,507,168 12,986,944 PL, P, dls
56 0.53 25,006 9600 36.28 22.89 15.18 6.13 0.62 0.73 0.52 0.38 3 30.44 75.83 69.49 2.49 0.43 12,744,742 9,288,854 4,784,693 PL, P, dls
57 0.59 42,233 13,952 43.21 23.07 17.82 5.37 0.73 0.82 0.32 0.27 1 41.60 93.62 68.51 2.23 0.42 33,518,577 27,576,372 8,936,365 PL, P, dls
58 0.42 38,205 8674 41.79 28.50 25.30 4.35 0.37 0.75 0.84 0.63 4 33.41 59.03 54.89 1.76 0.63 9,668,611 7,229,433 6,060,071 PL, P, dls
59 0.87 958,176 209,894 122.32 39.80 24.22 8.19 0.66 0.89 0.39 0.34 174.86 332.33 218.23 1.90 0.22 8,646,293,360 7,671,211,043 2,958,813,489 PL, P, dls
60 1.09 914,202 189,000 120.42 47.71 25.33 10.19 0.59 0.82 0.50 0.41 −2 164.58 280.66 271.42 1.62 0.24 6,255,616,630 5,132,522,959 2,578,927,813 PL, P, dls
61 13.49 57,296,349 5,659,587 478.31 173.18 80.07 53.43 0.15 0.88 0.96 0.85 −452 700.00 1099.77 958.62 1.56 0.13 3,237,473,841,968 2,843,222,125,829 2,739,463,376,253 PL, P, dls
62 10.33 79,295,729 8,877,597 533.03 170.47 64.95 43.31 0.54 0.89 0.52 0.46 −466 700.00 1622.12 1002.13 2.29 0.10 11,871,921,780,168 10,568,080,341,865 5,490,014,287,950 PL, P, dls
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Table A2. List of parameters.

Name, Symbol Description

Volume, V Total number of voxels
Surface Area The surface area of the object expressed in voxels that are directly adjacent to the object’s surroundings
Equivalent Diameter Diameter of the sphere with a volume equal to the volume of the object
I1, I2, I3, I1, I2, I3 Moment of inertia around the shortest, medium and the longest main axis, based on the weighted average (moment) of the image pixels
Thickness Max Maximum thickness in the object, indirectly maximum diameter of the object
Thickness Min Minimum thickness in the object
Thickness Mean Mean thickness in the object, indirectly mean diameter of the object
Thickness Std Standard deviation of the thickness in the object
Anisotropy, A Parameter determining the deviation of the object’s shape from the sphere, based on tensor of inertia; Anisotropy = (I3/I1) + 1, pore shape anisotropy
Elongation Elongation of the object, based on tensor of inertia; Elongation = (I2/I1)
Flatness, F Flatness of the object, based on tensor of inertia; Flatness = (I3/I1)
Sphericity Sphericity of the object, based on volume and surface area; Sphericity = (π(1/3) * (6 * Volume)(2/3))/Surface Area
Euler Sum Euler characteristic
Feret Diameter Caliper diameter, the distance between the two defined parallel planes
Feret Min Minimum value of Feret diameter
Feret Max, FR Maximum value of Feret diameter, so maximum caliper diameter
Feret Breadth, FB Maximum Feret diameter in the direction perpendicular to the line defined by the longest Feret diameter of the object
Feret Shape The ratio of the maximum length of the Feret diameter measured in the direction perpendicular to the line defined by the shortest Feret diameter to the length of the shortest Feret diameter
ShapeVa3D Shape factor, calculated based on the surface area of the object and the cross-sectional area of the object’s shape; shapeva3d = (Surface Area3)/(36 * π 0 *Volume2)
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